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Abstract

Extrinsic environmental factors influence the spatiotemporal dynamics of

many organisms, including insects that transmit the pathogens responsible for

vector-borne diseases (VBDs). Temperature is an especially important con-

straint on the fitness of a wide variety of ectothermic insects. A mechanistic

understanding of how temperature impacts traits of ectotherms, and thus the

distribution of ectotherms and vector-borne infections, is key to predicting the

consequences of climate change on transmission of VBDs like malaria. How-

ever, the response of transmission to temperature and other drivers is complex,

as thermal traits of ectotherms are typically nonlinear, and they interact to

determine transmission constraints. In this study, we assess and compare the

effect of temperature on the transmission of two malaria parasites,

Plasmodium falciparum and Plasmodium vivax, by two malaria vector species,

Anopheles gambiae and Anopheles stephensi. We model the nonlinear

responses of temperature dependent mosquito and parasite traits (mosquito

development rate, bite rate, fecundity, proportion of eggs surviving to adult-

hood, vector competence, mortality rate, and parasite development rate) and
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incorporate these traits into a suitability metric based on a model for the basic

reproductive number across temperatures. Our model predicts that the opti-

mum temperature for transmission suitability is similar for the four

mosquito–parasite combinations assessed in this study, but may differ at the

thermal limits. More specifically, we found significant differences in the upper

thermal limit between parasites spread by the same mosquito (A. stephensi)

and between mosquitoes carrying P. falciparum. In contrast, at the lower ther-

mal limit the significant differences were primarily between the mosquito spe-

cies that both carried the same pathogen (e.g., A. stephensi and A. gambiae

both with P. falciparum). Using prevalence data, we show that the transmis-

sion suitability metric S Tð Þ calculated from our mechanistic model is consis-

tent with observed P. falciparum prevalence in Africa and Asia but is

equivocal for P. vivax prevalence in Asia, and inconsistent with P. vivax preva-

lence in Africa. We mapped risk to illustrate the number of months various

areas in Africa and Asia predicted to be suitable for malaria transmission

based on this suitability metric. This mapping provides spatially explicit

predictions for suitability and transmission risk.

KEYWORD S
Africa, Asia, basic reproductive number, malaria, mosquito life history, Plasmodium
falciparum, Plasmodium vivax, thermal performance curve, vector-borne diseases

INTRODUCTION

Temperature is a prominent abiotic environmental factor
that drives the physiological processes of organisms
(e.g., microorganisms, insects, plants; Buckley & Huey,
2016; Clarke & Fraser, 2004). In the face of temperature
changes, organisms must make necessary physiological
adjustments to live in this environment (e.g., evolve, adapt)
or move to a more suitable area permanently or temporar-
ily (Berg et al., 2010). This requirement holds true for
ectotherms whose physiological processes are highly con-
strained by ambient temperature and whose body tempera-
tures fluctuate with ambient temperatures. In turn, the
rates of most ectotherm biological and biochemical pro-
cesses shift with temperature, impacting traits that impact
fitness (e.g., development rate, survival; Abram et al., 2017;
Kern et al., 2015). Thus temperature contributes to the
observed dynamics and distributions of populations of
ectotherms.

Predicting the impact of temperature on both the
dynamics and distribution of ectotherms both now and in
the future requires a detailed understanding of the rela-
tionship between temperature and performance traits
(Cator et al., 2020). However, conducting experiments to
explore these relationships can be challenging. Thus
much of the best available ectotherm–temperature data
are on insects, as they are small, relatively easy to handle,
and have short generation times. Further, many insects,

such as mosquitoes, are also of public health importance,
and as such are well studied. Thus, mosquitoes are a con-
venient model to investigate the effects of temperature on
ectotherms. Further, parasites transmitted by mosquitoes
are also ectothermic, allowing the exploration of the
impact of temperature on linked systems.

In this paper, we explore how temperature impacts
the transmission of malaria by Anopheles mosquitoes.
Malaria, a deadly mosquito-borne disease, is present on
five of the world’s seven continents (excluding Australia
and Antarctica; Sinka et al., 2010, 2011, 2012). The World
Health Organization reported an estimated 229 million
cases of malaria in 87 countries in 2019. Of these cases,
409,000 resulted in death (World Health Organization,
2020). The African region accounts for about 94% of
malaria cases and mortality, followed by the Southeast
Asian region with 3% of cases; the other 3% of cases occur
in the Eastern Mediterranean Region and the Americas
(World Health Organization, 2020). Despite intensive
control efforts against malaria for more than a decade,
malaria endemicity remains high in much of the world,
with high morbidity and mortality, especially in children
under 5 years of age (Tizifa et al., 2018).

The Plasmodium species that cause malaria are spread
by Anopheles mosquitoes that differ in some important
traits. Roughly 70 of the 462 known Anopheles species can
transmit malaria (Hay et al., 2010). Anopheles gambiae is
the main malaria vector in Africa (Geissbühler et al., 2007),
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while Anopheles stephensi is an important vector in south-
ern and western Asia (Sinka et al., 2012). A variety of fac-
tors influence when and where malaria is transmitted by
mosquitoes. For example, each species of mosquitoes
exhibits particular habitat and host preferences, as well as
resting and feeding behavior, all of which may impact the
propensity of malaria transmitting mosquitoes to interact
with humans. A. gambiae mosquitoes inhabit rural and
peri-urban areas and feed predominantly on humans and
late at night. They lay eggs in sunlit, shallow, and tempo-
rary bodies of fresh water and rest in both indoors and out-
doors environments (Sinka et al., 2010). In contrast,
A. stephensi mosquitoes are well adapted to urban centers,
though they are also found in rural areas, and they prefer
to lay eggs in man-made containers. A. stephensi prefer to
feed on animals (e.g., bovids) but will also feed on humans.
They also feed and inhabit/rest indoors (Sinka et al., 2011;
Takken & Lindsay, 2019).

Only five of themore than 100 Plasmodium species cause
malaria in humans: P. falciparum, P. vivax, P. malariae,
P. ovale, and P. knowlesi. Of these P. falciparum and P. vivax
are the most common Plasmodium species that cause
malaria in humans (Snow et al., 2005). P. falciparum is
responsible for approximately 93.5% of the recorded malaria
cases worldwide, P. vivax is responsible for 3% of malaria
cases worldwide, and the other three Plasmodium parasites
are responsible for the other 3.5% ofmalaria cases worldwide
(World Health Organization, 2020). In Africa, 99.7% of the
malaria cases are caused by P. falciparum, and in contrast,
Southeast Asia has a combination of types, with �53% of
cases caused by P. falciparum and �46% by P. vivax (World
Health Organization, 2020).

In this study, we use a mechanistic model to deter-
mine the impact of temperature on a suitability metric,
S Tð Þ, that is based on the reproductive number (R0).
We aggregated available data from the literature on
the thermal responses of mosquito and parasite traits
(e.g., mosquito and parasite development rates) measured
across multiple constant temperatures. We fit the thermal
response of each component of S Tð Þ independently to
these data using a Bayesian approach (Johnson
et al., 2015; Mordecai et al., 2013). We then incorporated
the posterior distribution of each component trait
into S Tð Þ.

We also checked for the consistency of our models
with field data on malaria prevalence from Africa and
Asia. We then used the models that were most consistent
with the case data to build suitability maps (i.e., where
the probability of S Tð Þ>0 is at least 0.975) for the trans-
mission of P. falciparum and P. vivax by A. stephensi and
A. gambiae mosquitoes. The approach used here is rela-
tively simple. It has been successfully used to estimate
optimum temperature and the thermal limits in both
related vector–pathogen transmission systems (e.g., other

mosquito systems; Shocket et al., 2020) as well as non-
mosquito systems (e.g., psyllids and citrus greening;
Taylor et al., 2019) in a similar way. This approach
should be extensible to other vector–pathogen systems
for which sufficient trait data of both vectors and patho-
gens exist. Further, if parasite trait data is not available,
or if trait data for other insects (such as pests) exists, a
similar approach could be used but could focus on the
population rate of natural increase, r, instead of the dis-
ease focused R0 (Cator et al., 2020). Thus, the utility of
the approach is much wider than the sort of mosquito
system that is the focus here.

MATERIALS AND METHODS

Thermal trait data

We synthesized published data on the thermal responses
of the following mosquito traits for nine mosquito species
of the Anopheles genus that can transmit malaria: mos-
quito development rate, bite rate, proportion of eggs sur-
viving to adulthood, fecundity measured in eggs per
female per day, and mosquito mortality rate. We also syn-
thesized data on the thermal response of the parasite
development rate for four malaria parasites and on vector
competence for all vector/parasite pairs that were avail-
able (Appendix S1: Table S2).

While malaria is one of the best studied vector-borne dis-
eases, the complete suite of temperature dependent mos-
quito, parasite, and compound traits for the mosquito–
parasite system is only available for A. stephensi with
P. falciparum. In other cases data are nearly complete. For
example, A. stephensi with P. vivax is missing only vector
competence (Appendix S1: Table S2). Others have moderate
gaps. A. gambiae is missing data for bite rate, parasite devel-
opment rate with P. vivax, and vector competence (with
either P. falciparum or P. vivax). For other mosquito species,
more than two thermal traits were absent. Thus we focus our
analysis onA. stephensi andA. gambiae as these are themost
complete (Appendix S1: Table S2). As even these sets have
data gaps in thermal traits, where a gap exists, we use traits
data available from the closest related species based on simi-
lar biologic and ecological characteristics (Appendix S1:
Table S3).

Modeling the temperature dependence of
suitability

Mathematical models of disease systems often use R0, the
basic reproductive number, as a measure of disease trans-
missibility (Holme & Masuda, 2015). This basic reproduc-
tive number gives the average number of secondary cases
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that one infected individual generates during an infec-
tious period in a susceptible population. The most com-
mon parameterizations of R0 for vector-borne infections
are based on the Ross-MacDonald model of malaria
transmission (Dietz, 1993). Here we specifically use a for-
mulation that incorporates multiple temperature-dependent
mosquito and parasite traits to approximate the mosquito
population size (Johnson et al., 2015; Mordecai et al., 2013,
2017, 2019), that is we assume R0 is given by

R0 Tð Þ¼ a Tð Þ2bc Tð Þe�μ Tð Þ=PDR Tð ÞEFD Tð ÞPEA Tð ÞMDR Tð Þ
Nrμ Tð Þ3

 !1
2

ð1Þ

where: a is the mosquito biting rate; bc is vector compe-
tence, which is the product of b, the probability of a per-
son becoming infected by a bite of an infected mosquito,
and c, the probability of a vector becoming infected by
feeding on an infectious person; μ is the mosquito mortal-
ity rate; PDR is the parasite development rate; EFD is the
mosquito fecundity expressed as the number of eggs per
female per day; PEA is the proportion of eggs surviving to
adulthood; MDR is the mosquito development rate; N is
the density of humans or hosts; and r is the human
recovery rate. Because we are interested in the shape of
the thermal response only, we define a suitability metric,
S Tð Þ, that only incorporates the temperature-dependent
components, that is

S Tð Þ¼ a Tð Þ2bc Tð Þe� μ Tð Þ
PDR Tð ÞEFD Tð ÞPEA Tð ÞMDR Tð Þ

μ Tð Þ3
 !1

2

:

ð2Þ

Most thermal traits of ectotherms exhibit unimodal
responses (Colinet et al., 2015; Mordecai et al., 2019).
Although based exclusively on the (sometimes limited)
data at hand, other options may seem reasonable (e.g.,
linear or asymptotic). We choose to incorporate this bio-
logical knowledge by constraining the functional forms
and thus we assume that all of the components of S Tð Þ
are unimodal. More specifically, for each of these individ-
ual traits (e.g., bite rate) for each mosquito species, we fit
one of three kinds of unimodal thermal response. For
asymmetric responses like MDR, a, and PDR we fit a
Briére function (Briere et al., 1999)

f B Tð Þ¼ γT T�T0ð Þð Þ Tm�Tð ÞÞ12, ð3Þ

where T0 is the lower thermal limit (where the response
becomes zero), Tm is the upper thermal limit, and γ is a
constant that determines the curvature at the optimum.
Formally we assume a piecewise continuous function, so

that the thermal trait is assumed to be zero if T <T0 or
T >Tm. Symmetric responses come in two flavors: con-
cave down or concave up (Amarasekare & Savage, 2012;
Johnson et al., 2015). For concave-down symmetric
responses like bc, PEA, and EFD, we fit a quadratic func-
tion parameterized in terms of the temperature intercepts

f q Tð Þ¼ γ T�T0ð Þ T�Tmð Þ ð4Þ

where T0 is the lower thermal limit, Tm is the upper ther-
mal limit, and γ is a constant that determines the curva-
ture at the optimum. As with the Briére function, we
assume the trait is piecewise zero above and below the
thermal limits. For concave-up symmetric responses like
μ, we fit a concave-up quadratic function (Johnson
et al., 2015; Mordecai et al., 2019)

f qu Tð Þ¼ αT2�βTþ γ ð5Þ

where α, β, and γ are the standard quadratic parameters.
Note that, because all traits must be ≥ 0, we also truncate
this function, creating a piecewise continuous function
where f qu is set to 0 if the quadratic evaluates to a nega-
tive value.

Bayesian fitting of thermal traits

We fit each unimodal thermal response for all traits for each
mosquito species (A. stephensi and A. gambiae) or parasite
species (P. falciparum and P. vivax) with a Bayesian
approach using the JAGS/rjags package (Plummer, 2021)
in R (R Development Core Team, 2017). We defined an
appropriate likelihood for each trait (e.g., binomial likeli-
hoods for proportion data, truncated normal for continuous
numeric traits) with the mean defined by either a Briére
function (for asymmetric relationships) or quadratic (sym-
metric relationships). For all traits, we chose relatively
uninformative priors that limit each parameter to its biolog-
ically realistic range. More specifically, we assumed that
temperatures below 0�C and above 45�C are lethal for both
mosquitoes and malaria parasites (Lyons et al., 2012;
Mordecai et al., 2019). Based on these assumptions, we set
uniform priors for the minimum temperature (T0)
between 0� and 24�C and for the maximum temperature
(Tm), between 25� and 45�C (Johnson et al., 2015;
Mordecai et al., 2017; Taylor et al., 2019). Priors for other
parameters in the thermal responses were set, to ensure
parameters were positive and not tightly constrained
(Appendix S1: Table S4).

The rjags package uses a Metropolis algorithm
within a Gibbs Markov Chain Monte Carlo sampling
scheme to obtain samples from the joint posterior distri-
bution of parameters. For each fitted trait, we obtained
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posterior samples from five Markov chains that were run
for 20,000 iterations initiated with random starting
values. These samples were obtained after using 10,000
iterations for adaptation and burning another 10,000 iter-
ations. We visually assessed convergence of the Markov
chains. To obtain the posterior summaries of each trait,
we combined the 20,000 samples from each Markov
chain from the posterior distribution, which resulted in a
total of 100,000 posterior samples of the thermal response
for each trait. Based on these samples, for each unimodal
thermal response we calculated the posterior mean, the
95% highest posterior density (HPD) interval, and the
95% prediction interval around the mean of the thermal
response and various summaries (e.g., the thermal mini-
mum or maximum).

Once the posterior samples of parameters for all ther-
mal traits across temperature for each species were
obtained, these curves were combined to produce 100,000
posterior samples of S Tð Þ (see Appendix S1: Table S5 for
the traits used for each mosquito/parasite set). We used
these samples of S Tð Þ across temperature to calculate the
posterior median and the 95% HPD of the overall thermal
response of suitability, as well as for the critical thermal
minimum, thermal maximum, and optimal temperature
for transmission suitability for the four mosquito/parasite
systems (A. stephensi and A. gambiae with P. falciparum
and P. vivax).

We also used the posterior samples of the S Tð Þ (lower
thermal limit, upper thermal limit, and optimum) to
assess the magnitude of the differences in these summa-
ries between the four mosquito/parasite combinations.
For all of the possible pairwise mosquito/parasite sets, we
calculated the probability that the differences between
each pair of samples of the S Tð Þ posterior distributions
for the mosquito/parasite combinations is greater than
zero (Appendix S1: Section S8). We also performed an
uncertainty analysis for S Tð Þ to quantify the contribution
of each trait to the overall uncertainty in mean suitability
(Appendix S1: Section S9).

Consistency analysis

Consistency analysis is very important to determine
whether the model accurately represents the behavior of
the study system. We take two approaches to assess if our
models are consistent with global malaria field data. Both
approaches utilize open source data from the Malaria Atlas
Project (MAP) on P. falciparum and P. vivax prevalence col-
lected at the village level in 46 countries in Africa and
21 countries in Asia from 1990 to 2017 (Gething
et al., 2011; Moyes et al., 2013; Pfeffer et al., 2018). The
prevalence data were matched with environmental data
(i.e., temperature) to the starting month of each study and

to socio-demographic data (i.e., population density,
adjusted per capita gross domestic product [GDP]) using as
merging points geographic coordinates and the year in
which the prevalence study took place, respectively.

First, following existing methodology for spatial vali-
dation of suitability prediction models (Taylor et al.,
2019; Tesla et al., 2018), we calculated the proportion of
P. falciparum and P. vivax confirmed positive cases for
Africa and Asia obtained from the MAP that falls into the
months that are suitable for malaria transmission (0–12).
The proportion of confirmed positive cases were calcu-
lated in areas that are suitable for either A. stephensi or
A. gambiae in Africa and Asia (Appendix S1: Figures S20
and S21). This metric gives a rough check of consistency
focusing on whether cases are within predicted thermal
limits, that is to confirm that we do not observe many
cases in areas that the model suggests are not suitable.

Our second approach uses logistic models to test whether
S Tð Þ is consistent with observed malaria prevalence in
Africa and Asia. Instead of using the S Tð Þ directly, we
define STGZ, the posterior probability that S Tð Þ is greater
than zero, to again capture thermal limits, but to incorpo-
rate some of the inferred shape of S Tð Þ. In addition to
STGZ, we included two socioeconomic predictor vari-
ables in our analysis: adjusted per capita GDP and
human population density (p), which was available in
periods of 5 years (e.g., 1990, 1995). These allow us to
account for other potential sources of country to country
or local variation in prevalence. Approximate human
population density data at the village level where the
prevalence studies took place were obtained from the
Global Rural–Urban Mapping Project (GRUMP) project
(Balk et al., 2006). GRUMP raster data containing human
population density data were imported into ArcGIS soft-
ware version 10.8.1 and human population density data
at each location in our prevalence data set was extracted
using the “extract values to points” tool from the spatial
analysis tool set in ArcMap (Scott & Janikas, 2010). GDP
data were obtained from the Institute for Health Metrics
and Evaluation of the USA (James et al., 2012). Both
human population density and GDP across countries
exhibit clumpiness and variation across orders of magni-
tude, which can lead to high-leverage data points having
outsized influence on results. Logarithmic transformation
of variables is a very common practice for addressing
these issues with predictors (Sheather, 2009). Thus, for
all of our analyses, we used the natural logarithm trans-
formed versions of both human population density and
GDP (Appendix S1: Section S10).

For each set of parasite prevalence data, we evaluated
seven models including a combination of the logarithm of
human population density, logarithm of GDP, and STGZ.
This included three “null” models, which incorporated
socioeconomic factors but not the suitability metric. We
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built null baseline models to represent the minimal factors
that we expect should be correlated with observed cases. It
is well known, for example, that you need more people to
have more cases (Knudsen & Slooff, 1992) and that higher
economic status countries tend to have lower disease bur-
den per capita (Ricci, 2012). Thus, if we end up choosing a
“null” model as the best model, this indicates that there is
no signal of the environmental factors that we are exploring
here.We rankedmodels based on the Bayesian Information
Criterion (BIC), with the model with the lowest
BIC/highest relative model probability being the best of the
candidatemodels (Aho et al., 2014; Dunn& Smyth, 2018).

Mapping temperature suitability for
malaria transmission

We focused on illustrating the number of months a year that
locations are predicted to have suitable temperatures in
Africa andAsia (wheremalaria is most prevalent). We define
suitable areas as those with temperatures such that the prob-
ability of the S Tð Þ>0 is at least 0.975. We want to be more
conservative than the common 0.95 threshold level to
prevent including areas that are marginal at this 0.95
level. This corresponds to areas that we feel highly confi-
dent are within the thermal limits for malaria. For the
curves based on A. gambiae traits, this is a very conserva-
tive approach, especially at the lower thermal limit,
which is very uncertain. At each location in space, we
calculated the number of months (0–12) that the pixel
was within these bounds for each mosquito–parasite sys-
tem (Ryan et al., 2015; Taylor et al., 2019). Monthly mean
temperature rasters at a 30 s spatial resolution were
downloaded from the WorldClim-Global Climate Data pro-
ject (Fick & Hijmans, 2017) using the raster package
(Hijmans, 2021) in the R environment (R Development Core
Team, 2017). We cropped the temperature raster maps to the
Africa and Asia continents using the Crop function from the
raster package in ArcMap 10.8.1 (Barik et al., 2017).

RESULTS

Posterior distributions of thermal traits

In Figure 1, we estimated the posterior mean and the
95% HPD around the mean for A. stephensi and
A. gambiae mosquito thermal traits (see Appendix S1;
Figures S2 and S4 for parasite and compound [mosquito
+ parasite] thermal traits). This visualization showed the
extent of uncertainty around the mean thermal response.
In general, we noticed that the uncertainty was greater in
the thermal responses for traits of A. gambiae than

A. stephensi, largely due to fewer data availability for esti-
mating the responses to temperature for the former spe-
cies (Figure 1; Appendix S1: Figures S1–S4). For example,
A. gambiae development rate (MDR) and the number of
EFD exhibited considerable uncertainty in the lower end
of the thermal response because there are few or no data
available below approximately 20�C (Figure 1f,i). Also,
A. gambiae PDR and vector competence (bc) with P.
falciparum showed the greatest uncertainty, primarily
due to lack of data (Appendix S1: Figure S4).

In contrast, most A. stephensi traits exhibited consid-
erably less uncertainty around the mean. Where uncer-
tainty exists, for example in the thermal limits of bite rate
(a; Figure 1b), and mortality (μ; Figure 1e), this seems
again to be due primarily to a lack of data near the ther-
mal extremes. Parasite traits with A. stephensi mosquitoes
typically have better data coverage than A. gambiae, and
so have less uncertainty. However, vector competence,
bc, for A. stephensi with P. falciparum is more uncertain
at the minimum thermal limit because data were only
available above 20�C (Appendix S1: Figure S2c). Simi-
larly, PDR for P. falciparum is uncertain near the maxi-
mum thermal limit because there are only three data
points above 31�C (Appendix S1: Figure S2a). In contrast,
P. vivax-related traits are better constrained.

Posterior distribution of S Tð Þ

In Figure 2, we estimated the posterior median and 95%
HPD of S Tð Þ for each of the four mosquito–parasite com-
binations. To allow for more direct comparison, all curves
were scaled to the maximum value of the posterior
median S Tð Þ curve, so the maximum value of the median
for each individual curve is one. Overall, uncertainty
(measured in the width of the HPD intervals after scal-
ing) was greater for A. gambiae with P. falciparum and
P. vivax compared to A. stephensi with P. falciparum and
P. vivax (Figure 2). Based purely on posterior median
values, A. stephensi mosquitoes had the greatest tempera-
ture range for transmission suitability, with a range of
15.3 to 37.2�C for P. falciparum (Figure 2e) and 15.7 to
32.5�C for P. vivax (Figure 2f). The median predicted tem-
perature ranges for the suitability transmission of
P. falciparum and P. vivax by A. gambiae mosquitoes
are very similar with ranges from 19.1� to 30.1�C and
19.2� to 31.7�C, respectively (Figure 2g,h). However,
these median ranges mask a great deal of uncertainty.

The suitability metric for all four mosquito parasite
pairs is predicted to peak (i.e., to have optimum) at
approximately 25�C. Although there is some variability
in this estimate, the posterior distributions of the opti-
mum do not exhibit significant differences between them
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(Appendix S1: Figures S8 and S11). In contrast, there are
indications that the upper and lower thermal limits may
not be the same across the four pairs. In A. stephensi,
there was strong evidence of a difference in the upper
thermal transmission limit for these mosquitoes when
they transmit P. falciparum (CI: 36.5�–38�C) versus
P. vivax (CI: 31.7�–33.7�C) (Appendix S1: Table S8 and
Figures S7a and S10a). Similarly, there was strong evidence
for differences in the upper thermal limit for transmission
of P. falciparum when comparing between A. stephensi and
A. gambiae (Appendix S1: Table S8 and Figures S7c and
S10c). The other comparisons at the maximum thermal
limit are not significant (Appendix S1: Figures S7 and S10).

The predictions for the lower thermal limits were much
more similar to each other. Our results showed that the

only significant differences are between the transmission of
P. falciparum by A. stephensi and by A. gambiae mosquitoes
(Appendix S1: Figures S9c and S12c) and between the trans-
mission of P. vivax by A. stephensi and by A. gambiae
(Appendix S1: Figures S9d and S12d). The other compari-
sons at the minimum thermal limit were not significant
(Appendix S1: Figures S9 and S12).

Sources of uncertainty in S Tð Þ

Across all combinations of mosquitoes and parasites, the
uncertainty in S Tð Þ at intermediate temperatures was
dominated by the uncertainty in the adult mosquito mor-
tality rate, μ (Appendix S1: Figures S13 and S14). This is
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F I GURE 1 Posterior mean (solid line) and 95% highest posterior density (HPD; dashed lines) of the thermal responses for mosquito

traits for Anopheles stephensi (green) and Anopheles gambiae (blue). Traits modeled with a Brière thermal response are (a, f) mosquito

development rate and (b, g) bite rate. Traits modeled with a concave down quadratic function are (c, h) proportion of eggs surviving to

adulthood and (d, i) fecundity and (e, j) mortality rate, which is modeled with a concave-up quadratic function. Data symbols correspond to

the species of mosquitoes. Open circles, A. stephensi; solid circles, A. gambiae; crosses, A. arabiensis; stars, A. pseudopunctipennis. For

parasites and compound traits (mosquitoes + parasites), see Appendix S1
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a common pattern as S/ μ�3, so small changes in μ when
μ is small (i.e., near optimal temperatures for mosquito
longevity) will have an outsized impact on S. This com-
ponent is thus almost wholly responsible for the location
and height of the peak of suitability.

In contrast, the traits that drive uncertainty in the tem-
peratures around the thermal limits varies between each
mosquito–parasite pair and is sensitive to the amount and
quality of data available for each. For example, our suitabil-
ity metric for P. falciparum in A. stephensi seems the most
well resolved of all of the combinations. In this case, uncer-
tainty in μ dominates across almost all temperatures, and
it is only at the high temperature end, above ≈37�C, that
most of the uncertainty was caused by another compo-
nent, specifically the proportion of eggs surviving to
adulthood (PEA). At temperatures between 32� and 37�C,
vector competence (bc) and PDR also contribute to the
uncertainty, although they do not dominate over either μ
or PEA. Similarly, near the lower temperature regime,
PDR and PEA both contribute to the overall uncertainty,
but do not dominate compared to μ (Appendix S1:
Figure S13c). Because the mosquito traits are shared, the
patterns seen in the P. vivax–A. stephensi pair are similar
to those for P. falciparum–A. stephensi. Again, μ domi-
nates at intermediate temperatures, but now near the
upper thermal limit the uncertainty is almost entirely
determined by uncertainty in vector competence (bc). At

the lower limit, PDR contributed to the uncertainty but
to a lesser extent than μ (Appendix S1: Figure S13d).

The patterns exhibited for suitability by A. gambiae are
markedly different, reflecting the greater uncertainty across
multiple traits. Although the uncertainty due to μ is the
dominant source of uncertainty at intermediate tempera-
tures, other parameters contributed to the uncertainty
across much wider portions of the thermal response com-
pared to A. stephensi (Appendix S1: Figure S14). For
example, uncertainty for the P. falciparum–A. gambiae
pair is dominated by PDR in the lower and upper limits
while EFD and MDR influenced uncertainty in the mid
to lower temperature ranges (Appendix S1: Figure S14c).
For the P. vivax–A. gambiae pair, uncertainty near the
lower and upper limits for transmission is dominated by
EFD, MDR, and PDR, with each leading over slightly dif-
ferent ranges (Appendix S1: Figure S14d).

Consistency analysis

We first evaluated coarse consistency of the models
with observed data by examining the histograms of the
proportion of P. falciparum and P. vivax positive preva-
lence cases that falls within suitable areas for malaria
transmission (0–12 months) by A. gambiae and A. stephensi
mosquitoes in Africa and Asia (Appendix S1: Figures S20
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and S21). If the observed data are consistent with the suit-
ability metric, we could expect to see lower prevalence in
areas that are suitable for few months of the year and high
prevalence in areas that are suitable for many months.
Based on this simple graphical metric, the S Tð Þ models
were broadly consistent with the data collected in Asia
(i.e., the metric is not predicting that areas are not suit-
able where we see a lot of malaria), but were less consis-
tent with data in Africa (Appendix S1: Figures S20 and
S21). Further, the metrics based on A. stephensi traits
seem more consistent with the data, likely due to signifi-
cantly more uncertainty in the A. gambiae data, and a
broader thermal envelope. Because of the combination
of very poor consistency with the model (by this mea-
sure) and limited data, we conclude that our model can-
not be assessed for P. vivax in Africa reliably, and we
excluded this case from further analysis (Appendix S1:
Figures S20 and S21).

Our quantitative approach, using logistic models,
gives further evidence for a potential signal of tempera-
ture in observed prevalence data. The logistic models
assessed the proportion of “successes” (i.e., infections) in
each village instead of only examining the presence
(prevalence > 0). For P. falciparum in Africa and Asia the
best model included the linear combination of STGZ, log
of human population density, and log of GDP interacted
with location (i.e., different regression coefficients for
GDP in Africa than in Asia; Appendix S1: Table S10).
This indicates that including the suitability metric is sig-
nificantly better at explaining patterns of malaria pres-
ence/absence than socioeconomic factors alone. In
contrast, for P. vivax in Asia, the best model only
included socioeconomic factors. The second best model
included the linear combination of STGZ with the socio-
economic factors. However, this model has much lower
model probability, based on BIC (0.02 compared to 0.98
for the top model; Appendix S1: Table S11). This indi-
cates that the temperature metric does not substantially
improve model fit for P. vivax, although the first consis-
tency analysis does indicate consistency between cases
and the suitability metric based exclusively on presences.

Mapping climate suitability for malaria
transmission

Our maps illustrate the number of months of high suitabil-
ity (months where the probability that S Tð Þ>0 is at least
0.975) for P. falciparum transmission by A. stephensi and
A. gambiae in Africa (Figure 3a,b) and the number of
months of high suitability for P. falciparum and P. vivax
transmission by A. stephensi in Asia (Figure 3c,d). The
maps predict the seasonality of temperature highly

suitable for malaria transmission geographically, but they
do not indicate malaria transmission magnitude. Our
maps demonstrated that temperatures are highly suitable
for the transmission of P. falciparum malaria by both
mosquito species, A. gambiae and A. stephensi, in vast
areas of Africa and the transmission of P. falciparum and
P. vivax malaria by A. stephensi mosquitoes in vast areas
of Asia.

Our maps indicated that in Africa, approximately 15%
of the continental land area has temperatures suitable
year-round for the transmission of P. falciparum malaria
by A. stephensi mosquitoes, and 44% for at least 6 months
of the year (Figure 3a). Countries in which most of the
territory is suitable year-round include Guinea, Liberia,
Sierra Leone, Togo, Nigeria, Central African Republic,
Democratic Republic of the Congo, Congo, Gabon,
Cameroon, Cote d’Ivoire, Uganda, Kenya, Tanzania,
Mozambique, Ethiopia, Madagascar, and Ghana. The
area suitable year-round for P. falciparum malaria trans-
mission by A. gambiae in Africa is 8% and 30% of the area
is suitable at least 6 months of the year (Figure 3b).
Countries with most of their territory suitable year-
round include Sierra Leone, Liberia, Cote d’Ivoire,
Cameroon, Gabon, Democratic Republic of Congo,
Congo, Central African Republic, and Kenya. We also
show the maps for P. vivax transmission by A. stephensi
and A. gambiae in Africa in the supplementary mate-
rial for completeness (Appendix S1: Figure S22), but
we do not interpret these maps as the model needs
refinement in this region.

In Asia, approximately 9% of the area is considered
highly suitable for the transmission of P. falciparummalaria
by A. stephensi mosquitoes year-round, and 20% for six or
more months of the year (Figure 3c). The area highly suit-
able for year-round transmission of P. vivax by A. stephensi
is approximately 7%, and for at least 6 months of the year is
16% (Figure 3d). Southeast Asia is the most vulnerable, with
most of their territory suitable for malaria transmission
year-round. Some of the countries with suitable tempera-
tures year-round include Myanmar, Cambodia, Thailand,
Vietnam, Indonesia, Malaysia, Singapore, Brunei, Timor-
Leste, and the Philippines (Figure 3c,d).

DISCUSSION

Determining the optimal, minimum, and maximum tem-
peratures at which A. gambiae and A. stephensi mosqui-
toes are the most efficient vectors for the transmission of
malaria parasites is important for assessing the potential
for invasion and establishment in novel locations, and for
assessing the potential impacts of climate change on the
future geographical distribution of these two mosquito
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F I GURE 3 The number of months a year that locations fall within the predicted suitable range (probability of S Tð Þ>0 ≥ 0:975) for the

transmission of Plasmodium falciparum by (a) Anopheles stephensi and (b) Anopheles gambiae mosquitoes in Africa, and for the transmission

of (c) P. falciparum and (d) Plasmodium vivax by A. stephensi mosquitoes in Asia
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species and the malaria parasites they transmit. In this
paper, we have updated predictions for thermal suitabil-
ity of transmission of the two most common malaria
parasites, P. falciparum and P. vivax, by two of the
most common malaria vector species, A. gambiae and
A. stephensi, using data from historical and newly publi-
shed studies. We examined the extent to which predic-
tions may vary between mosquito species and between
parasite types and identified persistent data gaps that
must be addressed to further improve these models and
allow more precise comparisons between mosquito/
parasite complexes.

Our results suggest that there is little difference in the
optimal temperature for malaria transmission between
A. gambiae and A. stephensi mosquitoes. Further we find
optimal temperatures for malaria transmission suitability
that are similar to other recent findings for the optimal
temperature at the continental scales (e.g., Johnson
et al., 2015; Lunde et al., 2013; Mordecai et al., 2013, 2019;
Shapiro et al., 2017). Earlier studies had calculated higher
optimal temperatures for malaria transmission (Craig
et al., 1999; Mahmood, 1997; Parham & Michael, 2009). We
attribute the difference to the use of linearly increasing/
monotonic functions as a component of past models. The
study of Shapiro et al. (2017) also reported an optimum
temperature of 29�C using a temperature-dependent model
to estimate relative vectorial capacity based on thermal per-
formance curves of bite rate, vector competence, daily mos-
quito mortality rate, and the length of the extrinsic
incubation period. Empirical data usually violates several of
the relative vectorial capacity model assumptions (Shapiro
et al., 2017). In nature, biological and ecological mosquito
and parasite traits usually show unimodal responses to tem-
perature (Dell et al., 2011), in which traits increase expo-
nentially from a minimum thermal limit to an optimal
temperature, then decline to a zero at a maximum thermal
limit (Dell et al., 2011).

However, we find that there are differences between the
temperatures that could limit suitability for the two focal
parasites to be spread by different mosquitoes. For example,
we found evidence that there are differences in the upper
thermal limit between P. vivax and P. falciparum when
spread by A. stephensi, and between P. falciparum when
spread by the two mosquitoes. There is also evidence that
the lower suitability threshold differs by mosquito species
when transmitting the same pathogen. However, there is a
great deal of uncertainty in the estimates of these limits due
to poor data availability, especially for traits of A. gambiae
and P. falciparum. As a result of the observed difference in
the upper and lower thermal limits across mosquito–
parasite systems, we also observe differences in the
predicted temperature ranges for suitability, with greater
temperature ranges for pathogens transmitted by

A. stephensi than A. gambiae (Figure 2). Based on available
trait data and previous studies, A. stephensi mosquitoes
seem to have greater range in thermal tolerance than
A. gambiaemosquitoes (Kirby & Lindsay, 2004; Miazgowicz
et al., 2020).

The larger thermal breadth for transmission of both
P. falciparum and P. vivax by A. stephensi than A. gambiae
has a knock-on effect for the predicted spatial extent of suit-
ability for transmission. Our maps show the areas that are
potentially currently suitable, based on temperature, for the
transmission of both P. falciparum and P. vivax by
A. gambiae and A. stephensi mosquitoes. In Africa, vast
regions between 22� N and 21� S latitude are highly suitable
for A. gambiae and A. stephensi mosquitoes. A. gambiae is
currently the dominant mosquito species that transmits
malaria in Africa. Although A. stephensi is a native mos-
quito of Asia (Sinka et al., 2010), recent research has
reported that An. stephensi mosquitoes are already present
in Africa, for example, in Djibouti (Faulde et al., 2014),
Ethiopia (Balkew et al., 2020; Carter et al., 2018; Tadesse
et al., 2021), Sudan, and probably in neighboring countries
(Takken & Lindsay, 2019). The current presence and the
possible spread of An. stephensi to African countries poses a
potential health risk since it is a malaria vector well adapted
to urban centers that could cause malaria outbreaks of
unprecedented sizes (Balkew et al., 2020; Sinka et al., 2020;
Takken & Lindsay, 2019). Our model indicates that the
breadth of temperature range for A. stephensi with
P. falciparum (15.3�–37.2�C) is greater than the breadth for
A. gambiae with P. falciparum (19.1�–30.1�C); and in a
lesser degree, the breadth for A. stephensi with P. vivax
(15.7�–32.5�C) is greater than the breadth for A. gambiae
with P. vivax (19.2�–31.7�C; Appendix S1: Table S8). This
indicates that a larger proportion of Africa may be suitable
for transmission by A. stephensi than by A. gambiae, due to
the larger thermal breadth. Thus, regions at the northern
and southern limits of the area dominated by A. gambiae
are suitable for A. stephensi. In these areas, malaria trans-
mission could increase as A. stephensi becomes more
established, which could also become a potential threat to
malaria control in Africa.

The consistency analysis showed that for P. falciparum
in Africa and Asia, the best logistic model to predict the
probability of infection includes the linear combination of
S Tð Þ >0, log of human population density, and log of
GDP. However, for P. vivax in Asia, the best logistic
model only includes socioeconomic factors despite the
thermal suitability metric seeming to be more consistent
with observed data than it is in Africa by our first consis-
tency check (Appendix S1: Figure S20 vs. S21). We expect
that there are three primary reasons why we may observe
these contradictory results, given that we know that the
biology of the vectors is temperature sensitive. First, in
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the parts of Asia where we have data the observed tem-
perature range is small, and uncertainty in parameters
increases as the range of the predictors decreases. In con-
trast, ranges in per capita GDP and population density
are larger. This is the opposite of the pattern observed in
Africa (Appendix S1: Figure S23). Second, in contrast to
Africa where A. gambiae is the main malaria vector, in
Asia, there are many other important malaria vectors
(e.g., A. culicifacies, A. dirus; Bharati & Ganguly, 2013;
Sinka et al., 2011) whose thermal performance curves
could be different from A. stephensi. Furthermore, the
overall amount of prevalence data is much smaller for
P. vivax malaria than for P. falciparum, which could
impact our ability to infer patterns. Once more P. vivax
malaria prevalence data become available, our model
predictions could be better compared with field data.

Previous research assessing the optimal temperature
and temperature limits for malaria transmission using
mechanistic trait-based models has necessarily relied on
data from a combination of mosquito and parasite species
due to incomplete data availability for thermal traits of
mosquitoes and parasites (Johnson et al., 2015; Mordecai
et al., 2013). In this study, all mosquito traits used for the
calculations were from the Anopheles genus. If data for a
specific trait were not available for one of the studied spe-
cies, we used data from the closest relative in the same
genus (Appendix S1: Table S3). For example, for
A. stephensi, all mosquito traits were from the same species,
but for A. gambiae bite rate data are still not available so we
used data from A. arabiensis and A. pseudopunctipennis
mosquitoes instead. A similar approach was used for para-
site traits. The amount of available data for each species has
significant impact on the uncertainty in our model. To
reduce uncertainty in these models, there is a need for
more empirical data from the laboratory, especially for
A. gambiae. For example, fecundity data for A. gambiae is
lacking at low and high temperatures. There is also a need
for vector competence and PDR data for A. stephensi with
P. vivax, A. gambiae with P. vivax, and A. gambiae with P.
falciparum and vector competence for A. stephensi with P.
falciparum. These data would improve certainty in these
models, especially at the thermal limits.

Our approach has some important limitations, some
of which could be addressed by extending the mechanis-
tic models. One limitation is that we use constant tem-
perature data in our models, and did not incorporate
daily and seasonal temperature variations, which occur
in nature. However, nonlinearities make it difficult to
measure mosquito and parasite traits even at constant
temperatures, especially at the thermal limits (Johnson
et al., 2015; Mordecai et al., 2019). Precipitation also
influences malaria transmission, particularly via vector
abundance, due to its role in mosquito life cycles, as does
humidity (Bomblies, 2012). Incorporating the effect of

different precipitation regimes on mosquito and parasites
traits could also improve our mechanistic models,
although capturing these dynamics is complicated (Cald-
well et al., 2021).

Despite these limitations, there is consistency
between these constant temperature mechanistic models
with field data. For example, malaria prevalence data
(our study), human case data (Mordecai et al., 2017), or
entomological inoculation rate data (Mordecai et al.,
2013) demonstrate that these simple temperature-only
models capture broad-scale patterns of transmission of
mosquito-borne diseases. Due to the relative simplicity of
the approach, similar studies combining empirical data
and model fitting could estimate optimum temperature
and the thermal limits for other vector–pathogen trans-
mission systems in a similar way.
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