
ORIGINAL ARTICLE

A P2P Botnet detection scheme based on decision tree
and adaptive multilayer neural networks

Mohammad Alauthaman1 • Nauman Aslam1
• Li Zhang1 • Rafe Alasem2

•

M. A. Hossain3

Received: 31 July 2015 / Accepted: 17 August 2016 / Published online: 3 October 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In recent years, Botnets have been adopted as a

popular method to carry and spread many malicious codes

on the Internet. These malicious codes pave the way to

execute many fraudulent activities including spam mail,

distributed denial-of-service attacks and click fraud. While

many Botnets are set up using centralized communication

architecture, the peer-to-peer (P2P) Botnets can adopt a

decentralized architecture using an overlay network for

exchanging command and control data making their

detection even more difficult. This work presents a method

of P2P Bot detection based on an adaptive multilayer feed-

forward neural network in cooperation with decision trees.

A classification and regression tree is applied as a feature

selection technique to select relevant features. With these

features, a multilayer feed-forward neural network training

model is created using a resilient back-propagation learn-

ing algorithm. A comparison of feature set selection based

on the decision tree, principal component analysis and the

ReliefF algorithm indicated that the neural network model

with features selection based on decision tree has a better

identification accuracy along with lower rates of false

positives. The usefulness of the proposed approach is

demonstrated by conducting experiments on real network

traffic datasets. In these experiments, an average detection

rate of 99.08 % with false positive rate of 0.75 % was

observed.

Keywords P2P Bot � Multilayer neural network �
CART algorithm � TCP protocol � C&C �
Resilient back-propagation

1 Introduction

Internet services are increasing in popularity, and many

new online services appear every day. The use of online

services leads to a massive volume of online financial

transactions, where sensitive information is exchanged via

the Internet. The attacker’s interest is converted from

curiosity to financial benefit. Attackers use different mal-

ware to achieve their goals. Among the various forms of

malware, Botnet is considered to be the most serious means

for conducting online crime [1]. However, financial profit

is the goal of Botnets creation and development by attacker

[2].

A Botnet is a network of compromised computers (Bots)

remotely managed by an attacker (Botmaster). A Botnet

can be ordered to perform various malicious activities, such

as sending spam emails, phishing, click fraud, DDoS and

spreading malicious software. To effectively administer a

& Nauman Aslam

nauman.aslam@northumbria.ac.uk

Mohammad Alauthaman

mohammad.alauthaman@northumbria.ac.uk

Li Zhang

li.zhang@northumbria.ac.uk

Rafe Alasem

rkasem@imamu.edu.sa

M. A. Hossain

alamgir.hossain@anglia.ac.uk

1 Department of Computer Science and Digital Technologies,

Faculty of Engineering and Environment, Northumbria

University, Newcastle upon Tyne NE1-8ST, UK

2 Department of Electrical Engineering, Faculty of

Engineering, Imam Mohammad Ibn Saud Islamic University,

Riyadh, Saudi Arabia

3 Information Technology Institute, Anglia Ruskin University,

Bishop Lane, Chelmsford CM1 1SQ, UK

123

Neural Comput & Applic (2018) 29:991–1004

https://doi.org/10.1007/s00521-016-2564-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2564-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2564-5&domain=pdf
https://doi.org/10.1007/s00521-016-2564-5

Botnet, the Botmaster constructs an infrastructure of a

communication channel to send commands to the Bots and

to receive results from them [3]. This communication

channel is known as the command and control (C&C)

channel. The main difference between a Botnet and other

malware is the infrastructure used in the C&C [4]. In

contrast to other malware that is used to perform malicious

behaviour individually, a Botnet works as a group of

infected hosts based on the C&C communication channel.

A Botnets network can be classified into two main cate-

gories based on the C&C infrastructure: centralized and

decentralized C&C [5]. In centralized Botnets, the Bot-

master normally uses the C&C server to send a command

to the Bots as shown in (Fig. 1a).

Due to its simplicity, the centralized Botnet is widely

used by many Botnet families. The most famous approa-

ches are the Internet Relay Chat (IRC) and Hypertext

Transfer Protocol (HTTP) Botnet. However, the main

limitation of the centralized Botnet is its single point of

failure C&C server. A shutdown of the C&C server would

result in the loss of communication between the Bots and

the Botmaster [6]. In order to avoid the weakness of a

single point of failure, Botnet attackers have recently

started to build Botnets based on decentralized C&C

infrastructures such as the P2P Botnet [7] and P2P model

was adopted by many types of Botnet, e.g. Storm Bot,

Conficker Bot and Waledac Bot [8].

A P2P Botnets are a new class that has replaced the old

centralized IRC/HTTP-based Botnet to avoid a single point

of failure and avoid detection during C&C connection. Due

to the distributed network structure of P2P systems, all

peers in the network work as a Bot (client) and C&C

(server) at the same time. In this case, the Botmaster plays

the main role by sending commands to any infected peers

to execute any order or requesting information at any time

(see Fig. 1b).

The life cycle of the P2P Botnet consists of four primary

phases, namely: initial infection, peer propagation, sec-

ondary injection and attack [7]. Firstly, Bot code is created

to insert on an end-user computer by different techniques

such as web download, vulnerability exploitation, mail

attachments, automatically scan, exploit and compromise,

traditional file-based viruses [9]. Secondly, the Bot tries to

connect with other Bots on infected hosts based on its own

hard-coded peer list. Thirdly, the Bot downloads the latest

update of the Bot code through the C&C channel, which

will update it for future tasks. In this phase, a host is

considered to be a Bot in Botnet network. Finally, the Bot

initiates malicious activities such as spam or phishing

emails, distributed denial-of-service attacks (DDoS),

stealing information and scanning activities.

Despite many research efforts, the P2P Botnet detection

remains a significant challenge for the researchers. Firstly,

the traffic of P2P Botnet is similar to normal traffic; and

secondly, many P2P Botnets, such as Storm and Waledac,

use encryption algorithms that make methods based on

packet inspection ineffective. Furthermore, there is no

central server in P2P Botnets and in addition Bots contact

other peers using random ports [10].

The main aim of this research is to develop P2P Bot

detection approach based on traffic reduction technique.

The approach proposed in this research has the following

characteristics. It detects Bots during the propagation phase

before any malicious action has been taken. Furthermore, it

does not require deep packet inspection (DPI) analysis for

signature matching and does not need to analyse the entire

network traffic. It detects Bots independent of port num-

bers, IP addresses and host characteristics. In summary, we

made the following contributions:

• A network traffic reduction approach that has been

designed will be able to increase the performance of the

proposed framework.

• A connection-based detection mechanism is indepen-

dent of payload and uses only the information obtained

from the header of TCP control packet. Thus, it does

not need deep packet inspection and cannot be confused

with payload encryption techniques.

Internet

Bot

Bot

Bot

Bot

Botmaster
C2C Server

C2C Server
Internet

Bot

Bot

Bot

Bot

Bot

Bot

Bot

Botmaster

(a) (b)Fig. 1 Structures of the Botnet.

a Centralized structure,

b decentralized structure

992 Neural Comput & Applic (2018) 29:991–1004

123

• Adopting the classification and regression trees to

select the important connection features in order to

decrease the size and dimensionality of the dataset.

• Detection of P2P Bot traffic on the network and

discriminating it from legitimate network traffic.

The rest of this paper is organized as follows. Section 2

briefly reviews work relevant to P2P Botnet detection

approaches. The proposed approach is then described in

Sect. 3. Section 4 presents the experimental results, and

finally the conclusions and suggestions for future work are

presented in Sect. 5.

2 Relevant work

In recent years, there has been an increasing interest in

techniques for Bot detection and prevention. While it may

be important to learn how a Bot infects the computers, it

is more critical to detect the infected machine before it is

exploited to launch malicious activities. Several approa-

ches to detect Botnets have been developed. These

approaches can be classified into signature-based, anom-

aly-based, DNS-based and data mining techniques [11].

Another researchers such as Han et al. [5] classified P2P

Botnet detection systems into three general types: data

mining, machine learning and network behaviour and

traffic analysis. What is more, Zeidanloo et al. [12] in

their research classify the Botnet detection system as

honeynets or intrusion detection systems (IDS) and also

divided the IDS system into three subgroups as following:

anomaly-based, specification-based and signature-based.

In addition, the Botnet detection system can be classified

based on the installation point as a host-based, network-

based and hydride systems. Lu et al. [3] have classified

the Botnet detection techniques on the basis of machine-

learning type supervised and unsupervised Botnets

detection.

A recent study in the field of P2P Botnet detection by

Babak et al. [13] proposed PeerRush, which uses a one-

class classification approach to classify various types of

normal and abnormal P2P traffic. One-class classifier

including KNN, Parzen and Gaussian data description

classifiers [14] is used. An application profile is initially

created by learning traffic samples of known P2P appli-

cations. Moreover, features such as interval delays between

packets and flow duration are used to classify P2P appli-

cations. This approach achieves high accuracy rate in

classifying P2P applications depending on the features

selected. On the other hand, this method does not show

clearly how to detect P2P Botnet, and also detection can be

easily avoided by changing the delay between packets.

In [15], Garg et al. presented a several machine-learning

algorithms such as nearest neighbour, Naive Bayes and

J48. These have been analysed for the detection of P2P

Botnets using various network traffic features. The results

show that the accuracy of the classifiers trained using the

nearest neighbour and J48 is good. However, the detection

of legitimate traffic is very weak.

Jiang and Shao [16] present a method that focuses on the

C&C traffic of P2P Bots regardless of how they perform

their malicious activity. This method develops a detection

mechanism based on a Bots which exhibit connection flow

dependency with other Bots. According to the flow

dependency behaviour, this approach uses single-linkage

hierarchical clustering mechanism to differentiate between

P2P Bots and normal hosts. This method was built based on

the similarity of Botnet traffic, so this approach will fail to

detect the Botnet, which uses the irregularity of traffic flow

such as Storm Bot [17]. Furthermore, it has a limitation to

identify individual Bot behaviour.

EFFORT [18] is a host-based detection approach

which collects information related to Bot’s characteris-

tics at client and network level. It then correlates Bot-

related information by monitoring local computer

activity such as keystrokes and connections with other

computers. The main advantage of this method is that it

does not depend on protocol and communications

topology. In addition, it is able to detect Bots that are

using encryption techniques to hide the malicious

behaviour. The major limitations of this method are

critical to evasion techniques such as fast-flux, and it

cannot prove as real-time detection approach.

Masud et al. [19] introduced an approach to Botnet

detection based on the observation that a Bot has many

reaction patterns which are different from those of

humans. This method can detect Bots by correlating

incoming packets with outgoing packets, new outgoing

connections and application start-ups in hosts. Several

machine-learning algorithms such C4.5 decision tree,

support vector machine, Naive Bayes, Bayes network

classifier and boosted decision tree [20] were compared

and evaluated in the detection of IRC Botnet. The result

of the classifiers evaluation shows that all machine-

learning algorithms achieve 95 % detection rate, less than

3 % false positive rate and under 5 % false negative rate.

The greatest overall performances were reached by a

boosted decision tree. However, one major drawback of

this approach is that it cannot detect Botnets that use

encrypted communication because it needs to access the

content of the payload packets. On the other hand, the

method has been tested on IRC Bots, therefore its ability

to detect modern types of malware such as P2P Bots is

not known.

Neural Comput & Applic (2018) 29:991–1004 993

123

Zhang et al. [21] introduced a P2P Botnet detection

system that can identify stealthy P2P Botnets. The pro-

posed approach focuses on identifying Bots based on the

monitoring of C&C traffic. They extract four features for

each traffic flow including the number of bytes received

and sent and number of packets received and sent. Hier-

archical clustering [22] and BIRCH algorithm [23] are used

to cluster network flow. Furthermore, the approach is

independent of payload signatures and has also achieved a

high rate of detection both malicious and legitimate hosts,

with the FPR of 0.2 % and TPR 100 %. Although this

system can detect Botnets regardless of how they perform

malicious activities, it focuses only on P2P Botnet and

cannot detect other types such as IRC or HTTP Bots.

However, the proposed technique is vulnerable with some

of the evasion methods such as flow disturbance packets

and by using the DGA and fast-flux algorithms as a com-

munications facility in order to provide C&C a high level

of privacy.

Liao et al. [24] used a methodology based on packet size

to distinguish between P2P Botnet traffic and legitimate

P2P traffic. They presented the following observations.

Firstly, P2P Bots tries to update information for other Bots

rather than staying idle. Secondly, the Bot mainly transmits

data with a minimum rate of connections. Bayesian net-

works, Naı̈ve Bayes and J48 are used to classify network

traffic. Furthermore, the accuracy rates for the three algo-

rithms are 87, 89 and 98 %, respectively. However, it was

found that the size of P2P Botnet packets is smaller than

that of any other P2P applications.

The detection system introduced by Fedynyshyn et al.

[25] uses a host-based approach to detect Bots using the

property of temporal persistence. They utilized a J48

classifier and a random forest algorithm for sorting various

kinds of Botnet infection categorized according to their

C&C model (HTTP, IRC and P2P). Moreover, they found

similarities in C&C structures for different categories of

Bots that are different from those of legitimate network

traffic.

In 2014, Zhang et al. [26] introduced an approach based

on their previous research in 2011 [21] to enhance the

performance of the system scalability and increase the

efficiency. The method includes two main phases which

are: (1) recognizes all machines that are possibly involved

in P2P connections and extracts statistical fingerprints from

profile P2P traffic, (2) analyses the traffic of P2P hosts to

classify them as P2P bots or legitimate P2P hosts. In the

experiment, P2P applications such as eMule, LimeWire,

Skype and BitTorrent were run on various machines to

generate legitimate traffic. Besides, Waledac and Storm

were run in a controlled environment to generate malicious

network traffic. By using hierarchical clustering of P2P

flows the approach capable of distinguishing legitimate

P2P traffic from P2P Botnet traffic with 100 % detection

rate and 0.2 % false positive detection rate. The significant

advantage of the method is that it is efficient to distinguish

Bots traffic which is overlap within legitimate host traffic

with high detection rates.

Zhao and Traore [27] introduced a P2P Botnet detection

technique based on recognizing the malicious behaviour of

fast-flux networks. They calculate metrics of features from

captured network traffic which are used to identify Botnet

traffic. However, the approach through using decision tree

algorithm achieves high accuracy rates.

In the proposed approach, a decision tree is utilized as a

feature set reduction mechanism to exclude insignificant

features for the endeavour of downsizing the quantities of

data necessary to acquire better classification accuracy rate,

learning rate and reducing in computational time. It

includes a unified method which incorporates classification

and regression trees (CART) [28] and a multilayer feed-

forward neural network with resilient back-propagation

algorithm [29] for the use of P2P Bot detection.

The proposed system uses the header of TCP control

packets to bypass the encrypted network traffic and reduce

the number of packets that will enter to the detection sys-

tem. Moreover, focusing on the connection behaviour will

help the detection system to recognize the Bot behaviour at

an earlier stage when the Bot propagates and tries to con-

tact with other peers to find new updates. Furthermore, the

proposed feature sets are estimated for every connection in

the network to detect any single infect machine. To the best

of our knowledge, this is the first time that connection-

based features are used in P2P Bot detection. As the fea-

tures are extracted from packets headers, they do not rely

on the packet payloads. With this characteristic, our

detection approach will not be affected by traffic encryp-

tion. Furthermore, the feature sets help the detection sys-

tem to identify P2P Bot infects even single host in the

network.

3 Proposed approach

The proposed framework relies on two fundamental con-

cepts. Firstly, it is passively monitoring network traffic

[12]. Secondly, it utilizes the fact that Bots during the

propagation phase will show frequent communication

behaviours with their C&C servers/peers in order to dis-

cover other peers and receive the latest update of tasks due

to their pre-programmed nature [30, 31]. Bots are different

from other malware in that they work as a group and they

994 Neural Comput & Applic (2018) 29:991–1004

123

primarily need a communication channel to coordinate

their malicious activities. These connections are described

as the way by which the Botmaster communicates with his

Bots [9]. The proposed P2P Bot detection uses a multilayer

feed-forward neural network with adaptive learning rate,

since most well-known P2P Bots communicate using TCP

connections [32] such as Waledac Bot [33], Storm Bot

[34], Conficker Bot [35] and Zeus Bot [36, 37]. Therefore,

in this paper features related to TCP connection have been

extracted based on TCP control packets. To increase the

learning rate, a resilient back-propagation algorithm is

used. The resilient back-propagation is considered to be the

best algorithm, measured in terms of convergence speed,

accuracy, robustness and with respect to training parame-

ters [29]. Figure 2 shows a block diagram of the proposed

system.

3.1 Network traffic reduction

Network traffic reduction for detection of malicious

activities is essential for managing enormous amounts of

network traffic where resources are restricted (e.g. mem-

ory, hard disk). The most difficult part of this process is to

identify the behaviour of network traffic by inspecting only

a small number of packets per flow. Therefore, this

research introduces a new traffic reduction technique to

facilitate the deployment of Bot detection systems on high-

speed networks.

The most of the existing Botnet detection systems

[38–41] rely on deep packet inspection (DPI) to analyse

packet content, which is computationally expensive and

inefficient to recognize unknown payload signature [42]. In

DPI, the system is assumed to have access to the payload of

every packet. This technique can be notably accurate when

the payload is not encrypted. However, the majority of new

malware generation applies evasion methods such as

encryption of payload, protocol encapsulation and obfus-

cation [43].

Furthermore, examining all packets on a high-speed

network is an expensive task because the speed of networks

and the amount of the packet transferred via networks are

increasing daily. Thus, the detection system which applies

DPI may suffer from efficiency bounded on processing a

large volume of traffic from high-volume or high-speed

networks [42]. The goal of our work is to increase the

effectiveness of the detection systems by decreasing the

volume of traffic to be analysed, without affecting the

accuracy of the detection process. To achieve this goal, a

novel traffic reduction is proposed for a Bot detection

framework by selecting only TCP control packets. The

framework can efficiently and effectively reduce the

amount of traffic that will be entering into the detection

system. To the best of our knowledge, this first P2P Bot

detection approach applies reduction technique to achieve

the efficiency on Botnet detection domain.

In this study, a filtration of TCP control traffic packets is

used to reduce the volume of network traffic as well as to

increase the performance of the proposed approach. The

filtering includes two steps: filtering all traffics related to

the TCP protocol; then extracting the TCP control packet

SYN, ACK, FIN and RST. Algorithm 1 shows the process

of reduction network traffic from network traces (.PCAP

files). In Line 2, an array of TCP_Control_Packets_list is

initialized. By iterating over the packets, new packets are

added to the array of (TCP_Control_Packets_List) from

Line 3 to 15 till the last packet in the file is reached. Line 4

examines for TCP packet header, and Line 5 selects

packets with no payload data. Line 6 gets the packet

header. From Line 7 to 10, the code reads the packet, which

is TCP, and extracts the packets having SYN, ACK, FIN

and RST flags.

In summary, the network traffic reduction algorithm 3.1

includes six rules to pick the desired packets:

• Rule 1 (R1) Packet contents SYN flag.

• Rule 2 (R2) Packet contents SYN–ACK flag.

• Rule 3 (R3) Packet contents ACK flag.

• Rule 4 (R4) Packet contents FIN–ACK flag.

• Rule 5 (R5) Packet contents Rest–ACK flag.

• Rule 6 (R6) Packet contents Rest flag.

Reduction Reduction

Feature Extraction

Features Reduction
(CART)

10 - Features

 Filtering TCP control
packets

Training set

Testing set

NN Training

Learned NN

Detection Bot Connection

Legitimate Connection

Fig. 2 Block diagram of the proposed system

Neural Comput & Applic (2018) 29:991–1004 995

123

Algorithm 3.1 Network Traffic Reduction.

1: Procedure reduction (packets)
2: ArrayList <Packet> TCP_Control_Packets_List ;
3: For i=1 to size(Packets)
4: IF Packets(i) has (TCP header) then
5: IF Packets (i) has (TCP. payloadSize==0) then
6: pktheader= packet.getHeader(Packets(i));
7: IF((pktheader.flags.syn=1OR pktheader.flags.ack=1 OR

pktheader.flags.rest=1 OR pktheader.flags.fin=1)
AND NOT (pktheader.flags.cwr=1 OR
pktheader.flags.ecn=1 OR pktheader.flags.push=1
OR pktheader.flags.urg=1))

8: TCP_Control_Packets_List.Add(packets(i));
9: ELSE
10: Discard the Packet;
11: End If
12: End IF
13: End IF
14: End For
15: Return TCP_Control_Packets_list;
16: End procedure

3.2 Feature extraction

In the features extraction phase, the features that are

important in detecting the Bot’s malicious behaviour are

extracted, and these features are collected in 29-tuple

attributes based on 30-s connections. These features are

extracted based on the definition of a connection as a group

of packets exchanged between two different hosts, which

are identified by the 4-tuple (source IP address, destination

IP address, source port and destination port). In our pro-

posed method, all features are extracted directly from the

control packet header, rather than previous approaches

using deep inspection of packet payload content, e.g.

[3, 44–46]. Therefore, performance is increased, and the

use of the system resources such as memory and compu-

tations in the processor is reduced. Table 1 shows the 29

features created in the proposed connections-based P2P Bot

detection approach. These features are generated from a

30-s connection and are composed of a feature vector to

represent the features of a 30-s connection.

3.3 Features reduction

Feature reduction is the technique of reducing the number

of attributes, with the purpose of eliminating those features

from the learning algorithm that have a small influence on

the classification problem [47]. Feature reduction is used to

decrease the ‘over-fitting’ problem [48] and is important to

overcome the imbalance dataset problem [49]. Therefore,

the quality of the feature reduction mechanism is one of the

most important factors that affect the accuracy of the

classification algorithm.

In this study, the aim of feature reduction is to choose a

suitable subset of features, which will improve neural

network performance and decrease the complexity of a

classification model without significantly decreasing

accuracy rates. In this study, a classification and regression

tree (CART) is employed as the feature reduction approach

used to eliminate worthless features, with the aim of

reducing the quantity of data needed to obtain better rates

of neural network learning and classification accuracy.

The decision tree produced by the CART algorithm

consists of two types of node: internal nodes with two

children and leaf nodes without children. Any internal node

is associated with a decision function to indicate which

node to visit next. To begin the construction of the tree, the

training samples that contain a set of features and their

class labels are required. The training set is recursively

divided into smaller subsets during the construction of the

tree. Based on the decision matrix from the distribution of

classes in the training set, each resulting node is assigned a

predicted class. The test at internal nodes is determined

based on a measure of impurity to select which feature and

which threshold values are selected. The best-known

measure of impurity for CART is entropy impurity which

is given by.

E tð Þ ¼ �
XC

j

p
j

t

� �
log2 p

j

t

� �
ð1Þ

996 Neural Comput & Applic (2018) 29:991–1004

123

where E (t) is the entropy impurity at node t, p j
t

� �
is the

relative frequency of class j at node t, and c is the number

of classes.

The best value of the split node (t) is chosen from a set

of all values splitting (X), so that the maximum drop in

impurity is a difference between impurity at the root node

and impurity at the children nodes:

DE X; tð Þ ¼ E tð Þ� PLE tLð Þ þ PRE tRð Þð Þ ð2Þ

where DE(X, t) is the drop of impurity, E(tL) and E(tR) are

the impurities of the left and right branch nodes, PL and PR

are the percentages of objects go to the left (tL) or right (tR)

child nodes. Table 2 provides a ranking of features’

importance selected by the CART algorithm. The features

F3, F13, F23, F21, F14, F29, F12, F1, F4 and F15 have the

best discrimination of the connections behaviour, whereas

the features F2, F7, F9, F11, F16, F18, F19, F20, F22, F24,

F25, F26, F28 have no discrimination between legitimate

and malicious connections.

ReliefF is generally utilized in the data pre-processing

phase as a feature selection approach. The key idea of the

ReliefF is to evaluate the quality of attributes according to

how well their values discriminate between the instances

that are near to each other [50]. The ReliefF algorithm

essentially consists of three important parts: firstly, esti-

mation of the nearest miss and nearest hit; secondly, esti-

mation of the weight of a feature; thirdly, return a ranked

list of features. The pseudo code of the ReliefF algorithm is

given in Algorithm 2 [51]. Table 2 shows the important

ranking of features estimated by the ReliefF algorithm.

Table 1 Selected features of

network traffic connections
Features Description

F1 Number of control packets per flow in a given time interval

F2 Number of control packets transmitted per flow in a given time interval

F3 Number of control packets received per flow in a given time interval

F4 Number of transmitting bytes per flow in a given time interval

F5 Number of received bytes per flow in a given time interval

F6 Number of transmitted SYN packets per flow in a given time interval

F7 Number of received SYN packets per flow in a given time interval

F8 Number of transmitted ACK packets per flow in a given time interval

F9 Number of received ACK packets per flow in a given time interval

F10 Number of transmitted duplicate ACK packets per flow in a given time interval

F11 Number of received duplicate ACK packets per flow in a given time interval

F12 Average length of transmitted control packets per flow in a given time interval

F13 Average length of received control packets per flow in a given time interval

F14 Average length of control packets per flow in a given time interval

F15 Number of transmitted failed connection per flow in a given time interval

F16 Number of received failed connection per flow in a given time interval

F17 Number of transmitted ACK packets have a sequence one per flow in a given time

interval

F18 Number of received ACK packets have a sequence one per flow in a given time

interval

F19 Number of transmitted SYN–ACK packets per flow in a given time interval

F20 Number of received SYN–ACK packets per flow in a given time interval

F21 Total number of bytes per flow in a given time interval

F22 Ratio of incoming control packets per flow in a given time interval

F23 Ratio of average length of outgoing packets over the average length of control

packets per flow in a given time interval

F24 F6–F20

F25 Number of transmitted FIN–ACK packets per flow in a given time interval

F26 Number of received FIN–ACK packets per flow in a given time interval

F27 Number of transmitted RST–ACK packets per flow in a given time interval

F28 Number of received RST–ACK packets per flow in a given time interval

F29 Average time between an attempt to create connection per flow in a given time

interval

Neural Comput & Applic (2018) 29:991–1004 997

123

Algorithm 2 Pseudo code of ReliefF
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

Input: the dataset contains an instance with class labels.
Output: W (f) features ranking.
Number of features = n;
Set all weight W (f)=0;
Number of iterations =m;
For i = 1 to m do

Randomly select an instance Ri;
Find k nearest hit Hi;

Foreach class c <> class (Ri) do
From class c find k nearest misses Mj(c);
End For

For f =1 to n

;
End For

End For
Return W(f);

The principal component analysis (PCA) is a feature

selection and, to be precise, is also a feature reduction

approach. PCA reduces the initial number of features to a

smaller number of uncorrelated features, which are calcu-

lated as the linear combination of the original ones [52].

For instance, each principal component in PCA is the linear

combination of the variables that gives a maximized vari-

ance [53]. The mathematics behind PCA is briefly descri-

bed here.

Given an M 9 N matrix, X, where M is the number of

attributes and N is the number of samples. The mean m of

the training samples (corresponding to a column vector N)

is given:

m ¼ 1

M

XM

i¼1

xi ð3Þ

Centralize the matrix X by subtracting m from each xi.

yi ¼ xi� m ð4Þ

Further, the covariance matrix is estimated by

cov ¼ 1

M

XM

i¼1

yi � yiT ð5Þ

Calculate the eigenvectors and eigenvalues of the

covariance matrix, and then select top k eigenvectors

that correspond to the top k eigenvalues. The top

k principal components are picked that retains 95 % (in

the WEKA machine learning [54]) of the data’s overall

variance.

PCA and ReliefF algorithms have also been used for the

reduction of the feature set from the same set of features,

and a comparison is made of the performances of these

algorithms. The higher ten important features selected by

each algorithm are summarized in Table 3.

3.4 Neural network

The neural network is currently a subject of wide interest.

It has robust capabilities for nonlinear system identification

and control due to an inherent ability to approximate an

arbitrary nonlinear problem [55–57]. The basic architecture

of neural network includes input layer, one or many hidden

layers and output layers. Moreover, every layer contains a

specific number of neurons. The result from any neuron is

used as input to another neuron in the next layer. The link

between neurons has an associated weight. A neural net-

work is trained by giving input and target sets repeatedly.

Each input is given, and the network computes an output.

The neural network outputs are used to determine the

accuracy of results and whether the network is wrong or

right. Whenever wrong, the network has improved the

weight using a back-propagation based on the difference

between the output and desired target of the neural net-

work. After each iteration, the network reduces the error

between output and target.

For the purposes of the present study, the neural network

is trained with a resilient back-propagation learning algo-

rithm, where the use of this algorithm is to minimize the

damaging effects of the volumes of fractional derivatives.

The sign of the derivative is only used to locate the trend of

the weight update, whereas the volume of the derivative

has no negative role overweight update. The size of the

weight change is solely determined by the following for-

mula [29]:

Dw tð Þ
ij ¼

�Dij tð Þ; if
oE tð Þ
owij

[0

þDij tð Þ; if
oE tð Þ
owij

\ 0

0; else

8
>>>><

>>>>:

ð6Þ

998 Neural Comput & Applic (2018) 29:991–1004

123

where Dw tð Þ
ij is the change in weight between input layer

and hidden layer by the current iteration (t) and
oE tð Þ
owij

denotes the partial derivative with respect to each weight.

Once the weights are calculated, the new weight updated

value is determined. This is accomplished with the fol-

lowing formula:

D tð Þ
ij ¼

gþ � Dij tð Þ; if
oE t � 1ð Þ

owij

� oE tð Þ
owij

[0

g� � Dij tð Þ; if
oE t � 1ð Þ

owij

� oE tð Þ
owij

\ 0

Dij t � 1ð Þ; else

8
>>>><

>>>>:

ð7Þ

where D tð Þ
ij denotes the updated value for the current iter-

ation t, g? is the positive step value which is typically 1.2,

and g-is the negative step value which is typically 0.5.

The neural network classifier proposed in this study

contains ten input and two output parameters. To avoid

overfitting by using too many hidden layers, the method

proposed in a previous study [28] is used to determine the

number of neurons in hidden layers.

4 Experimental results and analysis

4.1 Dataset

Two datasets that contain malicious and non-malicious

traffic were obtained for use in evaluating our proposed

system. The first is the ISOT dataset [58] that contains

malicious traffic from the French chapter of the Honeynet

Project involving the Waledac and Strom Bots. It also

contains non-malicious traffic collected from the Traffic

Lab at Ericsson Research in Hungary and from the Lawr-

ence Berkeley National Laboratory (LBNL). The second is

the ISCX dataset [59] which includes normal activity and

non-malicious traffic. Table 4 shows the samples of net-

work traces used in the experiment and the evaluation of

the proposed model.

4.2 Experiment

To generate an experimental dataset with both P2P Botnets

traffic and normal legitimate traffic, the trace (.PCAP) files

were replayed using the TcpReplay tool on the same net-

work interface card; then the network traffic was captured

via Wireshark for evaluation. After that, a MATLAB script

was used to generate connections and to extract features

from PCAP file. Connections were then labelled in two

classes of Bot and normal connections. In this work, a

network connection is defined as 4-tuple, with source IP

address, source port number, destination IP address and

destination port number, which have transferred to at least

one packet in both directions.

4.3 Performance evaluation and results

In order to evaluate the rate of accurate detection, N-fold

cross-validation is used to estimate the error rate of classi-

fiers. In N-fold cross-validation, the dataset is partitioned

Table 2 Features importance ranking by CART and ReliefF

CART algorithm ReliefF algorithm

Feature Importance Feature Importance

F3 100 F27 0.08668

F13 69.77551 F25 0.031391

F23 58.82751 F15 0.026481

F21 14.94384 F6 0.026306

F14 2.900449 F22 0.02497

F29 0.794777 F24 0.024034

F12 0.384592 F29 0.023641

F1 0.120902 F23 0.016308

F4 0.082941 F26 0.013599

F15 0.069167 F19 0.011077

F6 0.012049 F14 0.008974

F5 0.01191 F13 0.004725

F27 0.01153 F12 0.004475

F10 0.000515 F28 0.004378

F8 3.81E-06 F18 0.004236

F17 6.12E-09 F3 0.003006

F2 0 F1 0.002928

F7 0 F9 0.002817

F9 0 F20 0.002746

F11 0 F4 0.002391

F16 0 F8 0.002162

F18 0 F2 0.002123

F19 0 F21 0.001838

F20 0 F17 0.001292

F22 0 F11 0.00126

F24 0 F10 0.001083

F25 0 F5 0.00054

F28 0 F16 0

F26 0 F7 0

Table 3 Feature reduction with the CART, PCA and ReliefF

algorithms

Feature selection

algorithm

Features

number

Feature list

CART 10 F3, F13, F23, F21, F14, F29,

F12, F1, F4, F15

PCA 10 Linear combination of features

ReliefF 10 F27, F25, F15, F6, F22, F24,

F29, F23, F26, F19

Neural Comput & Applic (2018) 29:991–1004 999

123

randomly into N samples and evaluations run for N itera-

tions. In each iteration,N-1 samples are selected for training

and the final sample is used to evaluate the accuracy of the

classifier. N = 10 was selected in conducting the experi-

ments. The performance of the proposed model is compared

with that of the PCA and ReliefF algorithm as others feature

selection approaches. To evaluate the performance of the

neural network recognition system, measures such as false

positive rate, true positive rate, accuracy, precision, recall

and the F-measure are calculated as follows:

– True positive (TP) the number of malicious behaviours

correctly detected as malicious activities.

– True negative (TN) the number of normal behaviours

correctly detected as normal activities.

– False positive (FP) the number of normal behaviours

detected as malicious activities.

– False negative (FN) the number of malicious beha-

viours detected as normal activities.

False positive rate (FPR) shows the percentage of

legitimate instances misclassified as Bot instances.

FPR ¼ FP

TNþ FPð Þ ð8Þ

Detection rate (DR), also called recall, indicates the

percentage of Bot instances that were predicted as Bot

instances.

DR ¼ TP

TPþ FNð Þ ð9Þ

Accuracy indicates the percentage of correct predictions

of all instances.

Accuracy ¼ TPþ TNð Þ
TPþ TNþ FPþ FNð Þ ð10Þ

Precision indicates the percentage of instances correctly

classified as a positive instance.

Precision ¼ TP

TPþ FPð Þ ð11Þ

F-measure: a measure of a test’s accuracy. It considers

both the precision and the recall of the test to compute the

score.

F-measure ¼ 2� Precision� Recallð Þ
Precisionþ Recallð Þ ð12Þ

The results obtained demonstrate that the proposed

approach gives the highest detection and accuracy rate with

the neural network at around 99 %. The features based on

the PCA algorithm gave lower accuracy and detection rates

than the other approaches at around 93 and 91 %, respec-

tively, as shown in Table 5.

Figure 3 gives the FPR, precision rate andF-measure of the

Bot detection system using the various feature selection

approaches with the same set of TCP features. The results

show that the highest average F-measure rate was 98.32 % for

the proposed methodology, while the lowest F-measure rate

was 87.93 % for the PCA algorithm. Moreover, the proposed

approach gave the lowest false positive rate of around 0.75 %.

To test the efficiency of our proposed approach in

detecting P2P Bots, the receiver operating characteristic

(ROC) curve is plotted to show the trade-off between TPR

and FPR. A perfect classifier would have an area under

curve (AUC) close to 1.0. The x-axis represents a FPR, and

the y-axis represents a TPR. As shown in Fig. 4, the area

under curve (AUC) is 0.994 for the TCP control packet

feature selection based on CART with the neural network.

It is found that the proposed approach performs well in

classifying P2P Bot connection traffic based on TCP con-

trol packets in a 30-s time interval.

The computational time of each feature selection algo-

rithms is estimated to measure the performance of algo-

rithms as expected in actual situation deployment. Also, we

measure the neural network computational time that

Table 4 Datasets selected

Traffic type Duration (s) Number of

packets

Number of

control packets

Number of

connections

Storm Bot traffic 3115 128,241 64,551 5423

Waledac Bot traffic 605 118,379 49,536 4535

Normal traffic (ISCX) 9511 419,659 165,218 11,088

Normal traffic (LBNL) 126,273 564,999 166,308 12,001

Table 5 Neural network results with CART subset, ReliefF subset and PCA

Classifier Proposed approach ReliefF PCA

Neural network Accuracy rate Detection rate Accuracy rate Detection rate Accuracy rate Detection rate

99.20 99.08 97.37 93.77 91.06 93.23

1000 Neural Comput & Applic (2018) 29:991–1004

123

required to train it per second based on the subset of fea-

tures that obtained from features selection algorithm. These

analyses were conducted on 3.00 GHz Intel i7 running

Windows 8.1 operating system.

Table 6 provides a comparison of all the features

selection algorithm. The decision tree (CART) achieves the

minimum time on selection subset of features than other

technique using the same dataset as shown in Table 6.

Table 7 shows the comparison of the build time (train-

ing time) of neural network models based on features

selection subset. The CART algorithm achieved the best

results for neural network training time compared with

ReliefF subset and PCA. However, the maximum time is

based on the subset of features that obtained from ReliefF

algorithm.

The main advantage of the suggested approach is

reduction network traffic technique that it reduces 60 % of

the input packets and retains high detection rates as well as

low false positive rate. The bottleneck of the neural net-

work model for Bot detection is the dimensionality and the

size of the dataset considered because the amount of the

packets that a detection system requires to scan is very

large. Therefore, this study proposes a reduction network

traffic approach to reduce the size of network traffic and

utilize decision tree to reduce the features dimensionality.

Additionally, the feature set used in the proposed system

represents connection behaviour that helps to detect Bots in

the early phase of their life cycle before they begin mali-

cious activities. Moreover, to bypass the encrypted network

traffic, connections-based detection mechanism was

designed which utilizes the information in the header of

TCP control packets. Thus, it cannot be confused by pay-

load encryption techniques. The performance of the pro-

posed approach was tested using real network traffic and is

compared with some of the existing P2P Bot detection

techniques.

Compared with other approaches, the proposed

approach reduces the amount of processing required to

increase performance. It is not easy to compare different

Botnet detection approaches because each uses different

datasets and Botnet samples in the experiments. Therefore,

the proposed approach is compared with another detection

approach based on accuracy, detection and false positive

rates. Table 8 shows the results of the comparison of our

results with those in other published work based on the

analysis of network traffic to detect P2P Botnets. The

table also demonstrates that the accuracy and false positive

rates using the proposed approach are better than those

gained by previous solutions. Moreover, due to its design,

our solution is able to detect single Bot infections and it is

0.75 1.08 5.84

98.32 97.38
87.93

98.69 95.38
89.23

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Proposed approach Relieff –NN PCA-NN

FPR rate Precision rate F-measure rate

Fig. 3 FPR, precision rate and F-measure comparison

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive rate

Tr
ue

 P
os

iti
ve

 ra
te

Proposed approach
PCA-NN
ReliefF-NN

Fig. 4 ROC Comparison

Table 6 Features selection algorithm computation time

Features selection

algorithm

CART ReliefF PCA

Time (s) 2.5 113 4.9

Table 7 Neural network training time with CART subset, ReliefF

subset and PCA

Neural network

training time

CART features

subset

ReliefF features

subset

PCA features

subset

Time (s) 23 29 25

Table 8 Comparison with other published approaches

Approaches FPR % Accuracy %

Fedynyshyn et al. [25] 7.8 92.9

Wen-Hwa et al. [24] 0 98

Proposed approach 0.75 99.20

Bold entries relate to the results achieved by the technique proposed

in this paper

Neural Comput & Applic (2018) 29:991–1004 1001

123

not necessary to associate activity among multiple hosts

during the detection phase, as in the case with TAMD [60],

BotMiner [39] and BotSniffer [38]. On the other hand,

several existing schemes [40, 61] support the detection of

individual Bot infections, but they use DPI. In contrast, our

solution needs only information about network connec-

tions; it does not examine payload content. Therefore, it is

immune to Botnets that use encryption methods. However,

the present approach can detect P2P Bots and classify the

host connections as legitimate or malicious. A limitation of

the proposed research is that it only considers TCP traffic

to detect Botnet traffic. Therefore, if Botnets use UDP

packets for communication, this may not be detected by the

proposed approach. In the future, thus proposed approach

will be improved to have the ability to discover the Botnets

that utilize the UDP protocol for communication.

There are four principal difficulties in the detection of

Botnet behaviour: firstly, the network traffic is continuous,

which indicates that it is persistent and features will change

over time. Furthermore, Botnets dynamically change via

Bot updates or altering their operation in various life cycle

stages after receiving instructions from a Botmaster. These

phenomena are termed concept drift, and this is currently a

serious issue for any detection methods [62]. Secondly,

there is always the risk of a new Botnet emerging on a

network and spread the malicious behaviour stealthily.

Moreover, the behaviour of an infected host might seem

like legitimate behaviour, and it is difficult to detect

malicious activities if the classifier was not trained for this

behaviour previously. Thirdly, evaluating the entire net-

work traffic in real-time is a computationally expensive

task due to the speed of network traffic. Finally, the

availability of up-to-date Botnet traffic dataset remains a

key challenge in detection of Botnets. The universality and

precision of the classifier depend on the training datasets

quality. The available Botnet dataset is formed in academic

experiment source due to the security and privacy issue,

and it is hard for the researcher to get a Botnet traces from

other such as corporate networks.

5 Conclusion and future work

A joint classification and regression tree (CART) algorithm

and neural network have been presented to detect P2P Bot

connections. The implementation of the CART–NN requires

two sequential steps. Firstly, CART is applied to choose the

suitable features important in detecting Bots. Secondly, the

result of CART features subset is employed to produce the

input layer of the neural network. The proposed method is

based on features extracted fromTCP control packet headers

during 30-s connections between two hosts; thus, it can be

used to detect P2P Bot without relying on packet payload, IP

address, port number and encrypted traffic. The performance

of the proposed detection technique is compared with fea-

tures selection approach like PCA, ReliefF algorithms.

Experimental results show that the proposed DT–NN

method achieved high accuracy rates with lower false posi-

tive rates. In the future, we plan to extend our approach to

real-time systems by adding an unsupervised learning

approach to select the most relevant features that would

further increase accuracy and performance.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Silva SRSC, Silva RMP, Pinto RCG, Salles RM (2013) Botnets: a

survey. Comput Netw 57(2):378–403

2. Rodrı́guez-Gómez RA, Maciá-Fernández G, Garcı́a-Teodoro P

(2013) Survey and taxonomy of botnet research through life-

cycle. ACM Comput Surv 45:1–33

3. Lu W, Rammidi G, Ghorbani AA (2011) Clustering botnet

communication traffic based on n-gram feature selection. Comput

Commun 34:502–514

4. Zeidanloo HR, Manaf AB, Vahdani P, Tabatabaei F, Zamani M

(2010) Botnet detection based on traffic monitoring. Presented at

the international conference on networking and information

technology (ICNIT), Manila

5. Han K-S, Im E (2012) A survey on P2P Botnet detection. In: Kim

KJ, Ahn SJ (eds) Proceedings of the international conference on

IT convergence and security 2011, vol 120. Springer, The

Netherlands, pp 589–593

6. Ludl C, McAllister S, Kirda E, Kruegel C (2007) On the effec-

tiveness of techniques to detect phishing sites. In: Hämmerli B,

Sommer R (eds) Detection of intrusions and malware, and vul-

nerability assessment, vol 4579. Springer, Berlin, pp 20–39

7. Felix J, Joseph C, Ghorbani A (2012) Group behavior metrics for

P2P Botnet detection. In: Chim T, Yuen T (eds) Information and

communications security, vol 7618. Springer, Berlin, pp 93–104

8. Davis CR, Fernandez JM, Neville S (2009) Optimising sybil

attacks against P2P-based botnets. Presented at the the 4th

international conference on malicious and unwanted software,

Montreal, QC

9. Chao L, Wei J, Xin Z (2009) Botnet: survey and case study.

Presented at the fourth international conference on innovative

computing, information and control (ICICIC), Kaohsiung

10. Holz T, Steiner M, Dahl F, Biersack E, Freiling FC (2008)

Measurements and mitigation of peer-to-peer-based botnets: a

case study on storm worm. LEET 8:1–9

11. Feily M, Shahrestani A, Ramadass S (2009) A survey of Botnet

and Botnet detection. In: Third international conference on

emerging security information, systems and technologies,

SECURWARE ‘09, pp 268–273

12. Zeidanloo HR, Shooshtari MJZ, Amoli PV, Safari M, Zamani M

(2010) A taxonomy of Botnet detection techniques. Presented at

the 3rd IEEE international conference on computer science and

information technology (ICCSIT), Chengdu

1002 Neural Comput & Applic (2018) 29:991–1004

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

13. Babak R, Roberto P, Andrea L, Kang L (2014) PeerRush: mining

for unwanted P2P traffic. J Inf Secur Appl 19:194–208

14. D. TAX (2001) One-class classification. Ph.D. thesis, TU Delft

University

15. Garg S, Singh AK, Sarje AK, Peddoju SK (2013) Behaviour

analysis of machine learning algorithms for detecting P2P bot-

nets. In: 15th International Conference on advanced computing

technologies (ICACT), pp 1–4

16. Jiang H, Shao X (2014) Detecting P2P botnets by discovering

flow dependency in C&C traffic. Peer-to-Peer Netw Appl

7(4):320–331

17. Li H, Hu G, Yang Y (2012) Research on P2P Botnet network

behaviors and modeling. In: Liu C, Wang L, Yang A (eds)

Information computing and applications, vol 307. Springer,

Berlin, pp 82–89

18. Seungwon S, Zhaoyan X, Guofei G (2012) EFFORT: efficient

and effective bot malware detection. Presented at the INFOCOM

Proceedings IEEE, Orlando, FL

19. Masud MM, Al-khateeb T, Khan L, Thuraisingham B, Hamlen

KW (2008) Flow-based identification of botnet traffic by mining

multiple log files. Presented at the first international conference

on distributed framework and applications, Penang

20. Witten IH, Frank E (2005) Data mining: practical machine

learning tools and techniques, 2nd edn. Morgan Kaufmann, San

Francisco

21. Junjie Z, Perdisci R, Wenke L, Sarfraz U, Xiapu L (2011)

Detecting stealthy P2P botnets using statistical traffic finger-

prints. Presented at the IEEE/IFIP 41st international conference

on dependable systems and networks (DSN), Hong Kong

22. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review.

ACM Comput Surv 31:264–323

23. Zhang T, Ramakrishnan R, Livny M (1997) BIRCH: a new data

clustering algorithm and its applications. Data Min Knowl Discov

1:141–182

24. Wen-Hwa L, Chia-Ching C (2010) Peer to Peer Botnet detection

using data mining scheme. Presented at the the international

conference on internet technology and applications, Wuhan

25. Fedynyshyn G, Chuah M, Tan G (2011) Detection and Classifi-

cation of Different Botnet C&C Channels. In: Calero JA, Yang L,

Mármol F, Garcı́a Villalba L, Li A, Wang Y (eds) Autonomic and

trusted computing, vol 6906. Springer, Berlin, pp 228–242

26. Zhang J, Perdisci R, Lee W, Luo X, Sarfraz U (2014) Building a

scalable system for stealthy P2P-botnet detection. IEEE Trans Inf

Forensics Secur 9:27–38

27. Zhao D, Traore I (2012) P2P botnet detection through malicious

fast flux network identification. In: Seventh international con-

ference on P2P, parallel, grid, cloud and internet computing

(3PGCIC), pp 170–175

28. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classifi-

cation and regression trees. Wadsworth Inc., Belmont, California

29. Riedmiller M, Braun H (1993) A direct adaptive method for

faster backpropagation learning: the RPROP algorithm. Presented

at the IEEE international conference on neural networks, San

Francisco

30. Han K-S, Lim K-H, Im E-G (2009) The traffic analysis of P2P-

based storm botnet using honeynet. J Korea Inst Inf Secur Cryptol

19:51–61

31. Sang-Kyun N, Joo-Hyung O, Jae-Seo L, Bong-Nam N, Hyun-

Cheol J (2009) Detecting P2P botnets using a multi-phased flow

model. Presented at the third international conference on digital

society, Cancun

32. Wang K, Huang C-Y, Tsai L-Y, Lin Y-D (2014) Behavior-based

botnet detection in parallel. Secur Commun Netw 7:1849–1859

33. Sinclair G, Nunnery C, Kang BB (2009) The waledac protocol:

the how and why. In: 4th International conference on malicious

and unwanted software (MALWARE), pp 69–77

34. Holz T, Steiner M, Dahl F, Biersack E, Freiling F (2008) Mea-

surements and mitigation of peer-to-peer-based botnets: a case

study on storm worm. Presented at the proceedings of the 1st

Usenix workshop on large-scale exploits and emergent threats,

San Francisco, California

35. Shin S, Gu G, Reddy N, Lee CP (2012) A large-scale empirical

study of conficker. IEEE Trans Inf Forensics Secur 7:676–690

36. Binsalleeh H, Ormerod T, Boukhtouta A, Sinha P, Youssef A,

Debbabi M et al (2010) On the analysis of the Zeus botnet

crimeware toolkit. In: Eighth annual international conference on

privacy security and trust (PST), pp 31–38

37. Marnerides AK, Mauthe AU (2016) Analysis and characterisation

of botnet scan traffic. In: 2016 International conference on

computing, networking and communications (ICNC), pp 1–7

38. Gu G, Zhang J, Lee W (2008) BotSniffer: detecting botnet

command and control channels in network traffic. Presented at

the 15th annual network and distributed system security sympo-

sium, San Diego

39. Gu G, Perdisci R, Zhang J, Lee W (2008) BotMiner: clustering

analysis of network traffic for protocol-and structure-independent

botnet detection. In: USENIX security symposium, pp 139–154

40. Goebel J, Holz T (2007) Rishi: identify bot contaminated hosts by

IRC nickname evaluation. In: Proceedings of USENIX HotBots

Cambridge, MA, pp 8–8

41. Yen T-F, Reiter MK (2008) Traffic aggregation for malware

detection. Presented at the proceedings of the 5th international

conference on detection of intrusions and malware, and vulner-

ability assessment, Paris

42. Jun L, Shunyi Z, Yanqing L, Junrong Y (2008) Real-time P2P

traffic identification. Presented at the IEEE global telecommu-

nications conference, New Orleans

43. Wang P, Wu L, Aslam B, Zou C (2015) Analysis of Peer-to-Peer

botnet attacks and defenses. In: Król D, Fay D, Gabryś B (eds)

Propagation phenomena in real world networks, vol 85. Springer,

Berlin, pp 183–214

44. Xiaomei D, Fei L, Xiaohua L, Xiaocong Y (2010) A novel Bot

detection algorithm based on API call correlation. Presented at

the seventh international conference on fuzzy systems and

knowledge discovery (FSKD), Yantai, Shandong

45. Dan L, Yichao L, Yue H, Zongwen L (2010) A P2P-botnet

detection model and algorithms based on network streams anal-

ysis. Presented at the international conference on future infor-

mation technology and management engineering (FITME),

Changzhou

46. Perdisci R, Guofei G, Wenke L (2006) Using an ensemble of one-

class SVM classifiers to harden payload-based anomaly detection

systems. Presented at the sixth international conference on data

mining (ICDM), Hong Kong

47. Nguyen H, Petrović S, Franke K (2010) A comparison of feature-

selection methods for intrusion detection. In: Kotenko I, Skormin

V (eds) Computer network security, vol 6258. Springer, Berlin,

pp 242–255

48. Livadas C, Walsh R, Lapsley D, Strayer WT (2006) Usilng

machine learning technliques to identify botnet traffic. Presented

at the proceedings 31st IEEE conference on local computer net-

works, Tampa, FL

49. Van der Putten P, Van Someren M (2004) A bias-variance

analysis of a real world learning problem: the CoIL challenge

2000. Mach Learn 57:177–195

50. Kira K, Rendell LA (1992) The feature selection problem: tra-

ditional methods and a new algorithm. Presented at the pro-

ceedings of the tenth national conference on artificial

intelligence, San Jose, California

51. Robnik-Šikonja M, Kononenko I (2003) Theoretical and empir-

ical analysis of ReliefF and RReliefF. Mach Learn 53:23–69

Neural Comput & Applic (2018) 29:991–1004 1003

123

52. Jolliffe I (2005) Principal component analysis. Wiley Online

Library

53. Tan P-N, Steinbach M, Kumar V (2006) Introduction to data

mining. Pearson, London, UK

54. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten

IH (2009) The WEKA data mining software: an update. SIGKDD

Explor Newsl 11:10–18

55. Nigrin A (1994) Book review: neural networks for pattern

recognition, vol 5. MIT Press, New York

56. Tsai C-F, Hsu Y-F, Lin C-Y, Lin W-Y (2009) Intrusion detection

by machine learning: a review. Expert Syst Appl

36:11994–12000

57. Razi MA, Athappilly K (2005) A comparative predictive analysis

of neural networks (NNs), nonlinear regression and classification

and regression tree (CART) models. Expert Syst Appl 29:65–74

58. Saad S, Traore I, Ghorbani A, Sayed B, Zhao D, Lu W, Felix J,

Hakimian P (2011) Detecting P2P botnets through network

behavior analysis and machine learning. Presented at the ninth

annual international conference on privacy, security and trust

(PST), Montreal, QC

59. Shiravi A, Shiravi H, Tavallaee M, Ghorbani AA (2012) Toward

developing a systematic approach to generate benchmark datasets

for intrusion detection. Comput Secur 31:357–374

60. Yen T-F, Reiter M (2008) Traffic aggregation for malware

detection. Presented at the 5th international conference on

detection of intrusions and malware, and vulnerability assessmen,

Paris

61. Gu G, Porras P, Yegneswaran V, Fong M, Lee W (2007)

BotHunter: detectingmalware infection through IDS-driven dialog

correlation. Presented at the proceedings of 16th USENIX security

symposium on USENIX security symposium, Boston, MA

62. Dries A, Rückert U (2009) Adaptive concept drift detection. Stat

Anal Data Min 2:311–327

1004 Neural Comput & Applic (2018) 29:991–1004

123

	A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks
	Abstract
	Introduction
	Relevant work
	Proposed approach
	Network traffic reduction
	Feature extraction
	Features reduction
	Neural network

	Experimental results and analysis
	Dataset
	Experiment
	Performance evaluation and results

	Conclusion and future work
	Open Access
	References

