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Abstract
For practical construction of complex synthetic genetic networks able to perform elaborate

functions it is important to have a pool of relatively simple modules with different functionali-

ty which can be compounded together. To complement engineering of very different exist-

ing synthetic genetic devices such as switches, oscillators or logical gates, we propose and

develop here a design of synthetic multi-input classifier based on a recently introduced dis-

tributed classifier concept. A heterogeneous population of cells acts as a single classifier,

whose output is obtained by summarizing the outputs of individual cells. The learning ability

is achieved by pruning the population, instead of tuning parameters of an individual cell.

The present paper is focused on evaluating two possible schemes of multi-input gene clas-

sifier circuits. We demonstrate their suitability for implementing a multi-input distributed clas-

sifier capable of separating data which are inseparable for single-input classifiers, and

characterize performance of the classifiers by analytical and numerical results. The simpler

scheme implements a linear classifier in a single cell and is targeted at separable classifica-

tion problems with simple class borders. A hard learning strategy is used to train a distribut-

ed classifier by removing from the population any cell answering incorrectly to at least one

training example. The other scheme implements a circuit with a bell-shaped response in a

single cell to allow potentially arbitrary shape of the classification border in the input space

of a distributed classifier. Inseparable classification problems are addressed using soft

learning strategy, characterized by probabilistic decision to keep or discard a cell at each

training iteration. We expect that our classifier design contributes to the development of ro-

bust and predictable synthetic biosensors, which have the potential to affect applications in

a lot of fields, including that of medicine and industry.
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Introduction
The current challenge facing the synthetic biology community is the construction of relatively
simple, robust and reliable genetic networks, which will mount a pool of modules, potentially
to be connected into more complex systems. Rapid progress of experimental synthetic biology
has indeed provided several synthetic genetic networks with different functionality. Since the
development of two fundamental simple networks, representing the toggle switch [1] and the
repressilator [2] in 2000, a vast number of proof-of-principle synthetic networks have been de-
signed and engineered. Among them transcriptional or metabolic oscillators [3–5], spatially
coupled and synchronised oscillators [6, 7], calculators [8], inducers of pattern formation [9],
learning systems [10], optogenetic devices [11], memory circuits and logic gates [12–15].

One of the much awaited kinds of synthetic gene circuits with principally new functionality
would work as intelligent biosensors, for example, realized as genetic classifiers able to assign
inputs with different classes of outputs. Importantly, they would need to allow an arbitrary
shape of the area in the space of inputs, in contrast to simple threshold devices. Recently, the
first step in this direction has been made in [16], where the concept of a distributed genetic
classifier formed by a heterogeneous population of genetically engineered cells has been pro-
posed. Each cell in the distributed classifier is essentially an individual binary classifier with
specific parameters, which are randomly varied among the cells in the population. The inputs
to the classifier are certain chemical concentrations, which the engineered cells can be made
sensitive to. The classification output from an individual cell can be provided, for example, by
the fluorescent protein technique which is well developed and universally adopted in synthetic
biology. The output of the whole distributed classifier is the sum of the individual classifier out-
puts, and the overall decision is made by comparing this output to a preset threshold value. If
the initial (or “master”) population contains a sufficiently diverse variety of cells with different
parameters, the whole ensemble can be trained by examples to solve a specific classification
problem just by eliminating the cells which answer incorrectly to the examples from the
training sequence.

Note that strictly speaking, the selection procedure does not realize any kind of learning at
the level of individual classifier (cell). On the other hand, we view the whole ensemble as a dis-
tributed classifier, and reshaping population can be regarded as tuning its parameters. Since re-
shaping occurs in response to a sequence of training examples, we refer to this procedure
as learning.

The paper [16] focused on distributed classifiers composed of single-input elementary clas-
sifiers. The single-input genetic circuit proposed in [16] provides a bell-shaped output function
against the input chemical concentration. The individual cells in the population differ from
each other by the choice of the particular input chemicals that they are sensitive to, and by the
width and positioning of the bell-shaped response function. These parameters can be varied in
a range of up to 105 by modifying the ribosome binding sites in the gene circuit [17, 18]. Such
libraries of cells with randomized individual parameters have been constructed in experiments
for synthetic circuit optimization [19–21]. The single-input distributed classifier has been nu-
merically tested on several examples in [16].

However, practical applications may require classification of multiple inputs. In [16] it has
been discussed that the same principles can be utilized for a design of two- or multi-input cir-
cuits. The proposed circuit is based upon a genetic AND gate [22–24], providing a bell-shaped
response function in the space of two or more inputs. Nevertheless, no studies of a distributed
classifier with two or more inputs have been performed so far. In this paper we fill this gap by
developing distributed classifiers based upon two types of elementary two-input classifier cells:
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one is a simple scheme implementing a linear classifier in the space of two inputs and the other
is the scheme with AND gate and bell-shaped response proposed in [16].

Below we consider two settings of the classification problem. In the first setting, which we
refer to as “hard classification”, the classes are assumed separable, which implies that the sets of
points in the parameter space belonging to either class do not intersect. In this case all elemen-
tary classifiers can be unambiguously separated into those answering correctly and incorrectly
to the training examples, and the “hard learning strategy”, which is based upon discarding all
incorrectly answering cells, may be used.

We start with considering the case of separable classes and hard learning, using linear classi-
fiers as elementary cells. We show that using this strategy a range of separable classification
problems can be reliably solved even with a small number of elementary classifiers, including
problems which become inseparable (and, thus, imposing a lower bound on the error rate)
when attempted to be solved by single-input classifiers. At the same time, this approach is inca-
pable of solving classification problems with more complicated classification borders, as well as
problems with inseparable classes.

In the second part we address both mentioned issues by means of soft learning strategy and
elementary cells with bell-shaped response. We demonstrate the effectiveness of this approach
for solving these more complicated tasks at the expense of a more complicated gene circuit in
each elementary classifier and a greater number of cells required.

Hard classification problem

Two-input linear classifier circuit
We assume that the classifier input is a set of chemical concentrations capable of regulating ap-
propriate synthetic promoters (directly or mediated by the regulatory network of the cell). In
the simplest design of a multi-input genetic classifier circuit, the input genes drive the synthesis
of the same intermediate transcription factor A (Fig 1), but are regulated by different promot-
ers sensitive to the corresponding input chemicals Xj. The expression of the reporter protein,
for example, green fluorescent protein (GFP), is driven by the total concentration of A, summa-
rized from all input genes.

Fig 1. Scheme of a two-input linear classifier circuit. x1, x2—inputs inducing the corresponding promoters, RBSA1 and RBSA2—ribosome binding sites
determining the strengths of the input branches, A—intermediate transcription factor (same in both input branches), GFP—reporter gene.

doi:10.1371/journal.pone.0125144.g001
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The stationary concentration a of the intermediate transcription factor can be expressed as
a weighted sum over all classifier inputs

a ¼
X

j

bjajðxjÞ; ð1Þ

where xj are concentrations of the inputs Xj, aj(�) are nonlinear functions, each describing the
response to a particular input, including the whole appropriate signalling pathway, and bj are
linear multipliers determining the relative strengths of the corresponding inputs, which can be
varied in a range of more than 105-fold by varying the DNA sequence within and near the ribo-
some binding site of the corresponding input gene [17, 18].

For a sharper discrimination between the classifier decisions, we propose to make use of the
protein sequestration technique [25] to generate an ultrasensitive response to A when its con-
centration exceeds a certain threshold. This is achieved by binding A, which normally induces
the reporter gene, with a suitable inhibitor into an inactive complex which can not bind DNA.
The simplest description of this binding assumes that free active transcription factor A be-
comes available only when all inhibitor molecules are bound. Then the reporter protein con-
centration gmay be approximated by a shifted and truncated Hill function [25]

g ¼ gða; yÞ ¼
ag; if a � y;

g
aAg þ a� y

Ag þ a� y
; if a > y;

ð2Þ

8>><
>>:

where θ is the threshold determined by the constitutive expression rate of the inhibitor [25], Ag

is the DNA-binding dissociation constant for A, γ determines the maximal output, and αγ is
the basal expression of the reporter protein in the absence of A.

Response function of type Eq (2) was derived and experimentally tested in [25] using a di-
meric transcription factor CEBPα along with a specially designed inhibitor, both from the
basic leucine zipper protein family. The applicability of Eq (2) is conditioned by a specific hier-
archy of dissociation constants and typical concentrations of proteins [25]. Namely, (i) seques-
tration being the dominant reaction (dissociation constant significantly smaller than all other
relevant dissociation constants and concentrations), so that no free transcription factor is avail-
able unless all amount of inhibitor is bound; (ii) dimerization of inhibitor being negligible (dis-
sociation constant significantly greater than all other relevant scales); (iii) dimerization of
CEBPα being at an intermediate level of affinity (dissociation constant significantly less than
typical concentrations of CEBPα and inhibitor, all of them at the same time falling in the range
set forth by requirements (i) and (ii) above), so that almost all above-threshold amount of
CEBPα comes in dimerized (active) form. Note, that cooperative activation by dimeric CEBPα
was deliberately suppressed in [25] by using a promoter with a single binding site. That said,
under the above listed conditions the output Eq (2) is expected to retain its form (not exhibit-
ing a Hill index greater than one) even when using a two-site promoter which binds CEBPα
dimer in a cooperative way, see Supplementary Information in [25]. In other conditions a Hill
index greater than one may have to be introduced in Eq (2), in this case the ultrasensitive re-
sponse sharpens even further.

A master population of cells with randomized individual response characteristics can be ob-
tained by randomly varying the input weights bj, as well as the threshold θ, among the cells in
the population. In the following we restrict ourselves to the case of two inputs, but our ap-
proach equally applies to input vectors of any dimension. We assume that the parameter values
in the ith individual cell are bi1 and b

i
2 for the input weights and θ

i for the threshold, the lower
index denoting the input and the upper one labeling the cells, all other parameters being the
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same in both input channels in all cells. The GFP output of a chosen ith individual classifier
cell is then

fiðx1; x2Þ ¼ gðbi1a1ðx1Þ þ bi2a2ðx2Þ; yiÞ ð3Þ

with g(a;θ) defined in Eq (2).
We use the discrete-output model of the individual cell to analyze the learning process and

the distributed classifier behaviour. Namely, we assume that each individual cell can produce
two distinguishable kinds of output, corresponding to the cases in Eq (2): low, or “negative an-
swer” (which is the subthreshold background output gi = αγ), and high, or “positive answer”
(above-threshold output).

We note that each individual cell acts as a linear classifier in the transformed input space
with coordinates (a1,a2) defined by the corresponding nonlinear input functions

a1 ¼ a1ðx1Þ; a2 ¼ a2ðx2Þ: ð4Þ

Indeed, an individual ith cell generates high output when bi1a1 þ bi2a2 > yi, or

mi
1a1 þmi

2a2 > 1; ð5Þ

wheremi
1;2 ¼ bi1;2=y

i.

Such classifier divides the transformed input space into two regions, corresponding to either
answer of the classifier, which we will refer to as the negative and the positive classes. The bor-
der separating the classes in the transformed input space is a straight line

mi
1a1 þmi

2a2 ¼ 1: ð6Þ

Note that a1,2 as well asm1,2 can not be negative due to their meaning. In the following, a1,2
andm1,2 are assumed to be non-negative real numbers. In particular, it means that the space of
inputs and the space of parameters are always limited to the first quadrant (or hyperoctant
with all coordinates non-negative) of the full real space, regardless of its dimension.

Hard classification technique and learning strategy
An ensemble of linear classifiers can be utilized to perform a more complicated classification
task with a piecewise-linear border in the transformed input space. Denote with Pi the positive
class of the ith individual classifier:

Pi ¼ fa1; a2 : mi
1a1 þmi

2a2 > 1g: ð7Þ

Let all elements in the ensemble be given the same input. Then the whole ensemble can be used
as a single distributed classifier, dividing the transformed input space into the positive class P =S

i Pi, where at least one individual classifier gives the positive answer, and the negative class
D ¼ �P ¼ \i

�Pi, where all classifiers answer negatively (here the overbar “�” denotes comple-
ment in the transformed input space), see Fig 2.

By construction, the negative class D is entirely contained in each closed half-plane defined
by any of its edges, which means it is always convex. The classification border is a polygonal
line composed of segments, each described by an equation of type Eq (6), all having negative
slope, because bothmi

1 andm
i
2 are positive. In the limit of large number of cells, the negative

class becomes a convex region bordered by the coordinate axes and a smooth classification bor-
der having negative tangent slope at each point.

An ensemble constituting a distributed classifier with a specified (“target”) classification
border (satisfying the requirements of negative slopes and convexity) can be prepared by the
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following learning algorithm. Let us start with a master population of linear classifiers of type
Eq (7) with random parametersmi

1,m
i
2 distributed continuously over some interval. The aim

of the learning is to keep all individual classifiers which answer correctly to all training exam-
ples and remove all incorrectly answering ones. To achieve this, we test the whole ensemble
against a training sequence of samples from the negative class. All elements which answer posi-
tively to at least one negative sample are considered “incorrect” and are removed from the en-
semble. This can be done, for example, using the fluorescence-activated cell sorting (FACS)
technique. Positive class samples are not needed for learning, since hard classification funda-
mentally assumes separability of classes.

Actually, it is enough to use only samples located along the classification border. Although
training sequences of this kind might be not available in real situations, theoretically, excluding
the interior of the negative region from the training sequence leads to achieving the same learn-
ing outcome with a smaller number of samples.

Fig 2. Hard classification technique. P1, P2, P3—positive classes of individual linear classifiers, D—negative class of the collective classifier.

doi:10.1371/journal.pone.0125144.g002
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The ensemble which remains after this learning procedure forms a distributed classifier
with the class border determined by the training sequence. The actual set of cells constituting
the trained distributed classifier is essentially the outcome of clipping the master population in
the parameter space (m1,m2) with a certain mask, which completely characterizes the action of
the learning algorithm. In other words, the trained ensemble is a set intersection of the master
population with a region in the parameter space, which we will refer to as the “trained ensem-
ble region”.

To get an insight into a quantitative description of hard learning strategy, we start with a
trivial case when the target classification border is linear, defined by the equation

m1a1 þ m2a2 ¼ 1; ð8Þ

where μ1,2 are given constant coefficients, see Fig 3A. Although this classification task can be
solved by a single linear classifier, we use it as a starting point to describe the training of a
distributed classifier.

In the course of learning with a sequence of points distributed along the border Eq (8), any
element havingm1 > μ1 orm2 > μ2 will eventually answer positively and therefore will be re-
moved from the ensemble. Thus, the trained ensemble region on the plane (m1,m2) is a rectan-
gle (hatched area in Fig 3B).

Similarly, if the target border is a polygonal line (satisfying the requirements of negative
slopes and convexity), with the target positive class being a union of several linear classes

P ¼
[
i

fa1; a2 : mi
1a1 þ mi

2a2 > 1g; ð9Þ

where mi
1, m

i
2 are the coefficients of the individual segments of the target polygonal border, then

the trained ensemble region on the plane (m1,m2) is a convex polygon with vertices ðmi
1; m

i
2Þ,

shown in Fig. S2A in S1 Appendix as hatched area.
In S1 Appendix we analyze the response of a trained hard classifier to an input taken from

the positive class. In particular, a lower estimate is obtained for the quantity of cells answering

Fig 3. Training a distributed classifier with a linear target border. (A) Target classes: P—positive,D—negative. (B) Trained ensemble region on the
plane of parameters: hatched area.

doi:10.1371/journal.pone.0125144.g003
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positively to such inputs. It is found to be proportional to the density of the master population
per unit of the logarithmic parameter space (logm1, logm2). It is also shown that the maximal
quantitymmax, to which the region covered by the master population in the parameter space
extends in bothm1 andm2, should be not less than the inverse of the smaller intercept of the
target class border (the intercepts are the abscissa and the ordinate of the points where the bor-
der crosses the axes Oa1 and Oa2).

Simulations
To illustrate and verify the analytical results, we performed numerical simulations. We specify
the class border (black-white dashed line in Fig 4) composed of two sections. One section is a
segment of the line a1+a2 = A, and the other one is an arc of the circle a21 þ a22 ¼ A2=2. The seg-
ments are connected at the point a1 = a2 = A/2, forming a smooth curve.

The negative class is the bounded part of the first quadrant of the plane (a1,a2), separated by
the border. The training sequence of length Ntrain (white filled circles in Fig 4) is randomly
sampled from the negative class. The positive class is additionally bounded by condition a21 þ
a22 < B2 with B> A.

The master population of the classifier cells is obtained by randomly sampling the parame-
ters (m1,m2) from the log-uniform distribution in the parameter space, bounded by the mini-
mal and maximal valuesmmin andmmax. The total number of cells in the master population is

Fig 4. Simulation results for hard classification. Response of a trained distributed classifier in the space of inputs. Black-white dashed line—target
(predefined) class border, white (black) filled circles—samples from the negative (positive) class, color—number of the positively responding cells (quantities
40 and above marked with same color).

doi:10.1371/journal.pone.0125144.g004
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Nmaster. The uniform density of cells per logarithmic unit of the parameter space is

a ¼ Nmaster

ðlogmmax � logmmin Þ2
: ð10Þ

The classifier is trained by presenting sequentially all training samples from the negative
class, and discarding all cells answering positively to at least one sample. Algorithm description
in Table 1 formalizes the above procedure.

In our simulation we let Nmaster = 300, Ntrain = 200, A = 6, B = 8. The smaller border inter-

cept is A=
ffiffiffi
2

p � 4:24. In accordance to the criterion formulated in the end of the previous sub-
section, we letmmax = 0.5> 1/4.24, andmmin =mmax/100. We measure the quantity of the
positively responding cells of the trained classifier as a function of the input (a1,a2). The result
is depicted in Fig 4 in color code. The straight interfaces of color, distinguishable in the figure,
are the borders of type Eq (6) associated with the individual linear classifiers (cells).

Soft classification problem
The approach considered above can only be applied to hard classification problems with a spe-
cial type of the classification border (namely, the border must be a curve connecting the axes in
the input space, having a negative slope at each point, with the negative class being a convex re-
gion, see subsection “Hard classification technique and learning strategy” for details). In order
to address problems with classification border of more general type, or “soft” classification
problems (i.e. problems with inseparable classes with a priori unknown probability distribu-
tions in the input space) we employ soft learning strategy and a two-input elementary classifier
design with a bell-shaped response function, which was suggested in [16].

Two-input classifier with a bell-shaped response
An elementary classifier circuit providing a bell-shaped response in the two-dimensional input
space can be constructed of two independent sensing branches, whose outputs are combined
using a genetic AND gate (Fig 5) [16]. Each sensing branch is composed of two genetic mod-
ules, the sensor and the signal transducer [16]. The sensing module is monotonically induced
by the corresponding input chemical signal Xj (j = 1,2) and drives the synthesis of an interme-
diate repressor/activator Uj. The signal transducer part is activated by Uj at intermediate con-
centrations and inhibited at higher concentrations, providing the maximal response at a

Table 1. Hard learning algorithm.

Input: Master population of Nmaster elementary linear classifiers (cells) with parameters ðmi
1;m

i
2Þ randomly

sampled from the log-uniform distribution in the parameter space, bounded by the minimal and maximal
values mmin and mmax. The training sequence of negative class samples ðaj

1; a
j
2Þ of length Ntrain.

Output: Trained set of cells constituting a distributed classifier.

for each training sample ðaj
1; a

j
2Þ do

for each cell i = 1 to Nmaster do

if Eq (5) holds for this cell and this input (cell generates a positive answer) then

Remove the cell from the ensemble.

end if

end for

end for

doi:10.1371/journal.pone.0125144.t001
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certain concentration level. The classic well-characterized example of such promoter is the pro-
moter PRM of phage lambda which provides this kind of non-monotonic response to the lamb-
da repressor protein CI [26].

The outputs Zj of both sensing branches drive the expression of a reporter protein (e.g.,
GFP) through a two-input genetic AND gate. A number of circuits performing logical opera-
tions including AND have been developed and characterized recently [22–24]. When each
sensing branch provides a bell-shaped response function, then the response of the full circuit
will also be a bell-shaped function in the two-dimensional input space.

Omitting the indices j at all variables and parameters for the sake of conciseness and denot-
ing the concentrations of X, U, Z with x, u and z, the steady-state concentration of each single
sensing branch output Z can be written as [16]

zðx;mu;mzÞ ¼
rzðruðx;muÞ=mu;mzÞ

mz

; ð11Þ

where x is the input concentration, μu and μz are the degradation rates of U and Z, respectively;
ru(�) and rz(�) are the effective production rates of U and Z described by standard Hill functions

ruðx;muÞ ¼ mu �
aApu

u þ xpu

Apu
u þ xpu

; ð12Þ

rzðu;mzÞ ¼ mz �
Apz

z u
pz

ðApz
z þ upzÞ2 ; ð13Þ

where α determines the basal expression from the sensor promoter in the absence of the input
chemical X, Au and Az are the dissociation constants of X and U with their corresponding pro-
moters, the Hill coefficients pu and pz characterize the cooperativity of activation or repression
of the corresponding promoters,mu andmz describe the overall expression strength of U
and Z.

The function z(x) defined by Eqs (11)–(13) is bell-shaped in a range ofmu/μu 2 (Az,Az/α),
with the position of the maximum determined by the value ofmu/μu[16]. A master population
of elementary two-input classifiers with response maxima randomly varied in the input space
can be constructed by random variation of the sensory promoter strengthsmu both among the
individual cells, as well as among the two sensory branches in each cell. The variation range of
the maximum position is limited by the parameter α, which is for common promoters of the

Fig 5. Scheme of a two-input classifier circuit with a bell-shaped response. x1, x2—inputs inducing the corresponding promoters, RBSU1 and RBSU2—

ribosome binding sites determining the strengths of the input branches, U1, U2—intermediate repressor/activator factors, Z1, Z2—outputs of the individual
branches, GFP—reporter gene.

doi:10.1371/journal.pone.0125144.g005
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order of 10−3[27, 28]. The full range can be covered, provided the promoter strengthsmu are
varied at least 1/α = 103 fold, which is achievable, for example, by varying the DNA sequence
within and near the ribosome binding site of the sensory gene [17, 18].

In the following we let themu parameters of the two sensory branches in a chosen ith cell
take on the valuesmi

1 andm
i
2, the lower index denoting the input, the upper being the cell num-

ber, with all other parameters being the same in both sensory branches in all cells. We model
the AND gate, which drives the reporter protein production, as a product of two Hill functions

gðz1; z2Þ ¼ b � z
pg
1

A
pg
g þ z

pg
1

� z
pg
2

A
pg
g þ z

pg
2

; ð14Þ

where z1,2 are the inputs to the AND gate, β is a dimensional constant, Ag and pg are respective-
ly the dissociation constant and the Hill coefficient for the AND gate (for simplicity we assume
equal values for both inputs).

The inputs to the AND gate are essentially the outputs of the sensory branches, thus the out-
put of a chosen ith cell finally is

fiðx1; x2Þ ¼ gðzðx1;mi
1Þ; zðx2;mi

2ÞÞ; ð15Þ

where x1,2 are the classifier inputs, the function g(�, �) is defined by Eq (14), and z(�) by Eqs
(11)–(13) withmu substituted bymi

1 orm
i
2 for either input branch, and index i labeling the

individual cells.

Soft learning strategy
By “soft learning” we mean a learning strategy which reshapes the population density in the pa-
rameter space in response to a sequence of training examples in order to maximize the correct
answer probability for the distributed classifier taken as a whole, without any hard separation
of the cells into “correct” and “incorrect”.

This can be achieved by organizing a kind of population dynamics which gives preference
to cells which tend to maximize the performance of the whole classifier. In the simplest case,
the training examples are sequentially presented to all cells in the population, and some cells
get eliminated from the population in a probabilistic way, with survival probability depending
upon the cell output, given the a priori knowledge about the particular training example to be-
long to a certain class.

We use a more elaborate learning strategy incorporating a mechanism for conserving the
total cell count. In the model description this is achieved by simply replacing each discarded
cell with a duplicate of a randomly chosen cell from the population. In [16] it is shown that in
the limit of infinite number of cells and infinite number of training samples the evolution of
the population during this learning process is described by a set of ordinary differential equa-
tions in the form of a classical competition model. The viabilities of the competing cell types
depend upon the correctness of their answers to the training samples. The same kind of dy-
namics can be approximately implemented in experiment, if the selection goes in parallel with
cell division. The conserved number of cells is essentially the maximal (equilibrium) popula-
tion size determined by experimental conditions. The cell viabilities can be controlled using
FACS or by means of well-established genetically encoded positive/negative selection methods
[29].
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In consistency with [16], we specify the probabilities of cell survival after presenting each
training example as

pþðgÞ ¼
1

1þ x
þ 1

1þ x exp ð�g=gÞ ; ð16aÞ

p�ðgÞ ¼
1

1þ x
� 1

1þ x exp ð�g=gÞ þ 1; ð16bÞ

where g is the cell output upon presenting a training example, ξ = exp(8γ−1), γ controls the
“softness” of the learning (the greater γ, the softer is the slope of p+(g) and p−(g)). Either p+(g)
or p−(g) is used, depending on the class to which the training example is a priori known to be-
long. The functions specified in (Eqs 16a,16b) have maximal slope at g = 1/8. The cell output
range should be scaled to cover this value by adjusting the constant β in Eq (14).

The output of a distributed classifier is the sum of all individual cell outputs:

f ðx1; x2Þ ¼
XNc

i¼1

fiðx1; x2Þ; ð17Þ

where fi(x1,x2) is defined by Eq (15), and Nc is the total number of cells.
The classification decision is made by comparing the classifier output to a threshold θ:

decision ¼
“positive”; if f ðx1; x2Þ � y;

“negative”; if f ðx1; x2Þ < y;
ð18Þ

(

where θ has to be adjusted after the learning to maximize the correct answer rate of
the classifier.

The classification border is actually a level line of f(x1,x2) corresponding to the threshold θ.
The aim of the soft learning is thus to reshape the population and select the optimal value of θ
in a way that the corresponding level line is the best approximation of the (unknown a priori)
optimal classification border. The computational criterion of this optimality is the maximiza-
tion of the correct answer rate using the given training examples.

Simulations
We used algorithm described in Table 2 to implement the soft learning strategy. We demon-
strate the use of the soft classification strategy to solve two problems which are not solvable
with hard distributed classifiers described in section “Hard classification problem”. The first
example has separable classes which consist of disjoint regions and thus do not satisfy the re-
quirements of convexity and negative slopes which were imposed in subsection “Hard classifi-
cation technique and learning strategy”. The positive class is specified as union of two circles
on the (x1,x2) plane, one centered at x1 = x2 = A with radius R, and the other centered at x1 = x2
= B with radius 3R, and the negative class as union of two ellipses, one centered at x1 = A, x2 =

B with semiaxes R and 3R, and the other centered at x1 = B, x2 = A with semiaxes 3R
ffiffiffi
2

p
and

R
ffiffiffi
2

p
, where

R ¼ 1

32
1� 10�1:5
� �

; A ¼ 10�1:5 þ 2R; B ¼ 10�1:5 þ 8R: ð19Þ

The simulation parameters are Nc = 2�103, Ntrain = 100 (50 samples from each class), Niter =
1000, softness parameter γ = 0.4,mmin = 22 Az,mmax = 28 Az, Az = 20,mz = Au = 1, Ag = 2, pz =
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pu = pg = 2, α = 10−3. Output scaling constant β = 1056.25 is chosen so that cell output g ranges
from 0 to 0.25 in consistency with expressions for survival probabilities (16a,16b). The simula-
tion result is presented in Fig 6. All training samples are classified correctly after learning, but
this becomes impossible in case of inseparable classification problems.

The next example shows the classifier operation for inseparable classes. For either class we
use a two-dimensional log-normal distribution resulting from independently sampling both in-
puts x1 and x2 from a one-dimensional log-normal distribution centered at logx1,2 = −2.4
(log10x1,2 � −1.04) for the positive class, and at logx1,2 = −0.8 (log10x1,2 � −0.35) for the

Table 2. Soft learning algorithm.

Input: Master population of Nc elementary classifiers (cells) with bell-shaped output with parameters
ðmi

1;m
i
2Þ randomly sampled from the log-uniform distribution in the parameter space, bounded by the

minimal and maximal values mmin and mmax. The sequence of training examples ðxj1; xj2Þ of length Ntrain.
The known class type yj = ±1 for each example. The number of training iterations Niter.

Output: Trained set of Nc cells constituting a distributed classifier; classification threshold θopt.

for iteration k = 1 to Niter do

Choose a random example ðxj
1; x

j
2Þ.

for each cell i = 1 to Nc do

Calculate the ith cell output gi ¼ fiðxj1; xj2Þ according to Eq (15).

Calculate the cell survival probability according to Eq (16a) or Eq (16b): p = p+(gi) if yi = +1, or p =
p
−

(gi) if yi = −1.

With probability 1−p, choose a random cell from the population and eliminate the ith cell, replacing it
with the chosen cell.

end for

end for

for each training example j = 1 to Ntrain do

Use the trained population to calculate the population output fðxj1; xj2Þ according to Eq (17).

end for

Find the optimal classification threshold θopt by maximizing the correct classification rate over θ:
yopt ¼ argmax

PNtrain

j¼1 yj ½2Hðfðxj
1; x

j
2Þ � yÞ � 1

� ��.
doi:10.1371/journal.pone.0125144.t002

Fig 6. Simulation results for soft classification strategy applied to separable classes. (A) Untrained (master) population output (color). (B) Trained
population output (color). White (black) filled circles—samples from the negative (positive) class, black-white dashed line—classification border of the
trained classifier.

doi:10.1371/journal.pone.0125144.g006
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negative class, with standard deviation of logx1,2 for both classes set to 0.5 (which makes ap-
proximately 0.22 in terms of log10x1,2). The length of the training sequence is Ntrain = 2000
(1000 samples from each class), chosen so that the distributions overlap is represented by a
number of samples from both classes. Other simulation parameters are the same as in the pre-
vious example. The result of the simulation is presented in Fig 7 the same way as in the previ-
ous example. Since the training data are contradictory (overlapping), it is not possible to
classify correctly all examples after learning. We observe, however, that the classification bor-
der produced by soft learning strategy separates the distributions close to a straight line equi-
distant from their centers in the logarithmic input space (which is the Bayesian solution).

The successful classification rate of the distributed classifier computed by validation against
a testing sequence of length Ntest = Ntrain = 2000 (1000 samples from each class) amounts to
98.35%, which is very close to the theoretical maximum of 98.82% set forth by the Bayesian
classification rule. We performed another simulation with an increased overlap of the distribu-
tions, which is achieved by shifting the central point of the positive class to logx1,2 = −1.4 (log10
x1,2� −0.61), with all other conditions kept from the previous simulation. Validation against a
test sequence yields performance 77.1%, while the Bayesian result is 80.19%.

There exist rigorous theorems on Bayes consistency (convergence to Bayesian decision
boundaries) of classification methods [30], which applies to commonly used state-of-the-art
machine learning methods. We did not carry out any rigorous consistency analysis for distrib-
uted classifiers, but based on the simulations we conclude that the considered mathematical

Fig 7. Simulation results for soft classification strategy applied to inseparable classes.Notations same as in Fig 6.

doi:10.1371/journal.pone.0125144.g007
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model of distributed classifier demonstrates the possibility in principle to approach the theoret-
ical maximum in classification performance. Biological implementation will face complications
including cell count variation, transcriptional and instrumental noise, which inevitably cut
down the classifier performance. That said, the simulation results justify the use of multi-input
gene circuits in combination with distributed classifier approach to construct a learnable syn-
thetic gene classifier.

Discussion
In this paper we have presented a design of multi-input classifiers to be implemented as a syn-
thetic genetic network. We have considered two examples, corresponding to hard and soft
learning strategy. As a multi-input classifier, these devices can solve classification task based on
the data inseparable in the single dimension case. Moreover, the proposed design allows to
achieve practically arbitrary shape of the classification border in the space of input signals.
Here we have considered two-input genetic classifiers but the same design principles can be
utilized to construct multi-input classifying devices, then the number of inputs is limited only
by the availability of orthogonal input-inducible promoters and multi-input hybrid promoters.

Our approach challenged a problem of discrimination between classes with overlapping
probability density distributions in the input space. In this case the classification error proba-
bility cannot vanish and has to be minimized. The optimal solution to this problem is given by
the Bayesian classification rule [31]. In case of equal a priori probabilities for a randomly pick-
ed sample to belong to either class, the classification of a presented sample point from the pa-
rameter space is optimally done by comparing the class probability density functions at this
point: the class with the greatest probability density value is the optimal answer to the classifi-
cation problem. At the classification border the probability density functions become equal. If
these functions are known a priori, then the optimal border is thus also known, and the prob-
lem reduces to “hard classification”.

When the probability density functions of the classes are not known a priori, the optimal
classification rule is not known either, and the classifier has to be trained by examples. Hard
learning is not applicable in this case, because it may eventually lead to discarding all cells. In-
separable classes with a priori unknown probability density functions require another learning
strategy which we refer to as “soft learning”, when the decision to discard or to keep a particu-
lar cell upon presenting a training example is probabilistic, depending on the cell output.

Our consideration did not account for cell division. An accurate description of population
dynamics should incorporate the dependence of the cell division rate upon the metabolic bur-
den imposed by the synthetic constructs. This factor can play a destructive role on classifica-
tion, since non-uniform cell duplication may reshape the trained population in a way that
distorts the classifier output. Judging whether this effect will be important for the experimental
system requires quantitative understanding of metabolic burden imbalance and its impact
upon cell division. We leave it for a separate study.

Another challenge to implementation is noise, both biological and instrumental. In [16] per-
formance of distributed classifiers based on single-input genetic circuits was studied in the
presence of both mentioned types of noise. It was shown that noise, when not too strong, does
not destroy the classifier performance. We note, that a distributed classifier must be more ro-
bust to noise than single-cell classifiers due to averaging out the individual cell noise in the
summary output. In this study we did not specially address the problem of noise. We do not ex-
pect, however, any qualitative difference in noise robustness between single- and multi-input
classifier circuits.
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An important aspect of synthetic biology is the design of smart biological devices or new in-
telligent drugs, through the development of in vivo digital circuits [32]. If living cells can be
made to function as computers, one could envisage, for instance, the development of fully pro-
grammable microbial robots that are able to communicate with each other, with their environ-
ment and with human operators. These devices could then be used, e.g., for detection of
hazardous substances or even to direct the growth of new tissue. In that direction, pioneering
experimental studies have shown the feasibility of programmed pattern formation [9], the pos-
sibility of implementing logical gates and simple devices within cells [33], and the construction
of new biological devices capable to solve or compute certain problems [34].

The classifiers designed could be considered as a further development towards the construc-
tion of robust and predictable synthetic genetic biosensors, which have the potential to affect
and effect a lot of applications in the biomedical, therapeutic, diagnostic, bioremediation, ener-
gy-generation and industrial fields [35–38].
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