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Abstract: (-)-α-Bisabolol (BIS) is a sesquiterpene alcohol derived mostly from Matricaria recutita L.,
which is a traditional herb and exhibits multiple biologic activities. BIS has been reported for treatment
of skin disorders, but the effect of BIS on anti-atopic dermatitis (AD) remains unclear. Therefore, we
investigated the effects of BIS on 2,4-dinitrochlorobenzene (DNCB)-induced AD in BALB/c mice and
the underlying mechanism in Bone Marrow-Derived Mast Cells (BMMCs). Topical BIS treatment
reduced AD-like symptoms and the release of interleukin (IL)-4 without immunoglobulin (Ig)-E
production in DNCB-induced BALB/c mice. Histopathological examination revealed that BIS reduced
epidermal thickness and inhibited mast cells in the AD-like lesions skin. Oral administration of BIS
effectively and dose-dependently suppressed mast-cell-mediated passive cutaneous anaphylaxis. In
IgE-mediated BMMCs, the levels of β-hexosaminidase (β-hex), histamine, and tumor necrosis factor
(TNF)-α were reduced by blocking the activation of nuclear factor-қB (NF-қB) and c-Jun N-terminal
kinase (JNK) without P38 mitogen activated protein (P38) and extracellular regulated protein kinases
(Erk1/2). Taken together, our experimental results indicated BIS suppresses AD by inhibiting the
activation of JNK and NF-κB in mast cells. BIS may be a promising therapeutic agent for atopic
dermatitis and other mast-cell-related diseases.

Keywords: atopic dermatitis; mast cells; JNK; NF-κB; (-)-α-Bisabolol

1. Introduction

Atopic dermatitis (AD) is a recurrent allergic skin disease caused by some environmen-
tal factors and genetic background [1]. AD patients suffer from skin barrier dysfunctions,
including severe edema, pruritus, lichenification, dryness, erythema, and excoriation [2],
which imposes a significantly reduced quality of life [3,4] along with psychological distress
as well as placing substantial burdens on patients and their families. At present, the first-
line treatment option for patients with AD is still steroid anti-inflammatory drugs, such as
corticosteroids (e.g., prednisolone, dexamethasone, and fludrocortisone). Although these
corticosteroids alleviate AD symptoms, they are associated with serious adverse effects, for
instance, red burning skin, thinning skin, atrophy, and growth retardation [5,6]. Therefore,
increasing attention has been focused on identifying and developing safe and effective
drugs for the treatment of AD, especially from plant extracts.

The pathogenesis of AD remains incompletely elucidated. Studies have shown that
infiltration of immune cells (e.g., dendritic cell subtypes, T cells, and mast cells) is increased
in AD lesions [7,8]. These immune cells are involved in AD as follows: in the context of
altered epidermal barrier, antigens are taken up by epidermal Langerhans cells and then
Langerhans cells present antigens to T-helper (Th) 0 cells, resulting cytokine secretion.
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With the release of interleukin (IL) 4, naive T-cells develop into Th2 cells, producing IL-
4, IL-5, and tumor necrosis factor (TNF)-α. These Th2 cytokines further activate B cells
so as to promote immunoglobulin (Ig)E production. Finally, mast cells are activated by
binding to IgE [9–11]. Notably, mast cells are effectors of allergic diseases, which are critical
for the development of AD [12,13]. Mast cells are activated by multiple stimuli, such as
antigens, C3a, C5a, substance P, and LPS [14], and then release various mediators, including
preformed granule-associated chemical mediators, lipid mediators, and de novo synthesized
cytokines. Through these mediators, the inflammatory response in skin is continuously
enhanced and persists [15,16]. Therefore, decreasing the activity of mast cells may improve
skin symptoms of AD.

Chamomile (Matricaria recutita L.) is known as Uygur medicine chamomile, which has
been included in Drug Quality Standard of Ministry of Health of the People’s Republic
of China (Uygur Medicine). The whole plant is used as medicine, and it exhibits anti-
inflammatory, analgesic, and antibacterial properties [17]. It is widely used for skin pruritus
and edema in clinics. In addition, chamomile, when associated to a vehicle with emollient
function, improved atopic dermatitis (AD)-like lesions in a murine model [18].

(-)-α-Bisabolol (BIS), a sesquiterpene alcohol mostly present in essential oils of chamomile [19],
has a variety of biological activities, including antioxidant, gastroprotective, anti-infection, and anti-
cancer properties [20–24], among which it has been found to have high anti-inflammatory potential
in various disease models. For example, BIS suppresses murine osteoarthritis and advanced
glycation end product (AGE)-induced inflammatory reaction in chondrocytes [25]. BIS also can
alleviate myocardial infarction by attenuating inflammation via inhibiting NLPR3 inflammasome
activation [19]. In addition, a study has shown that atopiclair (Zarzenda), which contains BIS, is an
anti-inflammatory agent for the treatment of allergic diseases of the skin [26]. However, the role of
BIS in mast cells in AD-like skin lesions remains unclear. Therefore, we investigated the role of
BIS in AD both in vitro and in vivo and sought to understand the mechanisms through which
BIS regulates allergic inflammation. Our findings indicate that BIS improved AD symptoms by
inhibiting mast-cell activation via mitogen-activated protein kinase (MAPK) and nuclear factor-қB
(NF-κB) pathways.

2. Results
2.1. BIS Ameliorated AD-like Skin Symptoms

First, we measured the effect of BIS on AD by DNCB-induced AD mice with the
experimental schedule in Figure 1A. After stimulation with DNCB, the dorsal skin exhibited
erythema/hemorrhage, edema, and scaling/dryness and was constantly aggravated during
the experiment, whereas the dorsal skin, which was treated with BIS, was ameliorated
(Figure 1B). Then, we used the dermatitis score to analyze the severity of AD-like skin
lesions. As shown as Figure 1C, topical administration of BIS significantly reduced the
dermatitis score compared with DNCB-sensitized BALB/c mice. Repeated stimulation
with DNCB caused potent inflammatory changes, such as redness, hemorrhaging, and
thickening of the dermis and epidermis in the AD mice. Here, the dorsal skin sections
were stained and observed under an optical microscope (Figure 2A). Administration of
DNCB significantly increased the skin thickness (Figure 2B) compared with normal mice.
However, the thickness of both the epidermis (Figure 2C) and dermis (Figure 2D) were
improved after treatment with BIS; in particular, BIS significantly reduced the thickness of
the epidermis in a concentration-dependent manner.
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 Figure 1. Chemical structure of BIS and effect of BIS on DNCB-induced AD-like skin symptoms.

(A) Chemical structure of BIS and schematic diagram of the experimental schedule. (B) Clinical
characteristics of each group on week 3–6. (C) The dermatitis scores of the AD-like skin lesions
according to four major classes of symptoms. Data represent the mean ± SEM, n = 10 mice/group.
# p < 0.05 vs. Control; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Model.
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The spleen index is an important indicator for reflecting the abnormal immune acti-

vation in the AD mouse model [27]. As shown as Figure 3A, BIS dose dependently re-
duced the spleen index, which was calculated by weight of spleen/weight of body × 100%. 
Then, we found that BIS attenuated the skin IL-4 release (Figure 3B), which is a Th2 cyto-
kine, and increased in patients with dermatitis [28]. Additionally, we examined the effect 
of BIS on the release of IgE. Interestingly, the results showed that BIS did not reduce IgE 
production neither in the dorsal skin (Figure 3C) nor serum (Figure 3D). 

Figure 2. Effects of BIS on DNCB-induced skin thickness. (A) The representative images of dorsal
skin stained with H&E. (B) Measurement of skin thickness by Vernier caliper. Epidermal thickness
(C) and dermal thickness (D) were determined by H&E staining. Magnification: ×100. Scale bar,
200 µm. Data represent the mean ± SEM, n ≥ 5 mice/group. # p < 0.05 vs. Control; * p < 0.05,
** p < 0.01, *** p < 0.001 vs. Model.

2.2. BIS Relieved Abnormal Immune Response

The spleen index is an important indicator for reflecting the abnormal immune activa-
tion in the AD mouse model [27]. As shown as Figure 3A, BIS dose dependently reduced
the spleen index, which was calculated by weight of spleen/weight of body × 100%. Then,
we found that BIS attenuated the skin IL-4 release (Figure 3B), which is a Th2 cytokine, and
increased in patients with dermatitis [28]. Additionally, we examined the effect of BIS on
the release of IgE. Interestingly, the results showed that BIS did not reduce IgE production
neither in the dorsal skin (Figure 3C) nor serum (Figure 3D).

2.3. BIS Inhibited Mast-Cell Infiltration and Degranulation

Given that BIS modulated the AD-like skin symptoms without inhibiting IgE produc-
tion, we speculate that BIS may alleviate AD symptoms by inhibiting mast-cell activation.
Therefore, we used toluidine blue staining in the dorsal skin to observe mast-cell features.
Compared with the DNCB-sensitized group, BIS reduced the infiltration of mast cells and
the number of mast cells in the dorsal skin of BALB/c mice (Figure 4A,B). Furthermore,
topical administration of BIS suppressed mast-cell activation in a concentration-dependent
manner (Figure 4A,C).
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Figure 3. BIS relieved abnormal immune response in AD-like mice. (A) Measurement of spleen index
by calculating spleen weight/body weight. Skin levels of IL-4 (B), skin levels of IgE (C) and serum
levels of IgE (D) were measured by ELISA. Data represent the mean ± SEM, n ≥ 8 mice/group.
# p < 0.05 vs. Control; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Model.

2.4. BIS Suppresses IgE-Induced Anaphylactic Responses in ICR Mice

To further confirm the effect of BIS in improving AD via mast cells, we used Passive
Cutaneous Anaphylaxis (PCA) in the ear to evaluate the action of BIS in anaphylactic
responses. Mice were sensitized by intradermal injection of anti-DNP-IgE into the ear and
stimulated by intravenous injection of DNP-BSA, during which BIS or ketotifen was orally
administered. Mice challenged with DNP-BSA showed clear anaphylactic responses. BIS
significantly reduced the exudation of Evans blue on visual inspection (Figure 5A) and the
Evans blue dye extracted from the reaction site of the ear (Figure 5C). In addition, toluidine
blue staining of the ear was performed to observe mast-cell features. After stimulation
with DNP-BSA, mast cells (red arrow) migrated to the section of the ear, and many mast
cells were activated (Figure 5B), whereas BIS significantly reduced the number of mast cells
(Figure 5D) and particularly inhibited mast-cell activation (Figure 5E).
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Figure 4. Effect of BIS on mast-cell infiltration and degranulation. DNCB-induced dorsal skin
was detected by toluidine blue staining. (A) Representative images of skin sections. Red arrow
indicated individual mast cell. The number of total mast cells (B) and activated mast cells (C) were
counted of skin sections. Magnification: ×200. Scale bar = 50 µm. Data represent the mean ± SEM,
n = 5 mice/group. # p < 0.05 vs. Control; ** p < 0.01, *** p < 0.001 vs. Model.

2.5. Effects of BIS in IgE/Ag-Stimulated BMMCs

Before investigating the effect of BIS on mast-cell activation, we used an XTT assay
to examine the cytotoxicity of BIS on BMMCs. After pre-treatment with BIS at various
concentrations (25, 50, 100, and 200 µM) for 24 h, BIS did not exhibit any cytotoxicity, even
at 200 µM in the XTT test of BMMCs (Figure 6A). Therefore, we used BIS at concentra-
tions up to 200 µM for all in vitro experiments. To determine the effect of BIS on BMMC
degranulation, we first incubated sensitized BMMCs with various concentrations (25, 50,
100, and 200 µM) of BIS for 30 min, and then the cells were stimulated with DNP-HSA
for another 30 min. After stimulation with DNP-HSA, BMMCs were activated to release
β-hex and histamine. Our results show that BIS treatment significantly inhibited β-hex
(Figure 6B) and histamine (Figure 6C) release in a dose-dependent manner. MC-derived
TNF was crucial for contact hypersensitivity-induced skin inflammation [29]. Therefore,
we measured the effect of BIS on TNF-α release. BIS were pre-treated with IgE-sensitized
BMMCs for 30 min, and then stimulated with DNP-HSA for 24 h. We found that BIS
significantly reduced TNF-α secretion at 200 µM (Figure 6D). Collectively, these results
supported that BIS plays a role in inhibiting mast-cell activation.
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Figure 5. Effect of BIS on IgE-mediated PCA reaction. Mice were sensitized by intradermal in-
jection of anti-mouse-IgE in the ear and stimulated by intravenous injection of DNP-BSA, during
which BIS or ketotifen was orally administered. (A) Representative photos of ears showing dye
extravasation. (B) The number of mast cells in the ear was detected by toluidine blue staining. Red
arrows indicate individual mast cells. (C) Evans blue was extracted with 300 µL of formamide and
measured absorbance at 630 nm. The number of total mast cells (D) and activated mast cells (E) were
counted in ear sections. Magnification: ×200. Scale bar = 50 µm. Data represent the mean ± SEM,
n ≥ 7 mice/group. # p < 0.05 vs. Control; * p < 0.05, *** p < 0.001 vs. Model.
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Here, we tested the effect of BIS on p-JNK, p-Erk1/2, and p-P38 by western blotting. As 
shown in Figure 7A, p-JNK, p-Erk1/2 and, p-P38 all increased after DNP-HSA stimulation 
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Figure 6. Effect of BIS on IgE/Ag-stimulated BMMCs. (A) BMMCs were incubated with different
concentrations of BIS and cell viability was determined by XTT assay. IgE-sensitized BMMCs pre-
treated with or without BIS for 30 min. Then, the cells were treated with DNP-HSA for stimulation.
The release of β-hex (B) and histamine (C) were measured with DNP-HSA for 30 min. (D) Levels of
TNF-α were measured with DNP-HSA for 24 h by ELISA. Data represent the mean ± SEM, n = 3.
# p < 0.05 vs. Control; ** p < 0.01, *** p < 0.001 vs. Model.

2.6. Effect of BIS on the MAPK and NF-κB Signaling Pathway in IgE/Ag-Stimulated BMMCs

MAPK signaling is an important pathway in inflammation response in mast cells.
Here, we tested the effect of BIS on p-JNK, p-Erk1/2, and p-P38 by western blotting. As
shown in Figure 7A, p-JNK, p-Erk1/2 and, p-P38 all increased after DNP-HSA stimulation
for 15 min in BMMCs. BIS dose-dependently attenuated p-JNK (Figure 7A,B); however,
p-Erk1/2 (Figure 7A,C) and p-P38 (Figure 7A,D) did not change after treatment with BIS.
Most studies on BIS have focused on the NF-κB pathway as a common target in explaining
its biological activities [25]. Therefore, we measured the effect of BIS on p-IκBα and total
IκBα. IκBαwas phosphorylated and decomposed after DNP-HSA stimulation for 15 min.
BIS had a suppressive effect on both IκBα phosphorylation (Figure 7A,E) and degradation
(Figure 7A,E).
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Figure 7. Effect of BIS on MAPK and NF-κB signaling pathways in IgE/Ag-stimulated BMMCs. Cells
were sensitized with IgE overnight and incubated with or without BIS for 30 min. Then, cells were
stimulated with DNP-HSA for 15 min. Cell protein expression was detected and analyzed by western
blotting. (A) The expression of phosphorylation of JNK, Erk1/2, P38, and IκBα and JNK, Erk1/2,
P38, and IκBα were determined with western blotting. Densitometric analysis of p-JNK/JNK (B),
p-Erk1/2/Erk1/2 (C), p-P38/P38 (D), and p-IκBα/IκBα (E). Data represent the mean ± SEM, n = 3.
# p < 0.05 vs. Control; ** p < 0.01, *** p < 0.001 vs. Model.

3. Discussion

BIS has generated considerable economic interest since it is used as an active ingredient
in commercial products, and it has been shown to have multiple biologic activities [18].
In this study, we firstly report that BIS inhibits DNCB-induced AD-like symptom via
inhibiting mast-cell degranulation.

AD is one of the most common chronic inflammatory skin diseases, which is stimulated
by environmental factors such as mites and exposure to allergens [30,31]. Repeated stimu-
lation by environmental factors leads to severe allergic inflammatory responses, and then
leads to erythema, thickened and broken skin, and abnormal immune responses [32,33].
Here, we found that BIS inhibited DNCB-induced skin inflammation, including significant
decrease in dermatitis score (Figure 1C), amelioration of the thickness of both the epidermis
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(Figure 2C) and dermis (Figure 2D), and inhibition of abnormal immune responses such as
spleen index (Figure 3A).

IL-4 is an important cytokine in AD [28]. It can drive T-cell development into Th2 cells
and induce the release of type-2-related cytokines and chemokines [34]. Subsequently, B
cells produce IgE with the stimulation of type-2-related cytokines. Then, IgE binds to high-
affinity receptors on the surface of mast cells and activates mast cells, which also release
IL-4 and constitute an immediate hypersensitivity reaction in AD. In this study, we found
BIS significantly inhibited the skin IL-4 release (Figure 3B) without affecting the release of
IgE in either the dorsal skin (Figure 3C) or serum (Figure 3D). Thus, we felt BIS inhibited
the production of IL-4 which was released by mast cells but not T cells, and the anti-AD
activity of BIS is related to the inhibition of mast-cell activation. As expected, we found
that BIS reduced the infiltration and activation of mast cells in the dorsal skin in DNCB-
induced BALB/c mice (Figure 4). In addition, we found that BIS suppressed anaphylactic
responses in ICR mice caused by mast-cell activation (Figure 5A,C). We confirmed that BIS
also inhibited the infiltration and activation of mast cells in the PCA assay (Figure 5B,D,E).
Furthermore, we measured the effect of BIS on mast cells in vitro. We found that BIS
significantly reduced the release of β-hex, histamine, and TNF-α without cytotoxicity
(Figure 6). Thus, we believe that BIS improves dermatitis by stabilizing mast cells.

MAPK signaling is vital for the FcεRI-mediated production of cytokines in mast
cells [35–37]. In particular, the study showed that the JNK pathway is critical for the release
of cytokines, such as IL-4, IL-6, and TNF-α [38]. NF-κB is another distal signaling pathway
during mast-cell activation and is a pivotal transcription factor associated with AD [39].
Previous studies have shown that BIS inhibited MAPK and NF-κB pathways to improve
outcomes in variety of diseases such as osteoarthritis [25] and lipopolysaccharide-induced
pulmonary inflammation [40]. For these reasons, we investigated the involvement of BIS
in IgE/Ag-induced NF-κB and MAPK pathways. We found that BIS dose-dependently
attenuated the phosphorylation of IκBα and further suppressed the degradation of IκBα
(Figure 7A,E). However, BIS did not alter the phosphorylation of p38, MAPK, and Erk1/2
(Figure 7A,C,D) but significantly suppressed activation of JNK (Figure 7A,B).

Studies reported that BIS improved multiple diseases via MAPK and NF-κB path-
ways [41,42]. BIS can improve nephrotoxicity by mitigating inflammation and oxidative
stress through the inhibition of NF-κB activation [43]. BIS-loaded lipid-core nanocapsules
suppressed lipopolysaccharide-induced acute respiratory distress syndrome by inhibi-
tion of the MAPK pathway [40]. Furthermore, BIS alleviated isoproterenol (ISO)-induced
myocardial infarction (MI) through NF-κB/MAPK signaling pathways [19]. Therefore,
MAPK and NF-κB may be the target of BIS in different diseases. Here, we focus on the
effect of BIS on JNK and NF-κB signaling. The study shows that the molecular docking
indicated that BIS may have a high affinity for JNK at −6.3 kcal/mol. BIS functions by
occupying the inhibitory binding pockets of JNK by interacting with GLU-109 of JNK, and
it was completely encapsulated in the inhibitory region of corresponding proteins [25]. In
addition, this study also showed that BIS may have a high affinity for p65 at −3.3 kcal/mol
which is moderately higher. Thus, we speculate that BIS may directly bind to JNK while
affecting the activation of NF-κB through other targets.

Proliferator-activated receptor gamma (PPAR-γ) plays an anti-inflammatory role in
allergies and is expressed in mast cells [44]. PPAR-γ exerts an anti-inflammatory effect by
inhibiting NF-κB activation. For example, PPAR-γ agonists improved inflammatory bowel
disease symptoms by inhibiting NF-κB activation [45]. PPAR-γ agonists reduced the expres-
sion of TNF-α and IL-4 through down-regulation of NF-κB activation in mast-cell-related
allergic diseases [46,47]. Therefore, PPAR-γ/NF-κB signaling may be important in mast-cell
activation. BIS mitigated colonic inflammation by stimulating PPAR-γ transcription factor
expression and inhibiting NF-κB signaling [25]. In addition, this study reported that BIS
may have a strong binding affinity (−7.4 kcal/mol) for the PPAR-γ binding site. Thus, we
think BIS may affect the NF-κB signaling in mast cells by promoting PPAR-γ activation.
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Collectively, we propose a model to explain the anti-AD effects of BIS (Figure 8). In
summary, we first demonstrated the anti-AD effect of BIS by inhibiting JNK and NF-κB
pathways in mast cells. Our results suggest BIS might serve as a promising therapeutic
agent particularly for chronic AD patients, since it has low toxicity as classified by the
United States Food and Drug Administration. Nevertheless, to further confirm the effec-
tiveness of BIS in AD, studies with larger sample sizes and research on human samples
should be carried out.
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4. Materials and Methods
4.1. Materials

BIS, Mouse anti-dinitrophenyl (DNP) IgE, 2,4-dinitrochlorobenzene (DNCB), glycine,
cell proliferation Kit II, 4-Nitrophenyl N-acetyl-β-D-glucosaminide (p-NAG), bovine serum
albumin (BSA), ketotifen, formamide, Evans Blue, and o-phthaldialdehyde were pur-
chased from Sigma-Aldrich (ST. Louis, MO, USA). The 2,4-dinitrophenyl-human serum
albumin (DNP-HSA) and 2,4-dinitrophenyl-bovine serum albumin (DNP-BSA) were from
Biosearch technology. The antibodies specific for p-JNK (Thr183/Tyr185), JNK, p-Erk1/2
(Thr202/Tyr204), Erk1/2, p-P38 (Thr180/Tyr182), P38, p-IκBα (Ser32), IκBα, and normal
rabbit IgG were from Cell Signaling Technology (Danvers, MA, USA). The antibodies
specific for GAPDH were from Proteintech (Chicago, IL, USA). RIPA and BCA protein
assay kits were from Beyotime (Beijing, China). Fetal Bovine Serum (FBS), mouse TNF
alpha ELISA kit, mouse IL-4 ELISA kit, and mouse IgE ELISA kit were from Thermo Fisher.
Recombinant mouse IL-3 and recombinant mouse SCF/c-kit ligand were from RD systems
China. ECL Immobilon Western Chemiluminescent HRP Substrate was from Millipore
(Billerica, MA, USA). Compound dexamethasone acetate cream was purchased from CR
SAN JIU (Shenzhen, China).

4.2. Animals

Mice were purchased from the B&K Laboratory Animal Corp. Ltd. (Shanghai, China)
and housed in a specific pathogen-free (SPF) animal room. The animals were housed at
the Animal Laboratory Building of Shanghai University of Traditional Chinese Medicine
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under a constant temperature (20–26 ◦C) and 40%–60% humidity with a 12 h light–dark
cycle. All animal experiments were approved by the experimental Animal Ethics Com-
mittee of Shanghai University of Traditional Chinese Medicine (PZSHUTCM210528004,
PZSHUTCM201016009).

4.3. DNCB-Induced Atopic Dermatitis in BALB/c Mice

Female BALB/c mice were randomly divided into five groups as follows: control
group was sensitized and challenged with acetone:olive oil in a 3:1 ratio; model group
was sensitized and challenged with DNCB in a 3:1 ratio of acetone:olive oil; BIS groups
was challenged with DNCB and treated topically with 200 mg/kg or 400 mg/kg BIS; and
dexamethasone (DEX) group also was challenged with DNCB and treated topically with
dexamethasone cream which contains dexamethasone 1.125 mg/kg to cover the dorsal
skin. The dorsal skin was shaved with an electric clipper and hair removal creams. To
sensitize the skin, 200 µL of 1% DNCB in acetone:olive oil (3:1) was applied to the shaved
area twice a week on the first week of the experiment. Then, for the challenge process,
200 µL of 0.4% DNCB was applied to the dorsal skin twice a week on experimental weeks
2–6. BIS dissolved in 3% Tween 80 presents as liquid. Using a micropipette to smear 200 µL
BIS to the 5 cm2 dorsal skin of mice, BIS and DEX treatments were applied to the dorsal
skin of the mice five times a week on experimental weeks 3–6. Mice were sacrificed on
the 42nd day. Spleens were weighted to calculate the spleen index (spleen weight/body
weight). Blood serum and the dorsal skin were collected. The skin thickness of mice was
measured with a Vernier caliper. Then, skin tissues were fixed with 4% paraformaldehyde
and embedded in paraffin. Sections were stained with hematoxylin and eosin (H&E) as
well as toluidine blue. The experimental design is shown in Figure 1A.

4.4. Assessment of the Severity of AD-like Skin Lesions

The degree of atopic dermatitis in AD-like lesions was detected on experimental weeks
3–6. Four major classes of symptoms in AD were identified as erythema or hemorrhage,
edema, excoriation or erosion, and scarring or dryness [48]. The score was denoted as 0, 1,
2, or 3 according to the severity of each symptom (none, mild, moderate, or severe). The
individual score was the sum of scores from each symptom.

4.5. Passive Cutaneous Anaphylaxis

PCA was performed as described in a previous study [49]. In brief, male ICR mice
(18–20 g) received an oral administration of 200 mg/kg, 400 mg/kg BIS, or 10 mg/kg
ketotifen on the experimental days 1–3. One (1) µg of anti-mouse-IgE was intradermally
injected into the ear of mice on the experimental day 2. After 24 h, the mice were challenged
for 30 min by intravenous injection of 100 µg DNP-BSA in 300 µL saline. Then, ear tissues
were fixed in 4% paraformaldehyde and embedded in paraffin. Tissue sections were stained
with toluidine blue. Alternatively, the mice were challenged for 30 min by intravenous
injection of 100 µg DNP-BSA in 300 µL saline containing 0.5% Evans blue. Evans blue
was extracted with 300 µL of formamide at room temperature for 24 h and measured by
absorbance at 630 nm.

4.6. Bone-Marrow-Derived Mast Cells (BMMCs) Culture

Bone-marrow cells were isolated from BALB/c mice. The bone-marrow cells were
rinsed with chilled PBS and centrifuged at 200× g for 5 min. Then, cells were resuspended
in RPMI 1640 medium supplemented with 10% FBS, 100 U/mL penicillin/streptomycin,
1 mM sodium pyruvate, 0.1 mM nonessential amino acids, 50 µM β-mercaptoethanol, and
10 ng/mL recombinant mouse IL-3 and SCF. Cells were fed every 7 days. After 4 weeks,
cell purity was determined by measuring CD117 and FcεRIα expression through flow
cytometry: 95% of cells were positive for both CD117 and FcεRIα.
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4.7. Cell Viability Analysis

Cell viability was measured with a cell proliferation Kit II according to the manufac-
turer’s protocol. Cells were seeded in 96-well plates at a density of 5 × 105 cells per well
and then incubated with different concentrations of BIS (25, 50, 100, and 200 µM) for 24 h.
Then, 50 µL of (2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)−5-[(phenylamino)carbonyl]-2H-
tetrazolium hydroxide) XTT solution was added to each well and incubated for 4 h at 37 ◦C
with 5% CO2. The absorbance was measured at 492 nm and 690 nm by a microplate reader.

4.8. β-Hexosaminidase Release Assay

BMMCs at concentration of 1 × 106 cells/mL were sensitized overnight with 0.5 µg/mL
of IgE. The BMMCs were resuspended in HEPES buffer containing 0.4% BSA. Then, cells
were treated with different concentrations of BIS (25, 50, 100, and 200 µM) and then
incubated for 30 min at 37 ◦C. Finally, the cells were stimulated with 50 ng/mL of DNP-
HSA for 30 min. Then, mast-cell degranulation was assessed by measuring β-hex release.
First, 50 µL of supernatant and pellet were removed to another plate. Then, 50 µL of
4-nitrophenyl N-acetyl-β-D-glucosaminide (p-NAG) was added for 90 min at 37 ◦C. Fi-
nally, glycine (pH 10.7) was added to stop the reaction. The absorbance was measured at
405 and 570 nm. The calculation formula was: % release of β-hex = 100 × supernatant
absorbance/(0.5 × supernatant absorbance + pellet absorbance)

4.9. Histamine Assay

BMMCs at concentration of 2 × 106 cells/mL were sensitized overnight with 0.5 µg/mL
of anti-DNP-IgE. Then, the cells were resuspended in HEPES buffer and treated with dif-
ferent concentrations of BIS (25, 50, 100, and 200 µM) for 30 min at 37 ◦C and 5% CO2.
Finally, cells were treated with 0.1 µg/mL of DNP-HSA for 30 min. After stimulation, cells
were centrifuged at 200× g for 5 min to obtain the supernatant. The histamine standard
curve (7.8–500 ng/mL) was freshly prepared. Sixty (60) µL of different concentrations of
histamine standards and cell supernatant was transferred to 96-well plate. Twelve (12) µL
of 1 M NaOH and 2 µL of 10 mg/mL o-phthalaldehyde were added and reacted for 4 min
at room temperature. Then, 6 µL of 3 M HCl was added to terminate the reaction. The
fluorescence was detected at A360 as the excitation filter and A450 as the emission filter.

4.10. Enzyme Linked Immunosorbent Assay (ELISA)

BMMCs at concentration of 5 × 105 cells/mL were sensitized overnight with 0.5 µg/mL
of IgE and treated with different concentrations of BIS (25, 50, 100, and 200 µM) for 30 min.
Then, cells were stimulated with 50 ng/mL of DNP-HSA. After 24 h, the supernatant was
collected for ELISA.

The cell supernatant was analyzed for TNF-α; the serum samples were analyzed
for IgE. The protein content from skin samples was measured and adjusted to 5 mg/mL
for all samples which were analyzed for IL-4 and IgE with an ELISA, according to the
manufacturer’s instructions.

4.11. Western Blotting

Cells were sensitized with 0.5 µg/mL anti-DNP-IgE overnight and resuspended
in HEPES buffer. After incubating with or without BIS at 37 ◦C for 30 min, the cells
were subsequently stimulated with 50 ng/mL DNP-HSA for 15 min. Cells were lysed
using protein lysis solution (radioimmunoprecipitation assay (RIPA), protease inhibitor,
phosphatase inhibitor A and B, and PMSF). Cell lysates were centrifuged at 12,000 rpm for
15 min. After measuring the protein concentration by using the BCA assay, the samples
were adjusted to the same concentration with PBS and 5 × loading buffer. The samples
were boiled at 95 ◦C for 10 min and stored at −80 ◦C.

Polyacrylamide gel with the appropriate concentration was prepared according to the
molecular weight of the protein. The proteins were separated via SDS-PAGE and transferred
to PVDF membranes. The membrane was blocked with 5% non-fat milk for 1 h and
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incubated with a suitable primary antibody at 4 ◦C overnight. The membrane was washed
5 times with TBST and incubated with anti-rabbit IgG antibody conjugated to horseradish
peroxidase (HRP) for 1 h at room temperature. Finally, the membrane was detected using
chemiluminescence (ECL) reagents according to the manufacturer’s protocol.

4.12. Statistical Analysis

Data were expressed as the means ± standard error of the mean (SEM). Results were
analyzed using one-way ANOVA through GraphPad Prism 8.4.3. p ≤ 0.05, 0.01, and 0.001
were considered to indicate a statistical significance.
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