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Abstract

Neuroblastoma is the most common extra-cranial solid tumor of early childhood. Standard therapies are not effective in
case of poor prognosis and chemotherapy resistance. To improve drug therapy, it is imperative to discover new targets that
play a substantial role in tumorigenesis of neuroblastoma. The mitotic machinery is an attractive target for therapeutic
interventions and inhibitors can be developed to target mitotic entry, spindle apparatus, spindle activation checkpoint, and
mitotic exit. We present an elaborate analysis pipeline to determine cancer specific therapeutic targets by first performing a
focused gene expression analysis to select genes followed by a gene knockdown screening assay of live cells. We
interrogated gene expression studies of neuroblastoma tumors and selected 240 genes relevant for tumorigenesis and cell
cycle. With these genes we performed time-lapse screening of gene knockdowns in neuroblastoma cells. We classified
cellular phenotypes and used the temporal context of the perturbation effect to determine the sequence of events,
particularly the mitotic entry preceding cell death. Based upon this phenotype kinetics from the gene knockdown
screening, we inferred dynamic gene functions in mitosis and cell proliferation. We identified six genes (DLGAP5, DSCC1,
SMO, SNRPD1, SSBP1, and UBE2C) with a vital role in mitosis and these are promising therapeutic targets for neuroblastoma.
Images and movies of every time point of all screened genes are available at https://ichip.bioquant.uni-heidelberg.de.
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Introduction

Neuroblastoma is an embryonal tumor arising in the sympa-

thetic nervous system, mostly in adrenal glands. The clinical

courses of neuroblastoma are very heterogeneous. Some tumors

undergo spontaneous regression without therapy, whereas, high-

risk neuroblastoma patients are often resistant to available

therapies and undergo a fatal clinical outcome [1]. These different

clinical courses depend on age of the patient, stage of the disease

and genetic abnormalities, most prominently the amplification of

the transcription factor MYCN [2]. MYCN serves as a prognostic

marker for neuroblastoma [3,4] and is a central regulator of the

cell cycle [5]. In addition, mutations in ALK [6] and PHOX2B [7]

have been identified in most familial cases of neuroblastoma.

Despite the recent progress in understanding gene function,

specific targets for curing neuroblastoma tumors are yet unknown.

Deregulation of cell division is a hallmark of cancerous cells [8].

The mitotic spindle is an essential component of cell division that

ensures an equal division of the chromosomes [9]. Inhibitors of the

mitotic spindle have been extensively used in chemotherapy [9].

However, susceptibility to these drugs is dependent on the tumor

type [10]. Though, given the high degree of heterogeneity in

response to anti-mitotic drugs in different tumor cells, [11]

identification of target proteins that are substantial for the etiology

of neuroblastoma is a challenging task.

Hence, the search for genes with therapeutic potential requires

an elaborated approach. Neuroblastoma exhibit heterogeneous

clinical courses. Stage 4 classified tumors have a very poor

prognosis (aggressive tumors), in contrast to stage 1 tumors which

have a very good prognosis and often show spontaneous regression

[3]. For the present knockdown screen, we selected genes from an

established gene-expression-based classifier. This predictor was

constructed to discriminate neuroblastoma tumors with poor

prognosis (stage 4) from tumors with good prognosis (stage 1, see

our earlier study, [12]). Furthermore, we selected genes which are

regulated by the prognostic marker MYCN/MYC as found in our

previous in vitro study [4]. In this previous work, a genome-wide

search for MYCN targets was performed to identify clusters of

genes that were directly regulated by MYC/MYCN or indirectly

involved in MYCN-induced regulation, using a neuroblastoma cell

line that allows conditional expression of MYCN.

Functional genomics and cancer genetics consistently exploit

high-throughput RNA interference knockdown screens to inves-

tigate consequences of eliminating specific genes [13–15]. siRNA
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assays based on a single readout, such as cell viability, growth rate,

or reporter activity (luciferase) are easy to scale up in high

throughput. However, they contain limited information as they

provide only an endpoint snapshot of a cell’s reaction [16]. In

contrast, image-based knockdown screens provide multi-paramet-

ric readouts and enable tracking more complex phenotypes. These

assays are laborious if done on a high-throughput scale. We

combined the best of both to infer gene function in a time-

dependent manner, as explained in the following. To gain

functional information from images, image processing methods

were established to segment whole cells and cell nuclei (i.e. to

separate them from the image background) and to extract their

morphological features [17,18]. Techniques have been developed

to distinguish and quantify different cell shapes [19], to determine

sub cellular localizations [20], to identify mitotic phases [21], and

to cluster genes based on phenotypic similarity [22].

In this study, we used a reduced set of genes relevant to

neuroblastoma, as described above and performed a time-lapse

image-based loss-of-function assay to determine cell fate upon

gene knockdown. As an example, different outcomes of gene

silencing are shown in Figure 1. For instance, perturbation of

constitutively expressed anti-apoptotic genes may lead to cell

death. As such, targeting mitotic genes can lead to mitotic arrest

and this may lead to cell death depending on the mitotic

component that was targeted [23,24]. Targeting the mitotic

checkpoint can cause aneuploidy resulting in asymmetric segre-

gation of chromosomes during anaphase. An abnormal division

can result in non-viable daughter cells. Some knockdowns can

cause mitotic arrest and after prolonged mitotic arrest, a cell can

either die or exit mitosis without cell division known as mitotic

slippage. Knockdowns resulting in such abnormal mitotic fate are

attractive therapeutic candidates. Hence, we focused our analysis

on identifying such perturbations.

Results and Discusson

The workflow is depicted in Figure 2. Firstly, based on gene

expression analysis, we selected genes involved in the malignant

progression of neuroblastomas. Subsequently, these genes were

subjected to time-lapse image-based knockdown screens in the

SH-EP cell line from neuroblastoma. By automated image

processing and machine learning using Support Vector Machines

(SVMs), a quantitative description of phenotypic classes and cell

nuclei were obtained from raw bitmaps. Thereafter, perturbation

consequence was inferred from the analysis of the phenotypic

dynamics focusing on cell death, death in mitosis and death after

mitosis. For validation, the analysis was repeated using a second

neuroblastoma cell line (SK-N-BE(2)-C). This resulted in a small

set of genes which was verified using gene expression data from

neuroblastoma patients and literature. Finally, we predicted

potential kinases regulating the candidate genes using a repository

of kinase-substrate interactions and compared this with the in

literature.

Selecting relevant genes for knockdown screening
In a previous study by Oberthuer et al. [12], a predictive-

signature comprising of 144 genes was established to predict the

course of the disease for neuroblastoma patients. In a follow-up

study by Westermann et al. [4], a genome-wide search of MYCN/

MYC target genes using a MYCN-inducible neuroblastoma cell line

was performed recording time series of gene expression after

MYCN induction. The profiles were clustered yielding gene sets

with similar gene expression profiles. For our screen, we selected

two sets of genes from these clusters, one set from clusters enriched

in genes that belonged to the 144-gene predictor signature. The

second set of genes was selected from clusters enriched (p-

value#0.05, adjusted for multiple testing) in the ‘‘E-Box’’ motif

(binding motif of MYC family), indicating direct MYC family

targets [4]. Details on the selection are given in Methods. The

gene list is provided in an addition file (see Supplementary Table

S1). Using the selected 240 neuroblastoma associated genes, we

performed enrichment tests for the pathway definitions of the

Reactome database [25] and Gene Ontology (www.gene.ontology.

org). We found four Reactome pathways to be significantly

enriched with the candidate genes comprising cell cycle associated

pathways (mitotic cell cycle, cell cycle checkpoints and APC-

Cdc20 mediated degradation of Nek2A) (see Supplementary Table

S2). For Gene Ontology, four out of the top five Gene Ontology

terms were linked to cell cycle (mitosis, cell division, mitotic spindle

organization, and mitotic cell cycle checkpoint), demonstrating

that the gene selection procedure captured genes relevant to the

cell cycle.

Automated classification of cellular phenotypes
Each single cell nucleus was segmented from images and

characterized by texture descriptors, e.g. Haralick texture, Zernike

moments, granularity, greyscale invariants, Wavelet features and

by morphological descriptors, e.g. shape, size and circularity. To

track mitotic events, each cell was classified into one out of four

distinct phenotype classes (Figure 3), i.e. interphase (round or

elliptical object with smooth boundaries), mitosis (dividing cell

comprising prometaphase, metaphase, and anaphase), cell death

(small and bright fragments of the nuclei), and artifact (clusters of

cells that could not be further subdivided, or small-dark objects;

these objects were not used for a further functional analysis). The

classifier was trained using Support Vector Machines (SVMs) to

distinguish these four phenotype classes on a training set of

manually annotated nuclei. To assess the performance of the

classifiers, a cross-validation procedure was performed, yielding an

overall accuracy of 95.3% for the SH-EP cell line. These results

outperform previous investigations with HeLa cells (accuracy for

HeLa cells: 93.9% to 94.7% [18]) even though imaging and image

analysis of neuroblastoma cells was more challenging due to the

higher tendency of cells to form cluster and higher cell motility.

Note that the stated performance of our approach was determined

using well separable objects of the training set.

Figure 1. Consequences of a gene knockdown on the cell cycle
and cell fate. These effects can be observed (directly or indirectly) by
imaging cells with silenced genes following a mitotic time-lapse
screening assay. Cells may directly be affected from a loss-of-function of
a gene and die (cell death), they may enter mitosis and die before
completion of mitosis (cell death in mitotic arrest) or may undergo
mitotic slippage followed by interphase arrest or cell death [23].
doi:10.1371/journal.pone.0050988.g001

Tracking Cell Fate upon Gene Knockdown

PLOS ONE | www.plosone.org 2 December 2012 | Volume 7 | Issue 12 | e50988



To determine the performance on all objects, we randomly

selected a test set from all segmented objects of our data. Manual

verification of the classified phenotypes showed that our classifiers

well distinguished the phenotypes (accuracy: 83.7%). Nevertheless,

separation of mitosis and interphase, and of mitosis and cell death

was comparably low. In order to improve the separation of these

challenging cases, we designed an automated correction scheme

employing tracking information (see section 2.3). In addition, we

applied a filter to discard objects for which the predicted

phenotypes were ambiguous. As a result, the filter discarded

,8% of the objects. These automatic corrections improved overall

accuracy from 83.6% to 86.5%. In particular, accuracy for the

class mitosis increased considerably: from 81.7% (see Supplemen-

tary Table S3) to 93.8% (Table 1). In summary, we obtained

reliable results by improving automated classification of pheno-

types from image data of neuroblastoma cell lines (results for SK-

N-BE(2)-C are given in Supplementary Table S4).

Quality control of the experimental set-up
Knockdown experiments were performed for two neuroblasto-

ma cell lines stably expressing GFP tagged histones using solid-

phase reverse transfection with siRNA. Cells were imaged for

120 hours with a time-lapse of approximately 40 min with one

image per well. As a quality control, we compared proliferation

dynamics of positive and negative controls over the entire period

of the screening. We selected positive controls with a distinct

apoptotic phenotype as shown elsewhere [26]; in pilot screens, we

observed similar phenotypes for three of these genes (KIF11, PLK1,

INCENP, data not shown). We used these as positive controls and

two scramble siRNA constructs as negative controls. To obtain a

measure of proliferation dynamics, we counted the number of

interphase cells in each image over the investigated time-frames.

For the SH-EP cell line, we found a significantly reduced

proliferation of the positive controls in comparison to the negative

controls in all time-frames (p-value#0.05, see Supplementary

Figure S1). For the other cell line (SK-N-BE(2)-C), we found a

significantly reduced proliferation in the later time-frames (56–

120 hours, see Supplementary Figure S1) indicating a delayed

effect of the perturbation.

Estimating cell cycle kinetics
Cell cycle kinetics has been used as a parameter for optimization

of cancer treatment schedules. Interestingly, treatment schedules

matching the integer multiple of the cell cycle duration reduce

Figure 2. The workflow. (A) Neuroblastoma associated genes were selected based on gene expression profiles of neuroblastoma tumors and cell
lines, (B) selected genes were subjected to image-based time-lapse siRNA knockdown screens, (C) each cell in an image was classified into one of the
phenotype classes interphase, mitosis, or cell death, and (D) time series of the phenotypes were assembled into phenotype profiles to determine
gene function of each gene knockdown.
doi:10.1371/journal.pone.0050988.g002

Figure 3. Sample images of the four phenotype classes. Interphase cells are round or elliptical with smooth boundaries. The class of mitosis
includes cells in the sub-phases of the mitotic process, i.e. pro-metaphase, metaphase, and anaphase. The class cell death represents dying cells
observed by disintegrated nuclei. The class artifact represents cell aggregations that could not be further segmented and over-segmented cells.
doi:10.1371/journal.pone.0050988.g003

Tracking Cell Fate upon Gene Knockdown
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damage to normal cells [27]. Hence, we were interested if our time

series analysis allowed us to estimate the cell cycle duration of our

cell lines. We examined the cell cycle behavior of the cell culture,

assuming that siRNA transfection causes synchronization of the

cells. The cell cycle duration of a cell line can be computed either

by the mitotic index or by S-phase dynamics [28]. In our

approach, interphase phases G1, G2, and S were not differentiated

therefore we studied the interphase dynamics as a whole. The

interphase population was averaged over all replicates and

knockdowns. In accordance with our expectation we observed

periodicity. We identified a cell cycle duration of ,35 hours for

SH-EP cells (Figure 4) and of ,31 hours for SK-N-BE(2)-C

(Supplementary Figure S2). Note that in earlier studies using HeLa

cells, a shorter cell cycle duration of 17 hours was reported [29].

Our finding shows that neuroblastoma cells synchronize as well as

it opens the possibility to study population response dynamics for

each knockdown (next sections).

Identifying knockdowns that impair cell cycle
Death in mitosis, i.e. cell death before completion of the mitotic

process, has been reported as the most promising component in

cell cycle for drug design [23]. This can be explained by the

concept that inhibitors affecting the initial phase of the cell cycle

lead to cells in quiescence. Inhibitors leading to high cell death in

general also affect normal cells causing severe side effects during

therapy. Therefore, we tracked the sequence of phenotypes in the

population to select genes either with a high number of cells in

mitosis and cell death at the same time-frame or a high number of

cells in mitosis followed by cell death (Figure 5).Note that the

phenotype was observed in the context of the population response

in a time-frame. Accordingly, these genes either showed mitotic

cell death or mitotic slippage preceding cell death.

Comparing the two neuroblastoma cell lines
We found 30 candidate genes as potential drug targets (using the

statistical analysis pipeline for monitoring phenotype dynamics as

described in Methods) of the SH-EP cell line (see Supplementary

Table S5). As a validation, we compared the results with the

second cell line which was subjected to the same screening

protocol (SK-N-BE(2)-C, results in Supplementary Table S5). Six

identified genes (DSCC1, DLGAP5, UBE2C, SSBP1, SNRPD1, and

SMO) were validated by the second cell line. The overlap showed a

potential enrichment (p-value = 0.14). We did not find a corre-

sponding phenotype in a genome-wide HeLa cell screen

(Mitocheck database, http://www.mitocheck.org/cgi-bin/mtc).

Gene expression analysis of the validated genes
Interestingly, all these genes were highly up-regulated (p-

value,0.01, see Supplementary Table S6) in aggressive neuroblas-

toma tumors (stage 4, with MYCN amplification) in comparison to

non-aggressive tumors (stage 1 without MYCN amplification).

Furthermore, all six genes showed a good prediction performance

for overall survival (see Supplementary Table S6). Kaplan Meier

plots for SMO and DLGAP5 are shown in Supplementary Figure

S3.

Literature reports of the validated genes
A functional interpretation of the six identified genes is given the

following: (1) DLGAP5 (Discs, Large homolog-Associated Protein

5) is a known mitotic regulator. It stabilizes microtubules and

ensures bipolar spindle formation. AURKA regulates its activity by

phosphorylation [30]. DLGAP5 depleted HeLa cells have shown a

delay in mitotic progression and their mitotic exit resulted in an

unequal segregation of chromosomes [31]. (2) DSCC1 (Defective in

Sister Chromatid Cohesion 1 homolog) is one of the components

of the replication factor C (RFC) complex with an important role

during S phase of the cell cycle [32]. DSCC1 double mutants

Figure 4. Time series of interphase cells during five days of
screening. The population shows a periodicity of ,35 hours
representing the cell cycle duration (blue bars: interphase counts
(normalized by B-Score normalization) of all screened cells for each
time-frame, red curve: fitting curve).
doi:10.1371/journal.pone.0050988.g004

Figure 5. Determination of candidate genes that show cell
death during or after mitosis. The population response to a
knockdown was computed to identify the sequence of phenotype
occurrence.
doi:10.1371/journal.pone.0050988.g005

Table 1. Confusion matrix of the classification results after
automated correction.

True class

Interphase Mitosis Cell Death Artifact

Interphase 241 11 10 63

Predicted Mitosis 5 16 12 10

class Cell Death 28 5 119 33

Artifact 25 0 6 104

doi:10.1371/journal.pone.0050988.t001

Tracking Cell Fate upon Gene Knockdown
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terminated proliferation and showed premature senescence

(increased size, flattened morphology) [33]. (3) SMO (Smoothened)

is a G protein-coupled receptor that interacts with PTCH, a

receptor for hedgehog proteins. The hedgehog signaling pathway

regulates cell proliferation, differentiation and tissue patterning

during embryonic development [34]. SMO has been identified as a

potential drug target in osteosarcoma, as its inhibitor cyclopamine

promotes G1 arrests and represses expression of cyclin D1, cyclin E1,

SKP2, and pRb [35]. Deregulation of the hedgehog signaling

pathway has been discovered in brain, lung and skin cancers [34].

Inhibitors targeting SMO for curing medulloblastoma tumors are

in clinical trials [36]. (4) SNRPD1 encodes a small nuclear

ribonucleoprotein that belongs to the SNRNP core protein family.

It acts as a charged protein scaffold to promote SNRNP assembly

and it strengthens SNRNP-SNRNP interactions through non-

specific electrostatic contacts with RNA [37]. snRNPs are major

components of the spliceosome [38]. (5) SSBP1 (Single-Stranded

DNA Binding Protein 1) is a housekeeping gene associated with

mitochondrial biogenesis. It interacts with tumor-suppressor TP53

to enable DNA repair in mitochondria during oxidative stress

[39]. Its inhibition causes genomic instability and negatively affects

cell cycle checkpoint activation [40]. (6) UBE2C is an E2 ubiquitin-

conjugating enzyme. It is required for degradation of mitotic

cyclins and for cell cycle progression [37]. Its knockdown in U251

glioma cells results in arrest at G2/M phase and apoptosis through

induction of Bax and p53 [41]. Supplementary Figure S4 depicts a

selection of typical time-lapses of cells with these gene knock-

downs. Note that the cell responses were heterogeneous for all

investigated gene knockdowns and thus we based our analysis on

population response. In summary, four (DLGAP5, DSCC1, SSBP1,

UBE2C) of these six proteins are directly involved in cell cycle and

one indirectly (SMO) which is involved in cell cycle regulation. As

such, the functional interpretation of the six candidate genes

provides strong indications that monitoring cell cycle dynamics

enables identification of drug targets for neuroblastoma cells.

Predicting upstream regulators
Protein phosphorylation by kinases is a common regulatory

mechanism in signaling of cell cycle progression and mitotic

processes. The fact that most tumors show alterations herein

makes kinases attractive therapeutic targets [42]. We performed

statistical enrichment analysis (using KEA [43]) for the proteins

encoded by the genes with mitosis-linked cell death phenotype, as

potential substrates of regulatory kinases (see Supplementary

Table S7). In both cell lines, the Aurora kinase family showed a

significant enrichment of substrates among our candidate genes.

For the SH-EP cell line, the top three kinase families identified

were AUR, GSK and CDK (p-value: 0.0003, 0.005 and 0.006,

respectively). Interestingly, we found the GSK family, which has

not been associated with neuroblastoma therapy as prominently as

the CDKs and AURs. The family of GSKs consists of

multifunctional serine-threonine kinases GSK3a and GSK3b [44].

Their role in cancer and chromosome assembly on the metaphase

plate has been recently discovered [45–47]. It has been shown that

GSK3b inhibition leads to G2/M accumulation and increased

apoptosis in the neuroblastoma cell line SK-N-SH [48]. In glioma

cells, inhibition of GSK3 induces pro-apoptotic effects, inhibits

pro-survival signals, and induces mitochondrial permeability [49].

GSK target genes among our candidate genes are NIFK, LMNB1,

NCL, SMARCC1 and TP53. Detailed functional interpretation of

the other kinases we identified and the downstream targets of

GSKs are given in Supplementary Text S1.

Data access via data repository iCHIP
All original data from this study is publicly available in the web-

based database iCHIP. It can be accessed at https://ichip.

bioquant.uni-heidelberg.de (User: ‘‘guest’’; Password:

‘‘sHeY82Nu’’). Each movie and each image can be observed

and downloaded. Access to the images is achieved by selection of a

gene in the query page. Associated gene, siRNA information as

well as the calculated phenotype scoring and related quality

measures are available. Supplementary Figure S5 shows a

screenshot of an exemplary webpage at which a movie can be

viewed and downloaded.

Conclusion

We have developed a processing pipeline for screens by time-

lapse microscopy from raw bitmaps to detailed perturbation

analysis and identification of drug targets for tumors. As a case

study, we applied the pipeline to neuroblastoma cells. The

methodological contributions are threefold. First, integration of

gene expression and gene knockdown analysis enables overcoming

challenges posed by large genome-wide time-lapse studies. Second,

optimization of the classification of cellular phenotypes enhances

their correct prediction. Third, a novel analysis technique to track

knockdown phenotype kinetics makes it possible to monitor

cellular decisions during cell cycle.

Genome-wide siRNA screens are costly, need large data storage

capacities, are very time consuming, and may still lead to

ambiguous results (amongst others, see [50–53]). In contrast,

kinome screens are less resource intensive and focus on a subset of

genes (kinases) of the human genome [14,54]. In line with kinome

screens, we focused our screen on a set of genes which are involved

in cell cycle progression and tumorigenesis of neuroblastoma cells.

We identified a list of candidates by analyzing large sets of publicly

available gene expression data. From this list, we selected a set of

240 genes for knockdown studies, which have a potential role in

neuroblastoma tumor progression.

To track mitotic aberrations after gene knockdown, we

monitored well defined phenotypic classes (interphase, mitosis,

cell death) of cell nuclei. In the proposed pipeline, classification of

the cells into distinct phenotypes using image-based screens was

crucial, as any follow-up interpretation based upon this. We did

not solely rely on the cross-validation accuracy values to assess

classification performance. Instead, the classified phenotypes were

manually evaluated on a randomly selected test set. In addition,

assignment of the mitosis and interphase classes was improved by

an automated correction scheme employing tracking information.

Subsequently, these phenotypes were analyzed in a time depen-

dent manner. Tracking mitosis with a time-lapse of ,40 min at a

single cell level was a challenging task. Our finding that

neuroblastoma cells synchronize their cell cycle opens the

possibility to monitor phenotype kinetics using population

response. We tracked population response and observed the

consequence of gene perturbation considering integration of

overlapping time-frames. In the end, we identified six genes

(DLGAP5, DSCC1, SSBP1, UBE2C, SNRPD1, and SMO) with a

vital role in prevention of cell death in both cell lines and hence six

potential drug targets for silencing in cancer therapy. These genes

were significantly up-regulated in aggressive neuroblastoma

tumors and are good predictors for clinical outcome. In this

study, we employed the neuroblastoma cell lines SH-EP and SK-

N-BE(2)-C. As a future aspect, our findings need validations using

a larger set of different neuroblastoma cell lines and cells from

primary tumors. In summary, we developed a general method to

characterize cell fate upon knockdown using high-throughput

Tracking Cell Fate upon Gene Knockdown
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time-lapse image data, and applied the pipeline to neuroblastoma

cells. The analysis identified six novel candidates which were not

previously associated with cell cycle in neuroblastoma cells. With a

detailed analysis of the phenotypic dynamics, we hope to elucidate

the central players for the cellular decision during tumorigenesis in

neuroblastoma.

Methods

Selecting genes for screening using gene expression
analysis

In a previous study by Oberthuer et al. [12], a neuroblastoma-

specific microarray chip was designed which covered a high

percentage of transcripts that were differentially expressed in the

major clinically distinct subgroups of neuroblastoma tumors.

Using this customized 11K oligonucleotide microarray, 251

neuroblastoma specimens were analyzed and a 144-gene predictor

signature was assembled to predict the course of the disease. In a

follow-up study by Westermann et al. [4], the same neuroblastoma-

specific microarray was used to identify MYCN/MYC target genes

using a neuroblastoma cell line (SH-EPMYCN). SH-EPMYCN is a

neuroblastoma cell line that stably expresses an inducible MYCN

transgene, thus allowing conditional expression of MYCN. Gene

expression profiles of a time series after MYCN induction were

obtained with the customized 11k microarray. The profiles were

clustered using self-organizing maps (SOM) which resulted in 504

clusters (best matching units, BMUs) of genes with similar gene

expression profiles. Clusters (BMU 140, 168, 195, 280, 308, 336,

defined as subgroups I and II in [4]) were enriched in the ‘‘E-Box’’

motif (binding motif of MYCN/MYC, P#0.05 using a Fisher’s

Exact test, adjusted for multiple testing of all BMUs using the

method of Benjamini-Hochberg [55]), indicating potential targets

of the MYC transcription factor family [4]. We selected 127 genes

from these clusters. In addition, we selected 80 genes from the

BMUs which were enriched in genes from the 144-gene predictor

signature. For this, we computed the percentages of the predictive-

signature-genes that matched to the identified clusters. The top

three BMUs (BMU 504, 476, 475) with the highest odd ratios

(0.49, 0.41, and 0.3) were selected. Further, 33 genes which were

associated to neuroblastoma tumor progression were selected from

literature. Finally a set of 240 genes was assembled and used for

the knockdown screen (see Supplementary Table S1).

Preparation of cell arrays and imaging
Two neuroblastoma cell lines, SH-EP and SK-N-BE(2)-C, were

used in the screen. These cell lines were transfected with a

construct of the gene coding for histone H2B with Green

Fluorescent Protein (GFP) as described previously [56]. Briefly, a

chimeric gene with a cDNA construct of H2B gene tagged with

GFP was sub-cloned into a mammalian expression vector. This

vector was used to transfect the cell lines. Thus, the product of this

gene H2B-GFP protein was incorporated into the nucleosomes

which allowed imaging of mitotic chromosomes and interphase

chromosomes. Further, cover glass culture chambers called

‘‘LabTeks’’ were automatically spotted and dried as previously

described [57]. Sample preparation for spotting, mixing of

transfection reagents and siRNAs was done using an automated

liquid handler. Automated spotting of this transfection solution

onto LabTeks was performed with a contact printer. After drying

the LabTeks for at least 12 hours, SH-EP/H2B-GFP and SK-N-

BE(2)-C/H2B-GFP (60, 000 cells/LabTek) were seeded on the

LabTeks and incubated in a stage top chamber by LCI, with

1.5 ml growth medium at 37uC, 95% humidity, and 5% CO2.

Eight LabTeks with 275 spots were used to cover several mock (no

siRNA) spots, 2 siRNAs (Ambion) per gene and four replicates per

siRNA. Images were acquired (16 hour post seeding) for five days

at an acquisition rate of 35–40 minutes using an automated wide-

field fluorescence microscope (Olympus X81 ‘inverted’ ScanR System)

with 106magnification.

Image Processing
Nuclei segmentation was performed using a region adaptive

threshold scheme, which allowed detection of cells with varying

contrast. Clusters of cells were resolved by Euclidean distance

transformation of the segmentation output followed by watershed

transformation to split them into single cells. Dense clusters of cells

growing on top of each other could not be resolved using this

approach and were treated as cluster objects in the subsequent

analysis. To bring all images of different spots and cell arrays to a

comparable grey value range, grey value normalization was

performed before feature extraction. To this end, the mean of the

distribution (histogram) of the foreground pixels of the complete

data set was computed and three features of this histogram were

extracted (i.e. location of the maximum peak and its width to the

left as well as to the right). For grey value normalization each

individual image histogram was mapped to this mean histogram

and the grey values of the respective images were transformed and

scaled accordingly. A set of 349 image features was computed for

each nucleus, describing the texture (Haralick texture, granularity,

greyscale invariants, wavelet features) and morphology (shape,

size, circularity, Zernike moments), as described previously [17].

Single cell tracking was done based on the approach described in

[17]. In essence, first cell-cell correspondences were determined

using spatial distance and feature similarity, and second, mitosis

events (cell splitting) were detected and the respective trajectories

were merged [17,18]. To determine cell-cell associations a

distance measure was used, combining feature similarity and

spatial distance after normalization of both terms [17]. For mitosis

detection the mitosis likelihood function as described in [18] was

used, which is based on the sizes and mean intensities of the

mother and daughter cell nuclei. An additional constraint was

added to the mitosis likelihood function, disregarding objects with

low mean intensity (compared to the mean object intensity in the

particular image) to avoid false positive detections.

Classification of nuclei into phenotypes
Using supervised machine learning, each nucleus was classified

into one of the following phenotype classes: interphase, mitosis,

cell death, and artifact (Figure 3). For training of the classifier a set

of typical training samples from each class was collected, where

each sample was defined by a vector of descriptive image features

(e.g., Haralick texture, Zernike moments, Wavelet features, shape

descriptors) and a class label (interphase, mitosis, cell death,

artifact). The class label was provided by the annotation of an

expert. A classification model (classifier) was generated from the

training data to distinguish the classes defined in the training set.

After training, the classifier was applied to assign class labels to

nucleus images for which the classes were not yet known. Each

step in this process is explained in the following.

Training set
The training set was manually annotated by an expert. For the

SH-EP cell line, a set of 174 interphase samples, 94 mitosis

samples, 204 cell death samples, and 118 artifact samples, was

manually annotated for training and validating the classifier. For

SK-N-BE(2)-C cells, we selected a set of 230 interphase samples,

80 mitosis samples, 120 cell death samples, 100 cluster samples,

and 45 artifact samples. Since SK-N-BE(2)-C showed a much
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higher tendency of clustering, we separated the clustered objects

from the artifact class and defined a new class called cluster. These

samples were taken from the images of all of the eight LabTeks to

account for the variation among the cell arrays of the entire screen.

The imbalanced training set was stratified for the classifier by

weighting each sample of class c by wc = nl/nc as described in [18].

nl is the number of samples in the largest class and nc is the number

of samples in class c.

Classification model
For classification we used Support Vector Machines (SVMs)

with a radial basis function (RBF) kernel. We applied a one-

against-one approach for multiclass classification (i.e. binary

classification between all pairs, followed by voting) as implemented

in the R-package e1071 [58]. The model parameters C (cost

function) and c (kernel width) were optimized by a grid search

C = {21, 22,….210}, c= {2216,2215…226} employing a 10-fold

cross-validation on the training data (inner loop). To choose C and

c, each pair of the parameters C and c was tested. The pair with

the lowest validation error (the average number of misclassified

samples) was chosen and used for training an SVM on the

complete training dataset. To estimate the performance of the

classifiers, the SVMs were trained and validated by a 5-fold cross-

validation (outer loop). The annotated data was split into five

subsets, four subsets were selected as training data and the

remaining subset as test data. The whole process was repeated 5

times (outer loop) yielding performance estimations of the

classifiers. For classifying new samples, new SVMs were trained

with all samples from the training data.

Filter
Cells which could not be assigned to any phenotype with high

confidence were removed based on the likelihood for their

respective class label as determined by the classifier. The

confidence values were obtained using the R-package e1071. A

probability model was used which computes a posteriori probabil-

ities for the multi-class problem by a quadratic optimization [59].

This provides the likelihood of each class label for a sample. For

ambiguous samples the likelihood values for multiple classes were

similar without a clear maximum, and consequently, the classifier

output was less reliable. Therefore, we defined a reliability score r;

which was computed for each sample by r = |l12l2|, where l1 and

l2 are the two highest likelihood values (predicted by the SVMs).

All samples with a reliability score of r#0.2 were discarded from

the further analysis.

Manual evaluation of classification
For evaluating the performance of the classifier on real data

(including samples which were hard to distinguish), a set s of 800

nuclei was randomly selected which included samples from each

class. Set s was classified using the above model and filter.

Independently, this set was manually annotated. Single cell

tracking as described in [17] was used to extract the trajectory tr

of each of the selected nuclei of s. tr of a nucleus consisted of three

snapshots before and three after the target snapshot (i.e. the

snapshot which is a part of s) and this time series was used for

supporting the manual annotation of the nuclei into phenotype

classes. The two labels of the samples (manual annotation,

classifier) were compared. These errors were studied to formulate

the correction rules as described below.

Automatic error correction
Classification correction was performed based on a finite state

model (FSM) as described previously [18] which is described

briefly in the following. Each cell was tracked over the whole time

series as previously explained [17,18]. Classification results were

overlaid on these trajectories resulting in a sequence comprising

phenotype classes of a nucleus over time. A correction scheme was

developed for better separating the class mitosis from interphase

and cell death. This automatic correction scheme was aimed at (1)

avoiding false negative prediction of mitosis, (2) avoiding false

positive prediction of mitosis, and (3) avoiding false positive

prediction of cell death. For (1), all splitting events were identified,

and then the mother nucleus as well as the immediate daughter

nuclei were labeled mitosis. For (2), all nuclei classified by the

classifier as mitosis were validated by inspecting any of the four

conditions: (a) if it was involved in a splitting event (mother or

daughter), (b) if there was a splitting event preceding or following

the nucleus, (c) if the succeeding object was a cluster (a mitotic

splitting event would not be detectable in a cluster), or (d) if it was

followed by cell death. If none of the conditions were true, the

nucleus was corrected to interphase. For (3), all the successors of

the nucleus were scanned until the end of the trajectory. A nucleus

was considered to be in cell death if the immediate successor of the

nucleus and at least 50% of the following trajectory had the label

cell death, if not, the sample was corrected to interphase.

Quantitative analysis of phenotype kinetics
After classifying each nucleus, we performed a quantitative

analysis to obtain time-lapse profiles for each phenotype class and

knockdown. The pipeline included the following steps:

Normalization
We used B-Score normalization for normalization within the

LabTeks and between LabTeks, accounting for spatial error

corrections of each cell array per time-lapse and per phenotype

class. B-Score normalization subtracts the row mean and column

mean to account for the row and column variability, followed by

correction for plate deviations by subtracting the plate mean and

dividing by the plate median absolute deviation [60], i.e.

Bscore~
rrc{ mzmrzmcð Þ

MAD
ð1Þ

where Bscore is the normalized value, rRC is the original value of the

plate at row R and column C, m is the mean of the plate, mR is the

mean of row R, mC is the mean of column C, MAD is the median

absolute deviation of the plate.

MAD~median Dxi{mmDð Þ ð2Þ

where xi is the vector of values, mm is the median of xi. Note that,

the median absolute deviation is more robust than the standard

deviation as the median is less sensitive to outliers [61]. B-score

normalization also accounted for edge effects which were evident

in the cell arrays before normalization (see Supplementary Figure

S6).

Defining the phenotype signal
To smooth fluctuations, each phenotype class was quantified in

time-frames with 24 hours of imaging data. Each time-frame had

a shift of 8 hours from the previous frame, yielding 13 time-frames

for the five days of screening. The area under the curve (AUC)

(integral of the phenotype counts for each time-frame) was
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computed for each of these time-frames. AUC of a time-frame was

defined as the phenotypic signal for that time-frame. AUCs were

computed using R-package caTools [62].

Estimating the phenotypic score
We assigned a significance score to the phenotype signal of each

time-frame in the form of p-values. We computed significance

values (p-values) by a non-parametric test (Wilcoxon rank test)

instead of using Z-scores, as a significant p-value (#0.05) indicates

reproducibility of the siRNA effect and are less sensitive to outliers

[63]. The two populations subjected to the test were four replicates

of a gene per siRNA, and the overall population acting as the

negative control.

Tracking of the phenotype profiles
Genes which showed a high mitosis count as well as a high

count of cell deaths were further investigated to determine the

sequence of the occurrence of these phenotypes. A phenotype

profile of a gene consisted of the p-value (Wilcoxon rank test, p-

value#0.05) of each time-frame for the two phenotypes under

consideration. Mitotic defects were indicated by the occurrence of

phenotypes in the same time-frame or occurrence of high cell

death in the time-frame next to the time-frame with high mitosis

counts (Figure 5). We selected the genes with significantly high

occurrence of mitosis phenotypes in time-frame t0 and significantly

high occurrence of cell death phenotypes either at the same time-

frame (t0) or at time-frame t0+1.

Estimating the periodicity
To estimate the periodicity of the cell lines, we performed a

non-linear fit to the overall temporal distribution of all interphase

counts (including all controls and knockdowns), using the nlinfit

function of Matlab (www.matlab.com). To smooth the data, the

entire time series was reduced to forty time-frames. Each frame

represented integration of three hours of imaging data. For the fit,

a non-linear function combining a sinus function and a linear

function was used,

y~a sin bxzdð Þzmxzc ð3Þ

where a is the amplitude, b the time period, x the interphase

counts in a time series, d the phase, m the linear slope and c a

constant. Fitting values of the parameters were a = 0.03, b = 0.18,

c = 0.4, m = 0.001 for SH-EP cells and a = 0.02, b = 0.2, c = 0.3,

m = 0.05 for SK-N-BE(2)-C cells.

Expression analysis of the validated candidate genes
Gene expression profiles for all the validated genes were

extracted from whole genome single-color microarray profiles of

478 pre-treatment primary neuroblastoma tumors analyzed as

part of the MAQC-II project [64]. Data was normalized using the

quantile method using the R-package limma [65]. Two tumors

were removed from the survival analysis as the overall survival

data and cause of death were unknown. To split the tumors into

high and low risk groups we used the R-package maxstat [66]. We

used a 10 fold cross-validation, i.e. we divided the data set into 10

parts and used the cutoff value from 9 parts to assign the group

label to the tumors of the 10th part. Overall survival analysis was

performed using the R-package survival [67]. Statistical signifi-

cance of the curves was determined using the log-rank test.

Enrichment Analysis
Enrichment tests were done for each pathway in Reactome on

the screened genes compared with all genes from the 11k

microarray as background (universe) using the software DAVID

[68]. EASE Scores (from a modified Fisher’s exact test) were used

for obtaining the significance values [69]. Gene Ontology

enrichment analysis was performed using the Bioconductor

package topGO [70] and the weight algorithm. Kinase enrich-

ment analysis was done using the Kinase Enrichment Analysis

(KEA). It employs a kinase-substrate database, compiled from

several experimental resources (for details, see [43]). Given a list of

genes, KEA identifies kinases for which a significant enrichment of

their substrates can be found in the gene list (using Fisher’s exact

tests). P-values from all these enrichment tests were corrected for

multiple testing using the method of Benjamini-Hochberg [55].

After multiple testing corrections, p-values#0.05 were considered

to be significant.

Supporting Information

Text S1 Predicting upstream regulators.

(DOCX)

Figure S1 Experimental quality control. Top: cell counts

of positive (coral red) and negative (coral blue) controls are plotted

by boxplots for all time-frames. Bottom: Significance values of the

differences of positive and negative controls are given for each

time-frame by negative log10 p-values. A significance threshold (p-

value = 0.05) is indicated by a red dashed line. (Left) SH-EP cell

line: The positive controls show significant lower counts for all

time-frames. (Right) SK-N-BE(2)-C cell line: The positive controls

show significant lower counts for time frames $56 hrs.

(PDF)

Figure S2 Time series of interphase cells during five
days of screening of SK-N-BE(2)-C. The population showed

a periodicity of ,31 hours representing its cell cycle duration (blue

bars: interphase counts of all screened cells for each time frame,

red: fitting curve).

(PDF)

Figure S3 Kaplan Meier plots for two of the validated
candidate genes (SMO and DLGAP5). The log-rank p-values

are shown on the top right of the plots.

(PDF)

Figure S4 Selection of time-lapse images illustrating
cell fate observed in the SH-EP cell line for the six
validated genes. The image sequence of knockdown of DSCC1

shows a cell in interphase, mitosis (metaphase), interphase

(daughter nuclei), deformation of the nucleus (cell death), and cell

death. The sequence of knockdown of SSBP1 shows a cell in

interphase, mitosis (prometaphase), mitosis (metaphase), mitosis

(anaphase), and finally daughter nuclei sticking together in arrest.

The sequence of knockdown of SNRPD1 shows a cell in

interphase, mitosis (prometaphase), mitosis (metaphase), daughter

nuclei and cell death. The sequence of knockdown of UBE2C

shows a cell in interphase, mitosis (prometaphase), mitosis

(anaphase), and cell death. The sequence of knockdown of

DLGAP5 shows a cell in interphase, mitosis (metaphase), daughter

nuclei, deformation, and cell death. The sequence of SMO

knockdown shows a cell in interphase, mitosis (prometaphase),

mitosis (metaphase) and cell death.

(PDF)

Figure S5 Screenshot of the web interface of the ichip
database. Each movie and each image can be observed and
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downloaded. Access to the images is achieved by selection of a

gene in the query page. Associated gene and siRNA information is

also available as well as the calculated phenotpye scoring and

related quality measures.

(TIFF)

Figure S6 Cell arrays before and after normalization.
The color key shows the distribution of the cell counts over the

array. Left: A cell array before normalization, showing the edge

effects with high cell counts in the most upper row. Right: The

same cell array after B-score normalization. It shows a smoothing

of the edge effects. Blue boxes represent empty spots which were

not a part of the screen.

(PDF)

Table S1 240 genes selected for knockdown screen.

(XSLX)

Table S2 Pathways of Reactome and gene groups from
Gene Ontology which were enriched in the screened
genes.

(DOCX)

Table S3 Confusion matrix for SH-EP cell line.

(DOCX)

Table S4 Confusion matrix for SK-N-BE(2)-C cell line.

(DOCX)

Table S5 Candidate genes with phenotype Cell death
during or after mitosis.
(DOCX)

Table S6 Results of the gene expression analysis for the
six identified genes.
(DOCX)

Table S7 Kinase families and their predicted substrates
from our candidate genes.
(DOCX)
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