
1Scientific Reports | 6:35922 | DOI: 10.1038/srep35922

www.nature.com/scientificreports

General hyperconcentration of 
photonic polarization-time-bin 
hyperentanglement assisted by 
nitrogen-vacancy centers coupled 
to resonators
Fang-Fang Du1, Fu-Guo Deng2 & Gui-Lu Long1,3,4

Entanglement concentration protocol (ECP) is used to extract the maximally entangled states from less 
entangled pure states. Here we present a general hyperconcentration protocol for two-photon systems 
in partially hyperentangled Bell states that decay with the interrelation between the time-bin and the 
polarization degrees of freedom (DOFs), resorting to an input-output process with respect to diamond 
nitrogen-vacancy centers coupled to resonators. We show that the resource can be utilized sufficiently 
and the success probability is largely improved by iteration of the hyper-ECP process. Besides, our 
hyper-ECP can be directly extended to concentrate nonlocal partially hyperentangled N-photon 
Greenberger-Horne-Zeilinger states, and the success probability remains unchanged with the growth of 
the number of photons. Moreover, the time-bin entanglement is a useful DOF and it only requires one 
path for transmission, which means it not only economizes on a large amount of quantum resources but 
also relaxes from the path-length dispersion in long-distance quantum communication.

Quantum entanglement is the key important resource for quantum communication, such as quantum telepor-
tation1, quantum dense coding2,3, quantum key distribution4,5, quantum secret sharing6, and quantum secure 
direct communication7,8 as entangled photons are generally considered as the ideal information carriers and are 
used to connect distant quantum nodes in long-distance quantum communication on account of its high-speed 
transmission and striking low-noise features. Usually entangled photon pairs are produced locally. The photon 
loss and decoherence caused by the interaction between the photonic quantum system and its environment will 
inevitably decrease its entanglement during the practical entanglement distribution in long-distance quantum 
communication.

After passing through a noisy channel, the maximally entangled photon states decay into less entangled 
pure states or mixed states, leading to the destruction on the fidelity and the security of long-distance quantum 
communication protocols. In order to depress the decoherence effect on the entangled systems, two interesting 
quantum techniques, entanglement purification and entanglement concentration, could be exploited to obtain 
high-fidelity entangled photon systems. In detail, entanglement purification9–14 is used to distill a subset of highly 
entangled states from a set of mixed entangled states, while entanglement concentration15–18 is to extract the 
maximally entangled states from less entangled pure states. Since Bennett et al.15 proposed the first entanglement 
concentration protocol (ECP) for two-photon systems relying on the Schmidt projection method, some good 
ECPs16–18 have been presented.

Hyperentanglement, the entanglement simultaneously in multiple degrees of freedom (DOFs) of a quantum 
system19, has some important applications in quantum communication. It can increase the channel capacity of 
quantum communication20–24, achieve the complete Bell-state analysis for the quantum states in the polarization 

1State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, 
Beijing 100084, China. 2Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal 
University, Beijing 100875, China. 3Tsinghua National Laboratory of Information Science and Technology, Beijing 
100084, China. 4Collaborative Innovation Center of Quantum Matter, Beijing 100084, China. Correspondence and 
requests for materials should be addressed to G.-L.L. (email: gllong@tsinghua.edu.cn)

received: 30 June 2016

accepted: 26 September 2016

Published: 02 November 2016

OPEN

mailto:gllong@tsinghua.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 6:35922 | DOI: 10.1038/srep35922

DOF11, be used to teleport the unknown quantum state in two DOFs21 and complete the hyperentanglement 
swapping between two photonic quantum systems without entanglement22, and help to design the determin-
istic hyperentanglement purification11–14 which solves the troublesome problem that the parties in quantum 
repeaters should sacrifice a large amount of quantum resources with conventional entanglement purification 
protocols (EPPs)9,10 as the deterministic EPPs11–14 work in a completely deterministic way25–27. Recently, some 
interesting hyperentanglement concentration protocols (hyper-ECPs)28–35 were proposed. For example, in 2013, 
Ren et al.28 proposed the first hyper-ECP for two-photon systems in polarization-spatial less-hyperentangled 
states with linear optical elements only, including the cases for the nonlocal photonic quantum systems with 
known and unknown parameters, respectively. More interestingly, they proposed the parameter-splitting 
method28, a fascinating method, to extract the maximally entangled photons when the coefficients of the initial 
partially entangled state are known, and this method is very efficient and simple in terms of concentrating par-
tially entangled state as it can be achieved with the maximum success probability by performing the protocol 
only once. In 2014, Li and Ghose30 proposed a hyperconcentration scheme for nonlocal N-photon hyperentan-
gled Greenberger-Horne-Zeilinger (GHZ) states via linear optics. Sequentially, they31 presented two efficient 
schemes for concentration of nonlocal N-photon hyperentanglement based on the cross-Kerr nonlinearity. In 
2016, Liu et al.34 presented a hyper-ECP for the partially hyperentangled N-particle GHZ state assisted by a 
less-entangled N-particle GHZ state and three single photons. So far, most of the existing hyper-ECPs28–34 focus 
on less-hyperentangled states in the polarization and spatial modes DOFs. In 2015, Li and Ghose35 presented two 
hyper-ECPs for two-photon states that are partially entangled in the polarization and time-bin DOFs with linear 
optics.

The electronic spin associated with a diamond nitrogen vacancy (NV) center is an exceptional solid-state 
spin qubit system due to optical controllability36–39 and exceeding 10 ms coherence time by using dynamical 
decoupling techniques40. The electron spin of the NV center can be exactly initialized41, manipulated36–39,41 and 
read out42,43. Therefore, the diamond NV center is an attractive platform for quantum information processing 
due to its long-lived coherence time at room temperature. Many interesting approaches for quantum compu-
tation and quantum communication have been proposed based on the NV center in diamond coupled to an 
optical cavity in theory24,29,44–46 and implemented in experiment40,41,47–52. For example, Ren et al.29 presented the 
spatial-polarization photonic hyperentanglement purification and concentration resorting to the nonlinear optics 
of the NV center embedded in a photonic crystal cavity coupled to a waveguide in 2013. In 2015, Liu and Zhang24 
presented two interesting schemes for the generation and complete nondestructive analysis of hyperentanglement 
assisted by nitrogen-vacancy centers in resonators. Jelezko et al.41 have experimentally demonstrated a condi-
tional controlled quantum gate on electron-nuclear spins of an NV center in 2004. The creation of an entangle-
ment between two distant NV electron spins40, a single photon and an NV electron spin47, the electron and nearby 
nuclear spins48 have been experimentally demonstrated.

In this paper, we investigate a general hyper-ECP for two-photon systems in an arbitrary partially hyperentan-
gled unknown Bell state that decays with the interrelationship between the time-bin and the polarization DOFs. 
Our hyper-ECP is achieved by the Schmidt projection method and two parity-check gates that are constructed 
with the optical property of the NV center coupled to a resonator. By iteration of the hyper-ECP process, the suc-
cess probability of our hyper-ECP becomes much higher than that in the hyper-ECP with linear optics. At last, we 
show that our hyper-ECP is suitable for arbitrary partially hyperentangled N-photon GHZ states, and the success 
probability is still unchanged with the growth of the number of photons.

Results
The optical property of an NV-cavity platform.  An NV center in diamond is created by a replaceable 
nitrogen atom substituting for a carbon atom and an adjacent vacancy in the diamond lattice. The ground state of 
the NV center is an electronic spin triplet state holding a 2.8 GHz zero-field splitting between the magnetic sub-
levels |ms =​ 0〉​ and |ms =​ ±​1〉​ in virtue of the spin-spin interaction53. One of the six excited states54 

= + + −− +A E E( 1 1 )/ 22  is very robust against the relatively low strain, which is lower than the 
spin-orbit splitting, and magnetic fields possessing the stable symmetry properties protected by an energy gap 
retaining the polarization properties of its optical transitions55,56. Here the electric triple states of the ground 
ms =​ 0 and ms =​ ±​1 represent |0〉​ and |±​1〉, respectively. |E±〉​ indicate the orbital states with the angular momen-
tum projections ±​1 along the NV axis. In the presence of the small external magnetic field (2π​ ×​ 200 MHz) which 
has little effect on the symmetry properties of the |A2〉​ state, the twofold degenerace |ms =​ ±​1〉​ sublevel is split in 
two levels. The transitions frequency between |±​1〉​ and |A2〉​ is in the optical regime, i.e., |±​1〉​ ↔​ |A2〉​ are driven 
by the σ− (left −​ L) and σ+ (right −​ R) circularly polarized photon at ~637 nm (shown in Fig. 1), respectively.

The schematic diagram of a diamond NV center coupled to a resonator is shown in Fig. 1. An incident single 
photon with frequency ωp enters a single-sided cavity with frequency ωc, which traps a ^-type three-level dia-
mond NV center with frequency difference ω0 between |−​1〉​ and |A2〉​. The cavity mode â is driven by the input 
field âin. By solving the Heisenberg equations of motion for the annihilation operation â of cavity mode and the 
lowing operation σ− of the NV center57,
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In the weak excitation limit 〈​σz〉​ =​ −​1, one can obtain the reflection coefficient for the NV-cavity system58,59
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Here the cavity output field âout is connected with the input field by the input-output relation κ= +ˆ ˆ ˆa a a t( )out in . 
The vacuum input field bin(t) has the standard commutation relation δ′ = − ′ˆ ˆ†

b t b t t t[ ( ), ( )] ( )in in . κ and γ are the 
decay rates of the cavity and the spontaneous emission rate of the NV center, respectively. g is the coupling rate of 
the NV-cavity system. In the case of g =​ 0 in which the NV center is uncoupled from the cavity, Eq. (2) could 
convert into ω =
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 for an empty cavity.

It is usually not difficult to find that if the photon feels a hot cavity (g ≠​ 0), it will get a phase eiϕ after reflection. 
Otherwise, if the photon feels a cold cavity, it will obtain a phase shift ϕei 0. Supposed that the NV center is initially 
prepared in the state |−​1〉​, the only possible transition is |−​1〉​ ↔​ |A2〉​. The L polarized photon feels a hot micro-
toroidal resonator (MTR), while R polarized photon would sense a bare MTR due to a polarization mismatch, and 
the corresponding output states of the L and R photons can be obtained as45
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In contrast, if the NV is prepared in the state |+​1〉​, the input pulse L (R) always feel a bare cavity due to the 
polarization mismatch (the large detuning), and the corresponding output states of the L and R photons can be 
obtained as
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The phase shifts are the function of the frequency detuning (ωp −​ ωc) under the resonant condition ωc =​ ω0. 
By adjusting ωp =​ ωc =​ ω0, one can see that the reflection coefficients for the hot cavity r(ωp) and the cold cavity 
r0(ωp) can be written as
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If the condition satisfies γκ≥g 5 , ω r ( ) 1p  and r0(ωp) =​ −​1 can be obtained. That is, the spin-selective 
optical transition rules can be described as

− → − − → − −
+ → − + + → − + .

L L R R
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1 1 , 1 1 ,
1 1 , 1 1 (6)

This input-output property of a cavity-NV-center system can be used to construct the parity-check gates 
(PCGs) for a two-photon system in both the time-bin (NV1 in Fig. 2(a)) and the polarization (NV2 in Fig. 2(b)) 
DOFs.

Parity-check gates for a two-photon system.  A two-photon system AC has four Bell states in the 
time-bin DOF and the four Bell states in the polarization DOF. After passing through a noisy channel, the maxi-
mally entangled photon states decay into less entangled pure states denoted as

Figure 1.  Schematic diagram of a diamond NV center coupled to a resonator. The left ellipse represents the 
optical transition of the NV-center between the ground states |±​1〉​ and the excited state |A2〉​.
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where |α|2 +​ |β|2 =​ |γ|2 +​ |δ|2 =​ 1. The Bell states φ±
AC
T  (φ±

AC
P ) and ψ±

AC
T  (ψ±

AC
P ) stand for the even-parity 

and the odd-parity modes in the time-bin (polarization) DOF of the two photon system, respectively. Here the 
superscripts T and P represent the time-bin and the polarization DOFs of the two-photon system, respectively. 
s and l are the two different time-bins, the early (s) and the late (l), which possesses the time interval Δ​t 
between the two time-bins. R and L denote the right-circular and left-circular polarizations of photons, 
respectively.

The parity-check gate (T-PCG) for a two-photon system in the time-bin DOF is constructed with circu-
larly polarizing beam splitters (CPBSs), PCs(l), NV1, and SWs, shown in Fig. 2(a). CPBSi (i =​ 1, 2, …​) repre-
sents a polarizing beam splitter in the circular basis, which transmits the photon in the right-circular 
polarization |R〉​ and reflects the photon in the left-circular polarization |L〉​, respectively. The PCs (PCl) in 
the spatial-mode a1 and c1 (a2 and c2) is a Pockels cell (PC)60 which performs a bit-flip operation 
(σ = +R L L Rx

P ) on the polarization DOF of the photon A (C) at the specific time only when the 
s(l)-path component appears. That is,
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It is worth pointing out that our PCs (PCl) is consisted of two half-wave plates (HWPs) (indicating the mutual 
transformation between the circular polarization and linear polarization) and the PC′​s (PC′​l) shown in ref. 60. 
Taken the transformation | 〉 | 〉 →R L( )s s PCs  |L〉​s(|R〉​s) as an example, it can be accomplished with the processes 

Figure 2.  Schematic diagrams of parity-check gates for a two-photon system. (a) The time-bin parity-check 
gate (T-PCG). (b) The polarization parity-check gate (P-PCG). NV1 (NV2) represents a one-side cavity-NV-
center system which is used to perform T-PCG (P-PCG) on the photon pair AC. CPBSi (i =​ 1, 2, …​) represents 
a polarizing beam splitter in the circular basis, which transmits the photon in the right-circular polarization |R〉​ 
and reflects the photon in the left-circular polarization |L〉​, respectively. SWj(j =​ 1, 2, 3, 4) is an optical switch 
which makes the wave-packet of a photon successively enter into (or keep away from) the NV center. The PCl 
(PCs) is a Pockels cell which affects a bit-flip operation on the polarization DOF of the photon at specific times 
only when the l(s)-path component is present.
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. Similarly, after interaction, the evolutions of the other states of the system can 
be described as follows:
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It is quite clear that the polarization states of the two photons AC have not be affected. By measuring the aux-
iliary NV1 in the orthogonal basis {|+​〉​,|−​〉​}, one can distinguish the even-parity time-bin Bell states from the 
odd-parity ones. That is, if the auxiliary NV1 is projected into the state |+​〉​1, the time-bin state is the even-parity 
one; otherwise, it is the odd-parity one.

The principle of our polarization parity-check gate (P-PCG) is shown in Fig. 2(b) and it is used to distinguish 
the parity of the hyperentangled Bell states in polarization DOF. Similar to our T-PCG, if one lets the photons A 
and C pass through the quantum circuit shown in Fig. 2(b) in sequence, the rule for the evolutions of quantum 
states of the complicated system composed of two photons AC and the auxiliary NV2 is
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By measuring the auxiliary NV2 in the orthogonal basis {|+​〉​,|−​〉​}, one can distinguish the hyperentangled Bell 
states with the even-parity mode from those with the odd-parity mode in the polarization DOF without influenc-
ing the states of the photons in the time-bin DOF. In detail, if the auxiliary NV2 is projected into the state |+​〉​2, the 
polarization state is the even-parity mode; otherwise, it is the odd-parity one.

High-efficiency hyper-ECP for arbitrary two-photon systems.  In a long-distance quantum commu-
nication, the maximally hyperentangled Bell state φ pq

TP
0  in both the time-bin and polarization DOFs may decay 

to the partially hyperentangled Bell-type state by the independent decoherence of the entanglement in two 
DOFs35. Also, the maximally hyperentangled Bell state φ AB

TP
0  will decay to an arbitrary partially hyperentangled 

Bell state φ pq
TP if the interrelation between the time-bin and the polarization DOFs is taken into account. Here
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Here the subscripts p and q present the photons held by two distant parties, Alice and Bob, respectively. The four 
unknown parameters α1, α2, α3, and α4 satisfy the normalization condition |α1|2 +​ |α2|2 +​ |α3|2 +​ |α4|2 =​ 1, and 
three unknown parameters are independent. The principle of our general hyper-ECP for two-photon systems in 
both the polarization and the time-bin DOFs is shown in Fig. 3. It includes two steps which can be described in 
detail as follows.

(1)	 The first step of our hyper-ECP for the two-photon systems. To realize the first step of our hyper-ECP with 
the Schmidt projection method, a pair of the two-photon systems AB and CD from a set of the two-photon 
systems in the state φ pq

TP is required for each process in hyper-ECP. That is, the two photons A, and C belong 
to Alice, and the other two photons B and D belong to Bob.
The principle of the first step of our hyper-ECP for the photon pairs AB and CD is shown in Fig. 3. The initial 
state of the four-photon system ABCD can be written as φ φΦ = ⊗ABCD AB

TP
CD
TP . Alice performs the 
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T-PCG and P-PCG on the photon pair AC. The outcomes can be divided into four groups, and they are dis-
cussed in detail as follows.

(1.1)	� If the outcomes of the T-PCG and P-PCG are in an even-parity time-bin mode and an odd-parity 
polarization mode, respectively, the four-photon system is projected into the state |Φ​1eo〉​ABCD with the 
probability of p1eo =​ 2(|α1α2|2 +​ |α3α4|2). Here

α α α αΦ = + ⊗ + .
p

ssss llll RRLL LLRR1 ( ) ( )
(13)

eo ABCD
eo

ABCD1
1

1 2 3 4

Subsequently, Alice (Bob) performs the single-photon measurement (SPM) on the photon C (D). The SPM 
setup is composed of linear optical elements, shown in Fig. 3. The effect of the unbalanced interferometer (UI) can 
be described as →R Rl lsUI  and →L Ls slUI . Here the length difference between the two arms s and l is set exactly 
to cΔ​t, where c is the speed of the photons. After passing through two PCs and two UIs, the state  
|Φ​1eo〉​ABCD is transformed into the state |Φ​′​1eo〉​ABCD. Here
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Obviously, both the two photons C and D will arrive at their SPMs at the same time, respectively, i.e., in the mid-
dle time slot. However, there are two potential spatial modes for each photon, the up mode c1(d1) and the down 
mode c2(d2), which makes the two photons C and D be measured in both the polarization DOF and the spatial mode 
DOF. The effect of a 50:50 beam splitter (BS) can be described as → +m m m( )1

BS 1
2 1 2  and 

→ −m m m( )2
BS 1

2 1 2  (m =​ c, d). R45 is used to perform a Hadamard operation on the polarization DOF of the 
photons, that is, → +R R L( )

R 1
2

45  and → −L R L( )
R 1

2
45 . At last, the two photons C and D are detected 

by the single-photon detectors. The relationship between the measurement results of the detectors and the shared 
states |φ1eo〉​AB is shown in Table 1. If two detectors (D DRc Rd1 1

, D DLc Ld1 1
, D DLc Rd2 2

, or D DRc Ld2 2
) are clicked, the 

two-photon system AB is projected into the state φ α α α α= + ⊗ +ss ll RR LL( ) ( )eo AB p1
1

1 2 3 4
eo1

, which 
is the partially hyperentangled Bell-type state with the polarization DOF in a maximally entangled  
Bell state. For the other three cases of the two clicked detectors, a phase flip operation σ = −s s l lz

T , 
σ σ σ= −R R L L ,z

P
z
T

z
P  in sequence on the photon B is required to obtain the partially hyperentangled 

Bell-type state |φ1eo〉​AB.
(1.2)	� If the outcomes of the T-PCG and P-PCG are in an odd-parity time-bin mode and an even-parity 

polarization mode, respectively, the four-photon system is projected into the state |Φ​1oe〉​ABCD with the 
probability of p1oe =​ 2(|α1α3|2 +​ |α2α4|2). Here

Figure 3.  Schematic diagram of our hyper-ECP for two-photon systems in an arbitrary partially 
hyperentangled Bell state, resorting to T-PCG and P-PCG. The length difference between the l and s paths in 
the unbalanced interferometer (UI) is designed to cancel the time interval between the two time-bins. R45 
represents a half-wave plate which is used to perform a Hadamard operation on the polarization DOF of the 
photons. BS represents a 50:50 beam splitter. = = =  k R L m c d nD ( , ; , ; 1, 2)kmn

 represents a single-photon 
detector. SPM represents a single-photon measurement device which is similar to the one performed by Alice in 
the grey rectangle by replacing d with c.
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α α α αΦ = + ⊗ + .
p

ssll llss RRRR LLLL1 ( ) ( )
(15)

oe ABCD
oe

ABCD1
1

1 3 2 4

Similar to the discussion above, after two parters perform the SPMs on the photons C and D, two-photon 
system AB is projected into the hyperentangled Bell state φ α α α α= + ⊗ +ss ll RR LL( ) ( )oe AB p1

1
1 3 2 4

oe1
 

with the time-bin DOF in a maximally entangled Bell state by assisting the conditional phase flip operation  
Y ( σ σ=Y I, , ,z

T
z
P  or σ σz

T
z
P) on photon B depending on the measurement results of the detectors shown in Table 1.

(1.3)	� If the outcomes of the T-PCG and P-PCG are in an odd-parity time-bin mode and an odd-parity 
polarization mode, respectively, the four-photon system is projected into the state |Φ​1oo〉​ABCD with the 
probability of p1oo =​ 2(|α1α4|2 +​ |α2α3|2). Here

Φ α α α α

α α α α

= +

+ + .

p
ssll RRLL LLRR

llss LLRR RRLL

1 [ ( )

( ) ] (16)

oo ABCD
oo

ABCD

1
1

1 4 2 3

1 4 2 3

Alice and Bob make the photons A, B, C, and D pass through the PCl, PCl, PCs, and PCs, respectively, which 
realize the polarization bit-flip operations on the time-bin modes lA, lB, sC, and sD, respectively. Then the state  
|Φ​1oo〉​ABCD is transformed into α α α αΦ′ = + ⊗ +ssll llss RRLL LLRR( ) ( )oo ABCD p1

1
1 4 2 3

oo1
. Similar to the 

case (1.2), after replacing α1α3 and α2α4 with α1α4 and α2α3, respectively, the state of the two-photon system AB 
is transformed into φ α α α α= + ⊗ +ss ll RR LL( ) ( )oo AB p1

1
1 4 2 3

oo1
.

(1.4)	� If the outcomes of the T-PCG and P-PCG are in an even-parity time-bin mode and an even-parity 
polarization mode, respectively, the four-photon system is projected into the state |Φ​1ee〉​ABCD with the 

probability of α α α α= + + +p ee1 1
2 2

2
2 2

3
2 2

4
2 2. Here

α α

α α

Φ = +

+ + .

p
ssss RRRR ssss LLLL

llll RRRR llll LLLL

1 (

) (17)

ee ABCD
ee

ABCD

1
1

1
2

2
2

3
2

4
2

Alice and Bob perform the SPMs on the photons C and D, respectively, and then the state |Φ​1ee〉​ABCD collapses to 
φ α α α α= + + +ss RR ss LL ll RR ll LL( )ee AB p1

1
1
2

2
2

3
2

4
2

ee1
, which is the partially hyperentangled 

Bell state with less entanglement than the state φ AB
TP .

(2)	 The second step of our hyper-ECP for two-photon systems. In this step, another two photon pairs A′​B′​ and 
C′​D′​ in the partially hyperentangled Bell state φ pq

TP are required, which are identical to the two photon pairs 
AB and CD. Here the two photons A′​C′​ belong to Alice, and the two photons B′​D′​ belong to Bob. Alice and 
Bob perform the same operations on the photon pairs A′​B′​ and C′​D′​ as those on the photon pairs AB and CD, 
and the same results can be obtained. That is, the four cases |φ1eo〉​A′B′, |φ1oe〉​A′B′, |φ1oo〉​A′B′, and |φ1ee〉​A′B′ are 
obtained with the probabilities p1eo, p1oe, p1oo, and p1ee, respectively, by replacing the four photons ABCD with 
A′​B′​C′​D′​. Alice and Bob will distill a maximally hyperentangled Bell state φ AB

TP
0  from the partially hyperen-

tangled Bell-type states obtained by the above three cases of the first step. The principle of this step is the same 
as the first one shown in Fig. 3 by replacing the photons ABCD with ABA′​B′​. That is, Alice performs the 
T-PCG and P-PCG on the photon pairs AA′​.

(2.1)	� For the case in (1.1), the state of the four-photon system ABA′​B′​ is |Ψ​1〉​ABA′B′ =​ |φ1eo〉​AB ⊗​ |φ1eo〉​A′B′. 
Alice picks up the case when the outcome of the T-PCG is in an odd-parity time-bin mode, and 
a maximally hyperentangled Bell state can be obtained whether the outcome of the P-PCG is in 
an odd-parity polarization mode or in an even-parity polarization mode. That is, the four-photon 
system is projected into the states |Ψ​1oe〉​ABA′B′ and |Ψ​1oo〉​ABA′B′ with the same probability p1 =​ p1oy/p1eo 
(p1oy =​ 4|α1α2α3α4|2), respectively. Here

|ϕ1eo〉AB Measurement results

(α1α2|ss〉​ +​ α3α4|ll〉​) ⊗​ (|RR〉​ +​ |LL〉​) D DRc Rd1 1  D DLc Ld1 1  D DLc Rd2 2  D DRc Ld2 2

(α1α2|ss〉​ −​ α3α4|ll〉​) ⊗​ (|RR〉​ +​ |LL〉​) D DRc Ld1 1  D DLc Rd1 1  D DLc Ld2 2  D DRc Rd2 2

(α1α2|ss〉​ +​ α3α4|ll〉​) ⊗​ (|RR〉​ −​ |LL〉​) D DRc Ld1 2  D DLc Rd1 2  D DLc Ld2 1  D DRc Rd2 1

(α1α2|ss〉​ −​ α3α4|ll〉​) ⊗​ (|RR〉​ −​ |LL〉​) D DRc Rd1 2  D DLc Ld1 2  D DLc Rd2 1  D DRc Ld2 1 

Table 1.   The relation between the final state of AB and the measurement results.
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Ψ

Ψ

= + ⊗ +

= + ⊗ + .

′ ′ ′ ′

′ ′ ′ ′

ssll llss RRRR LLLL

ssll llss RRLL LLRR

1
2

( ) ( ) ,

1
2

( ) ( )
(18)

oe ABA B ABA B

oo ABA B ABA B

1

1

�After performing the SPMs on the photons A′​ and B′​ and assisting the conditional phase-flip operation on the 
photon B, the two-photon system AB is projected into the maximally hyperentangled Bell state φ AB

TP
0  with the 

probability 2p1.
�If the outcome of the T-PCG is in an even-parity time-bin mode, the four-photon system is projected into the 
states |Ψ​1eo〉​ABA′B′ and |Ψ​1ee〉​ABA′B′ with the same probability p′​1/p1ey =​ p1eo, respectively. Here

Ψ α α α α

Ψ α α α α

= + ⊗ +

= + ⊗ +

′ ′ ′ ′

′ ′ ′ ′

p
ssss llll RRRR LLLL

p
ssss llll RRLL LLRR

1 ( ) ( ) ,

1 ( ) ( ) ,
(19)

eo ABA B
ey

ABA B

ee ABA B
ey

ABA B

1
1

1
2

2
2

3
2

4
2

1
1

1
2

2
2

3
2

4
2

�where α α α α= +p 2( )ey1 1
2

2
2 2

3
2

4
2 2 . After measuring the photons A′​ and B′​, the two-photon system  

AB is projected into the partially hyperentangled Bell-type state φ α α= +ss(ey AB p1
1

1
2

2
2

ey1

 

α α ⊗ +ll RR LL) ( )AB3
2

4
2  with the probability 2p′​1, which can be used in the second step in the second 

round of the hyper-ECP process.
(2.2)	� For the case in (1.2), the state of the four-photon system ABA′​B′​ is |Ψ​2〉​ABA′B′ =​ |ϕ1oe〉​AB ⊗​ |ϕ1oe〉​A′B′. 

Likewise, Alice and Bob pick up the case when the outcome of the P-PCG is in an odd-parity polariza-
tion mode, and a maximally hyperentangled Bell state φ AB

TP
0  with the probability 2p2(p2 =​ p1yo/p1eo, 

p1yo =​ p1oy) can be obtained whether the outcome of the T-PCG is in an odd-parity time-bin mode or in 
an even-parity polarization mode. If the outcome of the P-PCG is in an even-parity time-bin mode, the 
two-photon system AB  is projected into the partially hyperentangled Bell-type state 
φ α α α α= + ⊗ +ss ll RR LL( ) ( )ye AB p AB1

1
1
2

3
2

2
2

4
2

ye1

 with the same probabi l ity  2p ′ 2​ 

α α α α′ = = +p p p p( / , 2 2 )ye oe ye2 1 1 1 1
2

3
2 2

2
2

4
2 2 .

(2.3)	� For the case in (1.3), the same operations are performed on the state |Ψ​3〉​ABA′B′ =​ |ϕ1oo〉​AB⊗​|ϕ1oo〉​A′B′ as 
those on the state |Ψ​2〉​ABA′B′ in case (2.2). The maximally hyperentangled Bell state φ AB

TP
0  can be 

obtained with the probability 2p3(p3 = ​ p1xo/p1oo,  p1xo = ​ 4|α1α2α3α4|2)  and the state 
φ α α α α= + ⊗ +ss ll RR LL( ) ( )xe AB p AB1

1
1
2

4
2

2
2

3
2

xe1
 can be obtained with the probability 

2p′3(p′​3 =​ p1xe/p1oo, α α α α= | + |p 2 2 )xe1 1
2

4
2 2

2
2

3
2 2 .

In the hyper-ECP for the two-photon systems in the partially hyperentangled Bell state with linear optics in 
ref. 35, only one of the three cases (1.1), (1.2), and (1.3) can be preserved, and only one of the two time-bin (polar-
ization) parity cases (the even parity or odd parity of the case (2.1), (2.2), or (2.3)) is preserved in the second step. 
These six cases can all be preserved in our hyper-ECP with the NV center, so the success probability P1 of the first 
round of the hyper-ECP process is almost five times larger than that in the hyper-ECP with linear optical ele-
ments. The success probability in ref. 35 is P =​ m, m ∈​ (p1, p2, p3). After the first round of our hyper-ECP, the total 
success probability of the maximally hyperentangled Bell state φ AB

TP
0  is P1 =​ 2(p1 +​ p2 +​ p3). The left of Fig. 4 

shows the procedure of the first round of our ECP for two-photon systems in an arbitrary partially hyperentan-
gled Bell state with T-P-PCG in detail.

Now, let us discuss the second round of our ECP for two-photon systems in an arbitrary partially hyperentan-
gled Bell state with T-P-PCG shown in the right of Fig. 4. For the partially hyperentangled Bell state |φ1ee〉​AB pre-
served in the case (1.4), requiring four copies of the two-photon systems to complete the two steps in the second 
round of the hyper-ECP process. While for the hyperentangled Bell-type states |φ1ey〉​AB, |φ1ye〉​AB, and |φ1xe〉​AB 
preserved in the second step, two copies of the photon systems in each state are required to complete only the 
second step in the second round of the hyper-ECP process. After the second round of the hyper-ECP, the success 
probability of the maximally hyperentangled Bell state φ AB

TP
0  is

=





+ +




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+
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
+ +




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(20)
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yo
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xe
ee2

2

1 1

2

1 1

2

1 1

2

1

2

1
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1
1

where α α α α= = =p p p 4oy yo xo2 2 2 1
2

2
2

3
2

4
2 2. Again, the partially hyperentangled Bell states preserved in the 

n-th round of the hyper-ECP process can be used to distill the maximally hyperentangled Bell state in the 
(n +​ 1)-th round. The success probability of the hyperentanglement concentration process in n-th (n >​ 2) round 
can be described as follows
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After the n-th round iteration of the hyper-ECP process, the total success probability is = ∑ =P Pi
n

i1 . The suc-
cess probabilities equal to P1 =​ 0.225, P2 =​ 0.312, and P5 =​ 0.338 when |α1| =​ 0.3, |α3| =​ 0.4, and |α2| =​ |α4|. 
Further, they can be increased to P1 =​ 0.353, P2 =​ 0.536, and P5 =​ 0.665 with |α1| =​ |α3| =​ 0.45, and |α2| =​ |α4|. If 
the conditions become |α1| =​ |α3| =​ 0.5, |α2| =​ 0.51, and α = .0 23994 , the success probabilities raise to 
P1 =​ 0.375, P2 =​ 0.585, and P5 =​ 0.762. Obviously, with the iteration of our hyper-ECP process, the total success 
probability P will be increased largely.

Discussion
It is clear that our hyper-ECP can be generalized to distill a maximally hyperentangled N-photon GHZ state from 
an arbitrary partially hyperentangled GHZ-class state that decays with the interrelation between the time-bin and 
polarization DOFs. Suppose an arbitrary partially hyperentangled N-photon GHZ state is described as

φ α α
α α

= ... ... + ... ...
+ ... ... + ... ... .

...

...

ss s RR R ss s LL L
ll l RR R ll l LL L

(
) (23)

AB Z
TP

AB Z

1 2

3 4

The subscripts A, B, …​, and Z represent the photons that are kept by the remote users, called Alice, Bob, …​, 
and Zach, respectively. As there are also three independent parameters in the state φ ...AB Z

TP , which is similar to the 
state φ AB

TP , our hyper-ECP can be directly extended to distill maximally hyperentangled N-photon GHZ states 

Figure 4.  Schematic diagram of the procedures of the first and second rounds of our ECP for two-photon 
systems in an arbitrary partially hyperentangled Bell state with T-P-PCG. 
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φ = ... ... + ... ... + ... ... + ... ...... ...
ss s RR R ss s LL L ll l RR R ll l LL L( )AB Z

TP
AB Z0

1
2

 with the 
operations performed by Alice only with the T-PCG and P-PCG on her own photon pairs. The success probability 
of our hyper-ECP for N-photon systems in an arbitrary partially hyperentangled GHZ state is the same as the one 
for two-photon systems in an arbitrary partially hyperentangled Bell state. That is because that only Alice is 
required to perform the concentration operations, and the remaining N −​ 1 parties do nothing, which can be 
viewed as Bob with a complicate system in essence (In detail, |ss ... s〉​AB...Z ⇒​ |sAsB〉​,|ll ... l〉​AB...Z ⇒​ |lAlB〉,  
|RR ... R〉​AB...Z ⇒​ |RARB〉​, and |LL ... L〉​AB...Z ⇒​ |LALB〉​). Therefore, the success probability remains unchanged with 
the growth of the number of photons. When the number of photons to be concentrated is large, our scheme may 
be more efficient and more practical.

The polarization DOF and the spatial mode DOF are the two most popular DOFs of the photon as they are 
easy to manipulate and measure with linear optical elements. However, using the spatial mode of each photon to 
carry information requires two paths during the transmission, which may introduce the path-length dispersion 
in long-distance multi-photon communication. The time-bin states, also as a conventional classical DOF, can be 
simply discriminated by the time of arrival. The time-bin DOF is very helpful for quantum communication as it 
can be used to accomplish the faithful qubit transmission without ancillary qubits61, the deterministic two-photon 
entanglement purification62, the arbitrary multi-photon entanglement sharing63, and the complete error correc-
tion for nonlocal spatial-polarization hyperentangled photon pairs64.

In summary, we have proposed a general hyper-ECP for improving the entanglement of the two-photon 
systems in an arbitrary partially hyperentangled Bell state that decays with the interrelationship between the 
time-bin and the polarization DOFs, resorting to the T-PCG and P-PCG that are constructed by the optical prop-
erty of NV-cavity systems. Our hyper-ECP is different from the hyper-ECP35 with unknown parameters, which is 
focused on the partially hyperentangled pure states accompanied by the independent decoherence in two DOFs. 
We show that the resource can be utilized sufficiently and the success probability is largely improved by itera-
tion of the hyper-ECP process. The success probability of the first round of our hyper-ECP is almost five times 
than that in the hyper-ECP35 with linear optical elements. In addition, our hyper-ECP can be straightforwardly 
generalized for arbitrary partially hyperentangled N-photon GHZ states, especially for the case with the interre-
lation between the two DOFs of multi-photon systems, and the success probability remains unchanged with the 
growth of the number of photons. Besides hyper-ECP, the basic parity-check gate elements, including P-PCG and 
T-PCG can also be used to construct the high-efficiency hyperentanglement purification protocol for obtaining 
high-fidelity hyperentangled states from mixed hyperentangled states. Moreover, the time-bin entanglement is 
a useful DOF and it only requires one path during the transmission process, which means that it not only econ-
omizes on a large amount of quantum resources but also relaxes the path-length dispersion in long-distance 
quantum communication.

Methods
Average fidelities and efficiencies of the parity-check gates.  In this part, we give a brief discussion 
about the experimental implementation of our scheme. The NV center in diamond has attracted much attention 
with millisecond coherence time37, and its ground state spin coherence time can be extended to 480 μs with 
Gaussian decay using a Hahn echo sequence38, which may be made further efforts extend much longer by cou-
pling with an optical cavity. The individual diamond NV-center has reached nanosecond occupancy time39, and 
its spin states can be read out nondestructively with spin-dependent photoluminescence. However, it is known 
that only very little of the total NV spontaneous optical emission is the direct transitions between the ground and 
the excited states42,53, and this weak zero phonon line (ZPL) emission presents an experimental challenge to our 
proposals. In 2009, Barclay et al.49 showed that it is possible to enhance the ZPL emission rate by 47% if the Q of 
the microdisk can be increased to 2.5 ×​ 104. In recent years, the ZPL emission rate has been enhanced from 3% to 
70%65,66. When the NV center is coupled to the resonator, the spontaneous emission into the ZPL can be largely 
enhanced, and the interaction of the NV center and photons is also strengthened.

Generally speaking, the reflection rule may be not perfect in experiment. The main factors that reduce the 
efficiency and fidelity of our scheme are the cavity field decay rate γ, cavity side leakage rate κ and the coupling 
strength g in the coupled reflection coefficients r(ωp) (r0(ωp) =​ −​1). Defining the efficiency as the yield of the 
photons, that is, η =​ ηoutput/ηinput. Here ηinput is the number of the input photon, whereas ηoutput is the number of the 
output photon. The fidelity is defined as F =​ |〈​ψideal|ψreal〉​|2, i.e., the overlap of the output states of the system in 
the ideal case |ψideal〉​ and the realistic case |ψreal〉​. The fidelities of the T-PCG and P-PCG in both the even-parity 
mode and the odd-parity mode are
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Apparently, the fidelity of the even (odd)-parity mode of the T-PCG equals to the one of the P-PCG. The even 
(odd)-parity mode in the time-bin DOF can not be directly distinguished, which is different from the ones in the 
polarization and spatial DOFs. Therefore, the effect of the T-PCG first transfers the even (odd)-parity mode in the 
time-bin DOF into the same parity mode in the polarization DOF, and then the parity measurement results of the 
polarization DOF feedback to the ones of the time-bin DOF in essence.

Our hyper-ECP only requires Alice to perform the local parity-check (T-PCG and P-PCG) operations on her 
own photon pair. Let us define the average fidelity of the T-P-PCG as = + + +F F F F F( )/4ee

TP
oo
TP

eo
TP

oe
TP , where 

= =F F F m n e o( , , )mn
TP

m
T

n
P  represents the fidelity of the two-photon system paralleling in two DOFs (either the 

even-parity mode or the odd-parity mode). The average fidelities and efficiencies of our proposal depended 
mainly on the effect of κγg/ , which are shown in Fig. 5(a,b), respectively. For the diamond NV center in the 
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MTR with whispering-gallery microresonator mode system, the research45 shows that r(ωp) ~ 0.95 when 
κγ ≥g/ 3 with ωc =​ ωp =​ ω0; when κγ ≥g/ 5 with ωc =​ ωp =​ ω0, provided that there is a MTR with Q 105 

(corresponding to κ ~ 1 GHz) or Q 104 (corresponding to κ~10 GHz) according to the experimental results49, 
the coupling strength should be on the order of hundreds of megahertz in order to reach r(ωp)~1. Our T-P-PCG 
and T-PCG with fidelities and efficiencies greater than = .F 97 31%, = .F 98 65%T , η = .90 67%, and η = .96 06%T  
can be achieved when κγ >g/ 3, which makes our hyper-ECP easier to be realized. It is not difficult to find that 
higher fidelity and efficiency can be acquired in the condition of the stronger coupling strength and the lower 
cavity decay rate.
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