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Abstract: Multiple jets ejection in electrospinning has been a major approach to achieving a high
production rate of ultrafine fibers, also known as nanofibers. This work studies the effect of solution
parameters—including dielectric constant, polarity, conductivity and surface tension—on the jet
number and jet evolution in the auxiliary electrode electrospinning approach. The results show
that it is easier to generate 2–6 jets with short stable jet length (1.7–6.9 mm) under low voltage
(5.03–7.13 kV) when solutions have higher dielectric constant (32.2–78.6) and larger surface tension
(31.8–41.29 mN/m). The influence of solution properties on stable jet length and the influence of
applied voltage to produce multiple jets are discussed in detail. This work provides a new perspective
for understanding jet evolution and mass production of nanofibers in electrospinning.
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1. Introduction

Studies of nanofibrous materials have dramatically increased over the past 20 years [1–5].
At a research-level production scale, electrospinning is the most widely used technique for nanofiber
fabrication [6–9]. It can produce nanofibers with diameters in the range of tens of nanometers to few
micrometers, which have large specific surface area and large porosity. The electrospun nanofibers
have been applied in many fields, such as biomaterials [10,11], thermal responsive fibers [12,13], water
treatment [14], actuators [15] and sensors [16,17]. However, traditional electrospinning techniques
usually bring in single jets during spinning and a low yield of nanofibers (about 0.01–0.3 g/h), which
limits the industrialization of nanofibers [18–20].

Some studies have proposed needleless electrospinning techniques to improve the production of
electrospinning nanofibers [21]. Lu et al. [22] showed that the production throughput of needleless
electrospinning was about 10 g/min, which was several thousand times higher than that of the
traditional technique with a single needle as the spinneret. However, there are still some technological
problems in the widespread promotion of needleless electrospinning technique, such as high voltage
power supplies, rapid solvent evaporation and high costs. Electrospinning with multiple spinnerets is
also an important route for the mass production of nanofibers [23–25]. However, due to the electrostatic
interference between multiple spinnerets, especially when the number of spinneret increases to a certain
size, some spinnerets cannot spin or drip in the form of droplets [26], resulting in uneven structure
of the nanofiber membrane, perforation and other issues. In order to overcome these drawbacks,
some modifications such as installing auxiliary electrodes to control jet instability, adjusting nozzle
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spacing and nozzle length [27,28] have been tested. However, some issues have still not been solved
completely, such as the ejection of only a single jet from the spinneret that leads to a low production
rate of nanofibers. In our previous work, a new electrospinning setup using a needle auxiliary
electrode was proposed [29], which could produce 9–12 jets and had a throughput 7–10 times higher
than that of traditional processes. Our previous study showed that it is possible to overcome the
disadvantage of needleless electrospinning in which free liquid surface spinning has a high rate of
solvent evaporation [29]. Each spinneret injected multiple jets and improved the nanofiber yield, while
reducing the structural unevenness of fiber membrane. However, the effects of solution properties on
auxiliary electrode electrospinning were still not clear.

In this work, we systematically explored the effect of solution properties—including dielectric
constant, polarity, conductivity and surface tension—on the jet number and jet evolution in this
auxiliary electrode electrospinning approach. The number of jets was also calculated under the
same voltage from different solution systems, which was important for studying the mechanism of
electrospinning multi-jet generation. Meanwhile, the stable jet length in all solutions was also studied.

2. Experimental Section

2.1. Material Preparation

Polystyrene (PS, molecular weight 335,000 g/mol), purchased from Sinopec Group of China
and polyvinyl alcohol (PVA, molecular weight 83,000 g/mol) were used to prepare polymer
solutions. When investigating the influence of concentration on the morphology of electrospun
fibers, the researchers found that when the solution of concentration C and intrinsic viscosity [η] is
a certain value, the morphology of electrospun fibers is basically similar for similar polymer solutions,
irrespective of the molecular weight of the polymer. The [η]C is called the Berry number [30], and the
value can be used to characterize the degree of polymer chain entanglement. The intrinsic viscosity
(intrinsic visco) [η] is one of most common representation of the viscosity of the polymer solution.
It is defined as the ratio concentration or the logarithmic viscosity when the concentration of the
polymer solution tends to zero. When the same solvent and temperature are kept, the relationship
between the relative molecular mass and the intrinsic viscosity of the polymer are determined by the
Mark–Houwink equation:

[η] = KMα (1)

In a certain relative molecular weight range, K and α are Mark–Houwink constant [31], and these
constants are independent of the relative molecular weight. The different K and α are shown in Table 1.
According to the Mark–Houwink equation, the molecular weight can be used to calculate the intrinsic
viscosity [η] of a certain polymer in a solvent and the polymer powder was dissolved in various
solvents to prepare the polymer solution at a fixed berry number of 9. In order to compare the results,
the properties of solutions (surface tension, conductivity and dielectric constant) were measured,
as shown in Table 2.

Table 1. Mark–Houwink constants for the solutions used in this study.

Polymer Solvent
Polymer

Molecular
Weight

K*103

(mL/g)
α

Intrinsic
Viscosity

[η]

Concentration
(C)

(g/mL)
[η]C Polarity

PVA Water 83,000 20 0.76 109.53 0.082 9 Strong
PS DMF 335,000 31.8 0.603 68.238 0.132 9 Strong
PS NMP 335,000 12 0.72 114.08 0.079 9 Strong
PS THF 335,000 11 0.725 111.44 0.081 9 Semi
PS Chloroform 335,000 7.16 0.76 113.23 0.079 9 Non

Notes: K and α are Mark–Houwink constant. PVA: polyvinyl alcohol; PS: polystyrene; DMF: dimethylformamide;
NMP: N-methyl-2-pyrrolidinone; THF: tetrahydrofuran.
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Table 2. Solutions used in this study.

Solution
Actual Surface

Tension
(mN/m)

Maximum Surface
Tension
(mN/m)

Conductivity
(µs/cm)

Dielectric
Constant ε

PVA–water 41.39 49.48 0.05 78.36
PS–DMF 32.99 40.3 0.041 36.71
PS–NMP 31.8 38.98 0.036 32.2
PS–THF 27.6 34.3 0.0252 7.58

PS–chloroform 25.7 28.9 0.0198 4.81

2.2. Measurement and Characterization

The conductivity and surface tension of all solutions were measured by using a conductivity meter
(DDS-12DW, Shanghai Bante Co. Ltd., Shanghai, China) and an interfacial tension meter (JYW-200A,
Chengde Jinhe Co. Ltd., Chengdu, China), respectively, at 25 ◦C. The trajectory of electrospun jet
was observed by a digital camera (FUJIFILM FinePix HS11, Japan). The average number of jets was
recorded five times by the digital camera and other conditions were kept: ESD as 2 cm, injection speed
as 2 mL/h, spinning distance as 15 cm, and the applied voltage at 6, 7, 8, 9, 10, 11 and 12 kV.

2.3. Experimental Setup

As shown in Figure 1, a modified electrospinning device with a needle auxiliary electrode parallel
to the spinneret was employed in this study. The diameter of the spinneret and auxiliary electrode
were 8 and 5 mm, respectively. The spinning distance between the spinneret and the collector was
15 cm. Other parameters could be adjusted according to experiments, e.g., the distance between the
auxiliary electrode and the spinneret (labeled as ESD) at 3 cm, injection speed at 2 mL/h, and applied
voltage at 4–10 kV.
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3. Results and Discussion

3.1. Effect of Solution Properties on Jet Evolution

In general, the solution properties including dielectric constant, surface tension and conductivity
are the main factors affecting electrospinning process. In order to investigate the effect of dielectric
constant on the jet, five solutions with different polarities were studied as shown in Table 1. In this
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work, the injection flow rate was fixed to 2 mL/h due to a high fiber yield of 7–10 times larger than
that of traditional electrospinning under the same flow rate [29]. Figure 2 shows the jet motion of
PVA–water solution under different applied voltages. It was clear that the jet of PVA–water solutions
underwent a series of unstable states after a steady state. When the applied voltage was 4.8 kV,
the primary jet appeared first from Taylor cone, followed by the jet whipping. When the voltage was
increased to 5.62 kV, two jets emerged, as illustrated in Figure 2B. When the applied voltage was further
increased to 6.75 and 7.13 kV, multiple jets (four and five) were formed, as shown in Figure 2C,D.
In this case, water is a strong polar solvent. This means the electrolytes can be easily dissociated
into ions in the PVA–water solution and enhance its conductivity, thus increasing the surface charge
density on the jet. This may be the reason for multiple jets formation from PVA–water solution. Here,
the primary jet underwent a short distance of the steady tensile effect and then entered the unstable
region due to the presence of an applied electric field and the surface charge of the jet.
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Figure 2. The jet motion of PVA (polyvinyl alcohol)–water solution under different applied voltages:
(A) 4.8 kV, (B) 5.62 kV, (C) 6.75 kV, and (D) 7.13 kV. The distance between the auxiliary electrode and
the spinneret (ESD) of 3 cm and injection speed of 2 mL/h.

Figure 3 shows the evolution of jets during electrospinning via a needle auxiliary electrode
involved using PS–DMF (dimethylformamide) solution under different applied voltages. The single
jet underwent stable jet stage for the initial few seconds after it emerged from the Taylor cone when
applied voltage was 4.63 kV. As the voltage increased, the number of jets became 2 and 3 at 5.08
and 6.55 kV, respectively. The general evolution was similar to the PVA–water solution, but the total
number of jets decreased by about half and the formation of multiple jets was not as stable as the
PVA–water solution, which might be associated with the dielectric constant. As indicated in Table 2,
from PVA–water solution to PS–DMF solution, the dielectric constant decreased from 78.36 to 36.71,
which is also about half.
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Figure 3. Jet motion of PS–DMF (polystyrene–dimethylformamide) solution under different applied
voltages: (A) 4.63 kV, (B) 4.52 kV, (C) 5.08 kV, and (D) 6.55 kV with ESD of 3 cm and injection speed of
2 mL/h.

Further decrease of dielectric constant to 32.2 with the PS–NMP (N-methyl-2-pyrrolidinone)
solution, the corresponding jet evolution is presented in Figure 4. As expected, the formation of the
primary jet shared similarities with the above two cases. A single jet appeared when the applied
voltage was 4.45 or 4.38 kV, followed with jet instabilities. Multiple jets (but no more than two) were
observed when the voltage was increased to 5.03 and 5.32 kV. Meanwhile, the multi-jet state was much
less stable compared with the above two solutions.
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Figure 4. The jet motion of PS–NMP (N-methyl-2-pyrrolidinone) solution under different applied
voltages: (A) 4.38 kV, (B) 4.45 kV, (C) 5.03 kV, and (D) 5.32 kV with ESD of 3 cm and injection speed of
2 mL/h.
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The influence of dielectric constant (or polarity) can be directly seen among the above three strong
polar solutions. When a medium polarity solution (PS–THF (tetrahydrofuran), with dielectric constant
of 7.58) was used, its jet evolution was recorded and shown in Figure 5. It is clearly evident that no
matter what the applied voltage is, it is difficult to obtain more than one jet during the electrospinning.
Also, the jet from this solution has a long stable jet length and shows a regular jet differs from previous
solutions, which exhibits buckling jets like a cloud. Additionally, the shape of single jets are similar to
each other, as shown in Figure 5A–F, although the whipping area varies.
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(A) 6 kV, (B) 6.2 kV, (C) 6.56 kV, (D) 7 kV, (E) 7.2 kV, and (F) 7.5 kV with ESD of 3 cm and injection
speed of 2 mL/h.

When the dielectric constant is reduced further to 4.81 (where the PS–chloroform solution was
used), the solution became non-polar. Similar to the PS–THF solution, only a single jet was obtained,
as shown in Figure 6. In this case, the charges were mainly concentrated on the surface of the droplet
under a high applied voltage [32]. Under the action of the electric field, the surface charge caused
the flow on surface of droplet, thus forming a jet. It is obvious that the generation of jet is closely
related to the charge on the surface of the droplet. It was difficult to produce multiple jets with this
solution. It might be attributed to the relatively low dielectric constant and the polyelectrolyte behavior
of chloroform, causing a low charge density in the jet. Thus, the properties of the solution such as
the dielectric constant and the electrical conductivity directly determine the ability of the droplet to
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accumulate charge. In other words, the properties of the solution have a critical effect on the generation
of multiple jets.Polymers 2018, 10, x FOR PEER REVIEW  7 of 12 
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3.2. Effect of Solution Properties on Stable Jet Length

In this section, the effect of solution properties on stable jet length was investigated. Stable jet
lengths of single jet for all solutions were firstly compared, as shown in Figure 7. All the polymer jet
ejected from the top of the Taylor cone moved in the opposite direction of its electrode. The jet usually
went through a short distance from the stable movement first and then entered the unstable movement
stage. From Figure 7 and Table 2, it can be found that the jet motion was observed with a cloud of jets
and a shorter stable jet length when a solvent with high dielectric constant, e.g., water, DMF and NMP,
were used. The lengths (1.56–6.9 mm) of stable jets in high dielectric constant solvents were much
shorter than those in low dielectric constant solvents. For instance, the lengths were 7.53 and 21.23 mm
in THF and chloroform, respectively. Stable jet length increases with the decrease in dielectric constant
of solvent, as shown in Table 3, which can be used to conclude that the dielectric constant of the solvent
plays a dominant role in the length of stable jets.

The average length of multiple jets is also influenced by the surface tension of solution. Figure 8
shows the influence of surface tension on the length of stable jets for different solutions. The average
length of stable jets of all solutions and their actual surface tension were measured. It can be seen that
the larger the actual surface tension of solution, the shorter is the length of stable jet generated.

Table 3. The length of stable jet of all solutions. The notation “-“ means the solution cannot produce jets.

Solution Single jet (mm) Two jets (mm) Multiple jets (mm)

PVA–water 1.73 2.13
1.56

2.13
1.43
2.34

PS–DMF 3.47 3.02
1.76

4.2
4.18
2.12

PS–NMP 4.63 6.9
6.45 -

PS–THF 7.53 7.54
8.3 -

PS–chloroform 21.23 - -
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3.3. Effect of Solution Properties on Applied Voltage to Produce Jets

In order to better understand the effect of different solution properties on the number of multiple
jets, other conditions were kept at the ESD as 2 cm, injection speed as 2 mL/h, spinning distance as
15 cm, and the applied voltage was controlled at 6, 7, 8 9, 10, 11 and 12 kV. As Figure 9 shows, when
the applied voltage is 6 kV, the number of jets for PS–NMP solution was calculated and the data was
recorded at intervals of five. The results were 2, 2, 2, 1 and 1. This means this solution produced two jets
three times and a single jet two times; the average number of jets in PS–NMP solution was 1.6. At the
same time, the numbers of jets in PS–DMF solution were two jets four times and a single jet once at
6 kV; the average number of jets was 1.8. As the results in Figure 9 show, the average number of jets in
PVA–water is the highest among all solutions. It can be seen that multiple jets could be produced when
water, DMF and NMP were used as solvents. Occasionally, it could produce two jets with the THF
solution, and it could only produce a single jet when chloroform was the solvent. It can be observed
that the greater the conductivity of a solution, the greater the number of jets generated. In our previous
work [29], FEM software ANSYS was applied to calculate the electric field distribution around the
spinneret to explain how multiple jets were produced by auxiliary electrode electrospinning. We found
that the introduction of the auxiliary electrode enhances the electric field strength at the spinneret
tip. This may be the reason that multiple jets form as it appears to be a critical parameter to ensuring
effective jet formation. In fact, a solution’s property, such as conductivity, is closely related to electric
field strength around the spinneret. With the solution conductivity increasing, the surface charge of the
jet increased, further enhancing the splitting capacity of the droplet and resulting in larger electrostatic
repulsion. Under the same applied voltage, a solution with high conductivity can produce more jets
than solution with low conductivity. This theory is consistent with previous experimental results.
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3.4. Effect of Solution Properties on Fiber Morphology

Representative SEM images of nanofibers are shown in Figure 10 with different solutions.
Figure 10a,b show that the structure consisted of fine fibers and cup-shaped beads, typically in
the range of 10–40 µm when THF and chloroform were used as solvents. Figure 10c was obtained
using PS–NMP solution, it can be clearly seen that the structure consisted of many beads, which are
much smaller in size (1–10 µm) compared to those obtained with THF and chloroform. When DMF
was used as solvent, there were less beads and highly fibrous structure was observed as indicated in
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Figure 10d. In contrast to these beads, the morphology obtained with PVA–water solution consisted of
fine fibers without beads (Figure 10e), indicating that the transition from bead to fiber may relate to
the polarity of solution.
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4. Conclusions

The property of solution is an important factor in jets evolution of electrospinning via an auxiliary
electrode. Some properties such as dielectric constant and surface tension were found to play
a dominant role in determining jet behavior during the electrospinning. Two classes of solutions
were identified based on the development of jet instabilities. The first class of solutions is characterized
by producing no more than one jet with a long stable jet length (7.53–21.3 mm), such as PS–THF and
PS–chloroform solutions, which have low dielectric constant and surface tension. However, the second
class of solutions of PS–DMF, PS–NMP and PS–water could easily produce multiple jets (≥2) with
short sable jet length (1.73–6.9 mm). The results show that polymer solutions with higher dielectric
constant and surface tension will produce more jets with short stable jet length at low applied voltage.
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