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Abstract

Aryl hydrocarbon receptor (AHR) agonists such as dioxin have been associated with obesity

and the development of diabetes. Whole-body Ahr knockout mice on high-fat diet (HFD)

have been shown to resist obesity and hepatic steatosis. Tissue-specific knockout of Ahr in

mature adipocytes via adiponectin-Cre exacerbates obesity while knockout in liver

increases steatosis without having significant effects on obesity. Our previous studies dem-

onstrated that treatment of subcutaneous preadipocytes with exogenous or endogenous

AHR agonists disrupts maturation into functional adipocytes in vitro. Here, we used platelet-

derived growth factor receptor alpha (Pdgfrα)-Cre mice, a Cre model previously established

to knock out genes in preadipocyte lineages and other cell types, but not liver cells, to further

define AHR’s role in obesity. We demonstrate that Pdgfrα-Cre Ahr-floxed (Ahrfl/fl) knockout

mice are protected from HFD-induced obesity compared to non-knockout Ahrfl/fl mice (con-

trol mice). The Pdgfrα-Cre Ahrfl/fl knockout mice were also protected from increased adipos-

ity, enlargement of adipocyte size, and liver steatosis while on the HFD compared to control

mice. On a regular control diet, knockout and non-knockout mice showed no differences in

weight gain, indicating the protective phenotype arises only when animals are challenged by

a HFD. At the cellular level, cultured cells from brown adipose tissue (BAT) of Pdgfrα-Cre

Ahrfl/fl mice were more responsive than cells from controls to transcriptional activation of the

thermogenic uncoupling protein 1 (Ucp1) gene by norepinephrine, suggesting an ability to

burn more energy under certain conditions. Collectively, our results show that knockout of
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Ahr mediated by Pdgfrα-Cre is protective against diet-induced obesity and suggest a mech-

anism by which enhanced UCP1 activity within BAT might confer these effects.

Introduction

Metabolic syndrome, a cluster of conditions (i.e. increased blood pressure, high blood sugar,

central adiposity, elevated cholesterol or triglyceride levels) that increase the risk of heart dis-

ease, stroke, and type II diabetes [1], has increased dramatically in the past several decades in

the U.S. and worldwide leading to enormous health-related costs [2, 3]. Adipose tissue is criti-

cal for normal metabolism and its dysfunction plays an essential role in the development of

metabolic syndrome [4–6]. Adipose tissue is necessary for regulation of inflammation as well

as secretion of adipokines such as adiponectin and leptin [7]. Adipose tissue is much more

diverse than previously appreciated and brown, white, and beige adipose tissues play distinct

roles in energy homeostasis. White adipose tissue (WAT) is found in different anatomical

depots (e.g. subcutaneous and visceral) each with different attributes while BAT is found pre-

dominantly intrascapular in rodents and primarily within deep regions of the neck in humans

[7–9]. Over-accumulation of triglycerides in mature white and brown adipocytes causes them

to become hypertrophic, inflammatory, and pathological.

More than 10% of adipocytes in the human body are replaced annually through adipogen-

esis of precursor stem cells [10]. Adipogenesis provides flexibility to meet metabolic needs but

also a vulnerability as endogenous and environmental factors (effectors or repressors) can dis-

rupt normal adipogenesis [11]. Disruption of adipogenesis can result in stress on mature adi-

pocytes leading to dysfunctional adipose tissue and disease [4, 10]. This dysfunction in

adipogenesis and adipose tissue results in loss of insulin sensitivity in adipocytes, an increase

in cytokine production, and loss of adipokine signaling [7]. Loss of insulin sensitivity and inhi-

bition of the thermogenic response in adipose tissue are key initiating events in the develop-

ment of metabolic syndrome [12].

The aryl hydrocarbon receptor (AHR), was first identified as the mediator of the toxin

TCCD (2,3,7,8-Tetrachlorodibenzodioxin; also referred to as dioxin) [13]. AHR contains a

promiscuous ligand-binding pocket that can bind to many types of endogenous and exoge-

nous compounds [14]. Upon activation, AHR goes to the nucleus and binds a co-activator

called ARNT (aryl hydrocarbon receptor nuclear translocator) to activate or repress numerous

genes [15, 16]. AHR is expressed ubiquitously in fetal and adult tissues including adipose tissue

[15].

AHR has been implicated in several physiologic and pathologic conditions including the

development of metabolic syndrome [17–21]. Studies have linked dioxin exposure to an

increased risk for diabetes [22] and other studies associate exposure to dioxin-like PCBs (poly-

chlorinated biphenyls) with the development of insulin resistance and diabetes [23–27]. The

mechanisms by which AHR ligands cause or exacerbate metabolic syndrome are unclear. Cer-

tain AHR agonists including dioxin have been shown to inhibit the proper maturation of pre-

cursor cells into adipocytes [28–32]. In published studies, we showed that PCB126 causes a

proinflammatory response in preadipocytes and inhibits adipogenesis [33, 34]. In addition to

man-made AHR ligands, several endogenous and microbiome-derived metabolites can act as

AHR agonists [35]. These include kynurenine, FICZ, indole, and indoxyl sulfate (IS), all tryp-

tophan metabolites.

Whole body Ahr knockout mice are known to exhibit developmental defects and have

decreased fertility [36, 37]. Systemic Ahr deficiency in mice and rats has been shown to protect
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against high fat diet (HFD) induced obesity, hepatic steatosis, insulin resistance and inflamma-

tion [38–40]. Chemical inhibition of AHR has also protects against obesity caused by HFD

[38, 41]. Conversely, mice with an Ahr allele that confers more sensitivity to AHR ligands were

found to be more susceptible to HFD induced obesity [42]. What cells and tissues are directly

involved in these AHR-mediated effects remains unclear.

Tissue specific models of Ahr loss have yielded differing results compared to whole body

knockouts or chemical inhibition studies. For example, a recent study in which Ahr was

ablated in a tissue-specific manner through expression of Cre from an adiponectin promoter

(i.e. in mature adipocytes) caused an increase in obesity on HFD at baseline [43]. Our in vitro

studies would suggest that preadipocytes, not adipocytes, are more susceptible to effects medi-

ated by activated AHR [33]. Interestingly, liver-specific knockout of Ahr in mice had no effect

on weight or adiposity in response to HFD but did lead to increased liver steatosis [39].

Clearly, questions remain as to how AHR mediates effects on obesity and steatosis when

mice are on a HFD. To address this issue, we generated mice in which Ahr was selectively

knocked out in cells that expressed Pdgfrα-Cre. This model has been used to inactivate genes

in preadipocyte lineages, before they become adipocytes [44–50]. While this Cre model can

also lead to Ahr knockout in certain tissues other than preadipocytes and adipocytes, it does

not result in knockout in the liver [46], thus allowing an assessment of effects that are not

directly related to the AHR’s well-known role in the liver [37, 51, 52]. We found that Pdgfrα-

Cre mediated knockout of Ahr protected mice from HFD induced obesity and liver steatosis.

Our results indicate that AHR activity in cell lineages that express Pdgfrα, which includes prea-

dipocytes and adipocytes, is important for mediating the effects of HFD in mice.

Materials and methods

Animals

Ahrflox/flox (Ahrfl/fl) C57/BL6 mice (Jackson Labs 006203) have been described previously [37].

The Pdgfrα-Cre mouse line (Jackson Labs 013148) has been used previously in preadipocyte

lineage tracing studies and in studies to knockout genes in preadipocytes [44–50]. It should be

noted that the Pdgfrα-Cre is highly active in, but not limited to, preadipocytes of adipose line-

ages [46]. A lineage tracing study demonstrated less than 5% recombination of cells in liver tis-

sue [44]. Both strains of mice were purchased from Jackson Laboratories. The Ahrfl/fl were

obtained as a homozygous breeding pair. To achieve tissue-specific knockout of Ahr, Pdgfrα-

Crepos/neg (Cre always maintained in heterozygous state and only in males) mice were bred to

homozygosity for floxed Ahr (Ahrfl/fl). For generation of Pdgfrα-Crepos Ahr knockout mice

and controls, male Pdgfrα-Crepos/neg (heterozygous Cre)/Ahrfl/fl were bred to female Ahrfl/fl

mice that did not express Cre. The offspring showed a 50:50 ratio of Crepos and Creneg geno-

types as assessed by PCR for Cre. Male mice were used in this study because male C57/BL6

mice exhibit significant and consistent development of obesity and insulin resistance when on

HFD [53].

To verify Ahr recombination in adipose tissue, BAT, subcutaneous and visceral WAT, mus-

cle, heart, liver, kidney and spleen tissues were removed from Pdgfrα-Crepos adult mice and

processed for DNA isolation after homogenization. Verification of recombination in different

tissues or lack thereof was performed using published primers and conditions [37]. An expla-

nation of expected patterns of recombination (excised) or non-recombination (unexcised) of

the PCR products is shown in S1A Fig.

Mice on HFD were fed 60% high fat diet (HFD; Research Diets, D12492i) for the indicated

time. Control diet (Research Diets, D12550j) with 10% fat and a matched calorie content (pro-

vided by complex carbohydrates) was used for comparison. Mice were placed on their specific
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diets starting at 6–7 weeks of age. Different genotypes were dispersed randomly in cages. The

number of mice used in each experiment is indicated in the figure legends. Mouse weights

were measured weekly.

This study was carried out in strict accordance with the recommendations in the Guide for

the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was

approved by the University of Iowa IACUC (Protocol number 8091538). Tail snips were only

taken at the time of weaning at 3 weeks of age. Mice were monitored daily by the Animal Care

Facility staff for signs of distress and/or fighting. Fighting animals were separated. All efforts

were used to minimize suffering during procedures. Adult animals were euthanized using CO2

followed by cervical dislocation to ensure death. Neonates were euthanized by rapid decapita-

tion with a scissors.

Glucose and insulin tolerance tests

Following a 6-hour fast, time 0 blood was collected via tail bleed followed by an intraperitoneal

(i.p.) injection of glucose (2 g/kg for control diet and 1.3 g/kg for HFD). Different amounts of

glucose were used for the control-fed and HFD groups because HFD-fed animals have a lower

percent lean body mass as compared to total body weight thus potentially biasing results

towards showing impaired glucose tolerance in the high-fat group [54–56]. Regardless, statisti-

cal comparisons were only made between mice that received the same amount of glucose per

body weight. Tail blood was then collected into 300K2E microvette EDTA tubes (Sarstedt)

over the course of 120 min and then centrifuged at 3000 rpm for 30 min at 4˚C for the separa-

tion of plasma. Plasma glucose was then measured using the Autokit Glucose Reagent

(WAKO) per manufacturer’s instructions. For insulin tolerance tests (ITTs), mice were fasted

6 h. Time 0 blood was obtained via tail bleed followed by an intraperitoneal (i.p.) injection of

insulin (at 0.75 units/kg). Tail blood was collected and plasma glucose analyzed as described

above.

Fat and liver tissue histology

After euthanizing, mice were dissected to remove liver and fat depots (subcutaneous, visceral,

and brown). Tissues were fixed in 10% phosphate-buffered formalin and then processed, sec-

tioned and stained by hematoxylin and eosin (H&E) using standard pathology methods at the

University of Iowa Comparative Pathology Core. Coded liver sections were evaluated and

scored by a pathologist blinded to the experimental conditions. Each of the sections was ana-

lyzed by photographing 10 non-overlapping high-power fields (400x) centered on the portal

vein for consistency, and the percentage of lipid-containing hepatocytes was recorded, fol-

lowed by statistical analysis of the scores (GraphPad Prism). Adipocyte number and size in

inguinal WAT (iWAT) or epididymal WAT (eWAT), also referred to as subcutaneous and vis-

ceral WAT, respectively, were quantified using Adiposoft software (ImageJ) [57]. Because of

small size and cellular complexity, BAT was not amendable to this type of analysis.

Adiposity measurement

Body composition was measured using a rodent-sized NMR machine (Bruker Minispec LF50)

at the Fraternal Order of Eagles Diabetes Research Center (FOEDRC) Metabolic Core. The

percent lean or fat mass is calculated by dividing the lean or fat mass by the total weight and

multiplying by 100. The addition of the percent lean and percent fat does not add up to one

hundred percent because of additional mass from fluid and bone density not accounted for via

NMR.
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Isolation and culturing of BAT from pups, NE-treatment, and Q-RT-PCR

Neonate mice were euthanized and dissected to isolate BAT. BAT from individual pups was

dissociated using collagenase and cultured in one well of a 12-well plate according to published

protocols [56]. Confluent wells were passaged 1:4 into 4 new wells. One well was used for isola-

tion of DNA for genotyping for assessing the status of Cre and Ahr excision status (see above)

whereas the other wells were used for norepinephrine (NE) treatments to induce a thermo-

genic response. Cells were treated with 10 μM NE or vehicle for 6 hours followed by RNA iso-

lation. RNA was isolated using Trizol followed by column purification (RNA Easy, Qiagen)

with DNase treatment. RNA was reverse transcribed according to published protocols [58].

Quantitative PCR was performed using primers for 18S (internal control) or Ucp1. Sequences

of primers were Ucp1 forward, CAA GAG GAA GGG ACG CTC AC; Ucp1 reverse AGT TGT
CGG GTT CAC CAT CC; Adiponectin forward GCA GAG ATG GCA CTC CTG GA; Adi-

ponectin reverse CCC TTC AGC TCC TGT CAT TCC; 18S forward AGG GGA GAG CGG
GTA AGA GA; 18S reverse GGA CAG GAC TAG GCG GAA CA.

Statistical analysis

Statistical analysis was performed using GraphPad Prism software. Numbers of replicates/ani-

mals and the various tests that were performed are noted in the figure legends.

Results

Pdgfrα-Cre Ahr knockout mice are resistant to high-fat diet induced

obesity and increased fat mass

We used a previously described Pdgfrα-Cre system that has been shown in lineage tracing

studies to be active in preadipocyte lineages in order to test the function of the AHR in preadi-

pocytes [44, 46]. This model has been used in different studies to knockout genes in preadipo-

cytes and subsequently in the adipocytes that are derived from them [47–50]. For Ahr

knockout, we bred Pdgfrα-Cre with Ahrfl/fl on a pure C57/BL6 background. Mature Pdgfrα-

Crepos/neg/Ahrfl/fl mice were then assessed for recombination in fat depots and other tissues by

isolation of tissue and assessment of recombination by PCR as previously described [37]. High

levels of recombination were detected in all fat depots, indicating that Pdgfrα-Cre caused exci-

sion of the Ahr floxed gene (S1A and S1B Fig). In contrast, minimal levels of recombination

were observed in liver, as reported previously in a lineage tracing study [44]. Other tissues,

including heart, spleen, and to some extent, kidney and muscle also exhibited recombination,

indicating a low level of Ahr excision in these tissues, likely due to PDGFRα being expressed

in certain cellular components (e.g. endothelial cells) of these tissues [59]. To verify clean

knockout in preadipocytes, stromal vascular fractions were isolated and cultured from the

BAT of pups that were either Pdgfrα-Crepos or Creneg. The vast majority of the cells that grow

from SVF are preadipocytes and, accordingly, PCR results indicated clear excision of Ahr in

Pdgfrα-Crepos cells but not in Creneg cells (S1C Fig). Thus, as previously reported, the Pdgfrα-

Cre is highly active in, but not limited to, preadipocytes of adipose lineages [46]. The low level

of excision in the liver makes it a useful model for separating out those phenotypic changes fol-

lowing deletion of the AHR that are not directly associated with liver. No noticeable differ-

ences in the number of pups with the different Cre genotypes were observed. In an assessment

of 8 breeding pairs, there were 17 male Pdfrgα-Crepos offspring and 18 male Creneg offspring

or 48.6% and 51.4%, respectively, indicating that Pdgfrα-Cre knockout of Ahr does not signifi-

cantly affect male survival.
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After weaning at 3 weeks, mice were kept on regular chow until 6–7 weeks of age during

which time genotyping was performed for Cre expression. Pdgfrα-Crepos/neg/Ahrfl/fl knockout

mice (referred to here and in figures as Pdgfrα-Crepos) at 6–7 weeks of age were found to be

more variable and, on average, statistically weighed less than Creneg/Ahrfl/fl wildtype controls

(referred to here and in figures as Creneg) (S2 Fig). The mice were randomly separated into

HFD (60% fat) and calorie-matched control diet (10% fat) cages. While body weights of the

Creneg and Pdgfrα-Crepos genotypes converged by week 3 on the control diet and remained

similar for the rest of the experiment (Fig 1A), body weight between genotypes began to

diverge at week 5 of HFD at which point the Creneg mice trended toward heavier weights,

becoming significantly different by week 8 (Fig 1B). By the end of the observation period at 14

weeks, Creneg mice were, on average, more than 10 grams heavier than Pdgfrα-Crepos animals

lacking Ahr in preadipocytes (Fig 1B). Of note, there was no significant difference in food

intake between the genotypes on either HFD or control diet (S3 Fig). These results indicate the

difference in body weights between genotypes was driven mainly by the HFD.

To assess body composition, both cohorts of mice on control diet or HFD were subjected to

whole-body NMR at week 14. No differences in adiposity were observed between Creneg and

Pdgfrα-Crepos genotypes on control diet (Fig 2A). In contrast, Pdgfrα-Crepos mice on HFD

had higher lean mass and lower percent fat overall than Creneg mice (Fig 2B), indicating that

Pdgfrα-Cre mediated knockout of Ahr protects against accumulation of fat.

Glucose and insulin tolerance in Pdgfrα-Cre Ahr knockout mice

Since obesity is associated with the development of type II diabetes, we performed glucose tol-

erance tests (GTT) and insulin tolerance tests (ITT) on the mice on HFD or control diet. As

seen in Fig 3A and 3B, there were no differences between Creneg and Pdgfrα-Crepos genotypes

during a GTT or ITT while on the control diet. As expected for mice on long-term HFD,

higher levels of basal glucose were observed in the HFD groups but, interestingly, there were

also no differences between genotypes when on HFD in the ability to clear plasma glucose as

Fig 1. Effects of HFD (60% fat) or lower-fat (10% fat) calorie-matched control diet on weights of mice without Ahr knockout (Creneg) or with Pdgfrα-Cre

knockout (Pdgfrα-Crepos). A. Weights of mice on control diet; B. Weights of mice on HFD. Mice were placed on HFD or control diet at 6 to 7 weeks of age and

weighed weekly as described in the Materials and Methods. Creneg and Pdgfrα-Crepos groups consisted of 7 mice each for HFD and 6 mice each for control diet.

Statistics were performed using 2-way ANOVA with multiple comparisons in GraphPad Prism. � <0.05, ��<0.01, ���<0.001. Error bars represent standard error of the

mean.

https://doi.org/10.1371/journal.pone.0236741.g001
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measured by GTT (Fig 3C). HFD Pdgfrα-Crepos Ahr mice, however, displayed significantly

enhanced insulin sensitivity indicated by ITT results at the individual 60- and 90-minute time

points compared to HFD Creneg mice (Fig 3D). However, comparison of overall glucose levels

at all time points using area under the curve (AUC) analysis between the Creneg and Pdgfrα-

Crepos genotypes on HFD did not demonstrate statistically significant differences in the ITT

(p = 0.07). Thus, although Pdgfrα-Cre mediated knockout of Ahr appeared to offer some pro-

tection against HFD-induced insulin resistance at certain time points, the overall effect on

insulin sensitivity was not considered significant.

Decreased hepatic steatosis and smaller adipocyte size in Pdgfrα-Cre Ahr

knockout mice on HFD

Obesity is highly associated with liver steatosis (i.e. accumulation of lipid in hepatocytes) [60].

Therefore, livers obtained from mice on HFD were evaluated as described in the Materials and

Methods. Examples of H&E sections Creneg and Pdgfrα-Crepos mice are shown in Fig 4. As

expected, Creneg mice on HFD exhibited steatosis, demonstrated by numerous lipid vacuoles in

the hepatocytes (Fig 4A, ranging from 15–20% in one of the samples, to over 75% in others (see

S1 Table). Interestingly, Pdgfrα-Crepos Ahr knockout mice on HFD exhibited no steatosis, with

less than 5% of hepatocytes containing lipid vacuoles in all samples examined (Fig 4B). The

severity of steatosis was scored and ranked (S1 Table), demonstrating significant differences

between Creneg and Pdgfrα-Crepos mice on HFD (p<0.05, Wilcoxon Rank-Sum). This result is

of interest since Pdgfrα-Cre does not knock out Ahr in liver, indicating that protection against

steatosis in the liver is likely due to the genetic deletion of Ahr in other tissues such as adipose.

Microscopic examination of H&E stained sections of various fat depots demonstrated that

Pdgfrα-Crepos Ahr knockout mice on HFD had much small adipocytes than those in Creneg

mice on HFD (Fig 5A). This was true of iWAT, eWAT, and BAT. Adiposoft software, a

Fig 2. Effects of HFD or control diet on adiposity of mice without Ahr knockout (Creneg) or with Pdgfrα-Cre knockout (Pdgfrα-Crepos). A. Adiposity of mice on

control diet; B. Adiposity of mice on HFD. Fat mass was assessed using NMR at 14 weeks on HFD or control in mice as described in the Materials and Methods. Creneg

and Pdgfrα-Crepos groups consisted of 7 mice each for HFD and 6 mice each for control diet. The percent lean or fat mass is calculated by dividing the lean or fat mass

by the total weight and multiplying by 100. The addition of the percent lean and percent fat does not add up to one hundred percent because of additional mass from

fluid and bone density. Statistics were performed using a 2-way ANOVA with multiple comparisons in GraphPad Prism. � <0.05, ��<0.01. Error bars represent

standard error of the mean.

https://doi.org/10.1371/journal.pone.0236741.g002

PLOS ONE Aryl hydrocarbon receptor knockout by Pdgfrα-Cre protects mice from obesity

PLOS ONE | https://doi.org/10.1371/journal.pone.0236741 July 30, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0236741.g002
https://doi.org/10.1371/journal.pone.0236741


program developed specifically for characterization of WAT [57] was used to quantify adipo-

cyte size in WAT. This analysis indicated that the iWAT and eWAT of Pdgfrα-Crepos Ahr

knockout mice had on average smaller adipocytes with the distribution of adipocyte size nar-

rower compared to controls (Fig 5B). Thus, our results suggest that Pdgfrα-Cre mediated

knockout of Ahr protects against adipocyte hypertrophy in all fat depots of mice on HFD.

BAT from Pdgfrα-Cre Ahr knockout mice exhibits greater thermogenic

potential following norepinephrine treatment

Previously, it was shown that whole-body Ahr knockout mice on HFD have increased tran-

script levels of the thermogenic uncoupling gene Ucp1 in BAT as compared wild type mice,

potentially explaining how Ahr knockout could protect against HFD induced obesity [38].

Thermogenic induction of Ucp1 is mediated through cold exposure or by beta adrenergic

Fig 3. Effects of HFD or control diet on glucose and insulin tolerance in mice without AHR knockout (Creneg) or with Pdgfrα-Cre Ahr knockout (Pdgfrα-Crepos).

Glucose tolerance test (GTT) (A) and insulin tolerance test (ITT) (B) on mice on control diet. GTT (C) and ITT (D) on mice on HFD. GTT and ITT were performed at

14 weeks on indicated diets as described in the Materials and Methods. Creneg and Pdgfrα-Crepos groups consisted of 7 mice each for HFD and 6 mice each for control

diet. Error bars represent standard error of the mean. Asterisks above the curve represent statistical significance of comparisons of individual time points using 2-way

ANOVA with multiple comparisons without corrections using Fishers LSD in GraphPad Prism. � <0.05, ��<0.01. Analysis of AUC of overall glucose levels comparing

different genotypes was also performed but no statistically significant differences were observed in any of the above comparison.

https://doi.org/10.1371/journal.pone.0236741.g003
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receptor activators such as norepinephrine [61]. To characterize the effects of Pdgfrα-Cre-

mediated knockout of Ahr on BAT responses to thermogenic inducing agents, we isolated and

cultured SVF from BAT of neonates, verified Ahr gene excision status (S1C Fig), differentiated

the cells in vitro, and then stimulated the cultures with norepinephrine (NE). RNA was isolated

to assess Ucp1 transcript levels by Q-RT-PCR. As shown in Fig 6A, the levels of NE-induced

Ucp1 transcripts were significantly higher in Pdgfrα-Crepos Ahr knockout adipocytes than in

Creneg adipocytes, indicating that knockout of Ahr leads to a more robust thermogenic

response in BAT. Assessment of transcript levels of adiponectin, a marker of adipocyte differ-

entiation, indicated no differences in ability of the cells from both genotypes to differentiate

(Fig 6B). These results, combined with the smaller size of KO brown adipocytes and decreased

brown adipocyte lipid accumulation, suggests increased level of energy expenditure in Pdgfrα-

Cre Ahr knockout mice, presenting a plausible mechanism by which Pdgfrα-Cre mediated

knockout protects against obesity and steatosis.

Discussion

AHR continues to be a source of significant interest regarding its role in the development of

metabolic syndrome, obesity, steatosis, cardiovascular disease, and diabetes. AHR responds to

many different endogenous, bacterially-produced, and synthetic man-made compounds that

include numerous persistent organic pollutants that people are exposed to on a regular basis

[13, 14]. Further, there is compelling evidence that AHR activation causes inflammation in

endothelium, the liver, and adipose tissue [32, 34, 62–64]. Depending on the context and the

type of AHR ligand, AHR has been shown to inhibit adipogenesis or act as an obesogen. Our

previous studies using human cells indicated that the AHR agonist, PCB126, acts through

AHR on preadipocytes to inhibit adipogenesis [28–32] and blocks norepinephrine-mediate

induction of UCP1 in adipocytes derived from PCB126-treated preadipocytes [65]. Interest-

ingly, in the current study, we found that knock out of Ahr using Pdgfrα-Cre, a model that has

been shown in lineage tracing studies to act in preadipocytes, but not the liver, protected mice

from HFD-induced obesity and steatosis. Adipocytes derived from preadipocytes of BAT from

Fig 4. Liver pathology in mice on HFD without Ahr knockout (Creneg) or with Pdgfrα-Cre knockout (Pdgfrα-Crepos). Shown are representative examples from each

genotype. A. Creneg on HFD, B. Pdgfrα-Crepos on HFD. Images were taken using a Nikon Eclipse E800 microscope at 200X. Scale bars are 100 micrometers.

https://doi.org/10.1371/journal.pone.0236741.g004
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Pdgfrα-Cre Ahr knockout mice were more responsive to norepinephrine-mediated induction

of the thermogenic uncoupling protein UCP1. Our results suggest that the effects of AHR on

metabolic health are at least partly mediated through adipose tissue and that effects on UCP1

induction may play a role.

Other groups, using whole-body Ahr knockout, have also demonstrated a protective effect

of AHR loss against HFD-induced obesity [38, 66, 67]. In those studies, protection against

HFD-induced insulin resistance was also observed. While the results of our studies with the

Pdgfrα-Cre mediated knockout mice were suggestive of protection against insulin resistance,

the effects were not overtly significant. This could be because Ahr knockout in other tissues

besides those that express Pdgfrα are important for protection against insulin resistance.

Regardless, the collective results of these studies point to the possibility that HFD acts through

AHR to cause obesity and steatosis, potentially through alteration in production of a metabo-

lite (or metabolites) that acts as an AHR ligand. While the identity of this metabolite is

unknown, there is evidence that HFD can alter levels of known AHR agonists such as trypto-

phan catabolites generated in the kynurenine pathway, for example [68]. Given that knockout

of AHR (whole body or Pdgfrα-Cre mediated) can protect against obesity, it is reasonable to

propose that this metabolite is an AHR agonist. If it were, instead, an antagonist then it would

follow that Ahr knockout would more likely increase obesity, which we did not observe. One

possibility is that the metabolite or metabolites could act on preadipocytes and/or adipocytes

to increase adipogenesis thereby increasing overall lipid accumulation in adipocytes to cause

obesity. Another possibility, and one that is favored by our current data, is that an HFD-

induced AHR agonist blocks preadipocytes from becoming thermogenically responsive

Fig 5. Adipose tissue pathology in mice on HFD without Ahr knockout (Creneg) or with Pdgfrα-Cre Ahr knockout (Pdgfrα-Crepos). A. Shown are

representative examples of Creneg and Pdgfrα-Crepos mice on HFD for eWAT, iWAT, and BAT. Scale bars are 100 micrometers. B. Quantitation of

adipocyte sizes in eWAT and iWAT fat depots of Creneg or Pdgfrα-Crepos mice on HFD. Quantitation was performed using the Adiposoft program in

ImageJ. The upper panels represent the mean and the error bars are standard deviation. Unpaired T-test, �p<0.05. The lower panels contain

descriptive graphs to show the 25th, 50th, and 75th quartiles to illustrate the large differences ins droplet sizes between the groups.

https://doi.org/10.1371/journal.pone.0236741.g005

Fig 6. Norepinephrine induced induction of Ucp1 in BAT. A. Ratios of norepinephrine-induced Ucp1 in BAT from neonate pups of Creneg (no Ahr knockout) or

Pdgfrα-Crepos Ahr knockout genotypes. Treatments and Q-RT-PCR were performed as described in the Materials and Methods comparing the ratio of Ucp1 transcript

in NE-treated versus baseline in 4 Creneg and 6 Pdgfrα-Crepos littermates. B. Transcript levels of the differentiation marker, adiponectin, in cells of mice of different

genotypes. Q-RT-PCR was performed as described in the Materials and Methods. Statistics were performed using a Wilcoxon nonparametric test in GraphPad Prism.

Error bars represent standard error of the mean. ��p<0.01.

https://doi.org/10.1371/journal.pone.0236741.g006
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adipocytes, thus decreasing energy expenditure and contributing to obesity. Our data would

suggest that this could be at the level Beta-adrenergic receptor and/or the level of Ucp1 tran-

scription Knockout of Ahr in BAT preadipocytes/adipocytes may prevent these AHR agonist-

mediated effects. Similarly, HFD-induced AHR agonists may also prevent beiging in subcuta-

neous adipocyte lineages, inhibiting thermogenic responses in these fat depots, as well. In

future studies, it will be of interest to assess whole body energy expenditure in the Pdgfrα-Cre

Ahr knockout mice compared to controls, particularly in the context of known AHR agonists,

to determine if there are differences.

Interestingly, a role for AHR in regulation of energy expenditure through its interaction

with circadian clock proteins has been explored previously [38, 67, 69, 70]. AHR forms a het-

erodimer with the circadian clock protein Bmal1 and functionally inhibits CLOCK/BMAL1

activity. Physiological activation of AHR through naturally occurring endogenous ligands may

inhibit clock function. Whole-body knock out of Ahr was shown to be associated with higher

levels of Ucp1 transcript levels as compared to controls in brown fat of mice on HFD [38].

This same study also reported that whole body Ahr knockout enhances behavioral responses

to changes in light-dark cycle and increased the rhythmic amplitude of circadian clock genes

as well as altered rhythms of glucose and insulin [67]. These studies demonstrate an already

established role for the AHR in regulating energy metabolism, thermogenic responsiveness

and glucose and insulin homeostasis.

Initially, our results along with studies published by others using whole body Ahr knockout

appear in conflict with a report in which it is was shown that knockout of Ahr in mature adipo-

cytes through expression of adiponectin-Cre actually exacerbated HFD-induced obesity [33].

One way to explain this discrepancy is that knockout in preadipocytes or whole-body knock-

out would be expected to have more profound effects on how HFD affects the process of adi-

pogenesis and the maturation of cells into functional thermogenically-responsive adipocytes.

Delay of knockout of Ahr until the adipogenesis program is fully activated (when adiponectin

is expressed) may result in a completely different phenotype with different responses to AHR

ligands. These converse effects also suggest cell autonomous versus non-autonomous actions

of the AHR at the level of adipose tissue. Thus, the timing of Ahr knockout during the course

of adipogenesis may be important for determining the outcome.

We cannot rule out other cell types such as skeletal muscle and heart may play a role in

mediating the effects of the AHR that we observed in our studies given that Pdgfrα-Cre is

active in other cell types. Muscle is highly relevant to energy expenditure. While others have

reported that Pdgfrα-Cre activity is low in muscle [44] and our results indicate minimal Ahr

excision in muscle, it is still possible that Ahr knockout in certain muscle cells are playing a

role in the phenotype that we observed. Clearly, further studies are warranted to identify the

both the potential AHR metabolite and the target cell population(s).

Confounding the interpretation of the role of AHR in metabolic syndrome or any other dis-

eases in future studies is the observation that not all AHR agonists act in the same fashion.

Depending on the AHR agonists, different effects on obesity in animals have been observed. It

has been shown, for example, that PCB77, a dioxin-like PCB that activates AHR, caused obe-

sity in mice [71]. A similar finding was observed for dioxin [72]. In contrast, the P. aeruginosa
pigment molecule, pyocyanin, also an AHR activator, caused inhibition of adipogenesis result-

ing in wasting syndrome [73]. A recent study identified indigo, a naturally occurring AHR

ligand, as having anti-inflammatory properties in visceral adipose tissue that effectively pro-

tected against HFD-induced glucose intolerance [74]. In another study it was shown that peo-

ple and animals with metabolic syndrome had reduced levels of AHR agonist activity in fecal

samples [75]. In this case, the deficiency was attributed to the gut microbiota, and supplemen-

tation with AHR agonist or a Lactobacillus strain with high AHR ligand-production capacity
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improved dietary and genetic induced metabolic impairments. Thus, certain AHR agonists

may be detrimental in causing metabolic syndrome and others might be protective. Further,

some compounds that act as AHR agonists in one context or concentration may act as AHR

antagonists in others. Finally, certain AHR agonists and antagonists may act very differently

on rodent versus human cells.

In summary, our studies demonstrate a significant role for AHR in obesity and steatosis in

male mice on a high-fat diet. The Pdgfrα-Cre specific knockout of Ahr supports a role for

AHR that does not directly involve the liver but may be mediated in part through effects on

preadipocytes/adipocytes. Further studies, using additional tissue-specific and inducible

knockout models, as well as determination of what AHR agonists are produced by high-fat

diet will help to define how modulating AHR activities may be useful in prevention and thera-

peutic interventions for obesity and diabetes.

Supporting information

S1 Fig. Cre-mediated recombination of Ahr in different tissues and preadipocytes. A.

Pdgfrα-Cre expression causes recombination to occur between the two loxP sites (black dia-

monds) surrounding exon 2 of Ahr (referred to as floxed), excising the exon and leaving one

remaining loxP site. PCR using three primers (P1, P2, and P3) was performed to determine

recombination (excision) status. In cells where no recombination occurs (upper structure), P2

and P3 amplify a 140 bp fragment (P1 and P3 are too far apart to achieve any appreciable

amplification). In cells where recombination and excision occur (lower structure), the P2 site

is removed and P1 and P3 are brought in close proximity to allow amplification of a 180 bp

band. B. To verify AHR recombination, the indicated tissues were removed from Pdgfrα-Cre-
pos Ahrfl/fl adult mice and processed for DNA. PCR was performed by using published primers

[37]. The arrow indicates the upper 180 bp band that demonstrates recombination of the

floxed Ahr gene (excised) in the tissue. The lower 140 bp band represents non-recombined

(unexcised) Ahr. The pattern is typical of complex tissue such as adipose tissue where not all

the different cell types express Pdgfrα-Cre. C. Stromal vascular fraction (SVF) consisting

mainly of preadipocytes from BAT of 10 neonatal pups derived from the breeding of male

Pdgfrα-Crepos/neg (heterozygous Cre)/Ahrfl/fl and female Ahrfl/fl mice that did not express Cre

was isolated and cultured for one passage before DNA extraction and assessment for Cre posi-

tivity and Ahr recombination (excision) by PCR as described in A and in the Materials and

Methods. Only the SVF that was Cre positive exhibited a pattern that verified excision.

(PDF)

S2 Fig. Starting weights of 6- to 7-week old male Creneg or Pdgfrα-Crepos Ahrfl/fl mice

used in the study. The starting weights of all the mice of the different genotypes, regardless of

eventual diet type, were pooled. Statistical analysis was performed using a student t-test in

GraphPad Prism. Error bars represent standard error of the mean.

(PDF)

S3 Fig. Daily food intake comparisons between Creneg and Pdgfrα-Crepos Ahrfl/fl mice

on control or HFD. Consumption of food of individually housed mice was measured over a

week and average daily intake was calculated. Statistical analysis was performed using a One-

Way ANOVA with multiple comparisons in GraphPad Prism. Error bars represent standard

error of the mean.

(PDF)

S1 Table. Assessment of steatosis in HFD mouse livers. aTen high-power fields (400X) cen-

tered on the terminal hepatic venule (for consistency) were scored for the percentage of the
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field with vacuolated cells. bRank was determined by degree of steatosis with a rank of 1 being

highest. Ties were designated as equal numbers.

(PDF)

S1 Raw images.

(PDF)
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