
Received: October 8, 2021
Accepted: January 4, 2022
Advanced Epub: January 28, 2022
©2022 by the Society for Reproduction and Development
Correspondence: S Katagiri (e-mail: katagiri@vetmed.hokudai.ac.jp)
This is an open-access article distributed under the terms of the Creative 
Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. 
(CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)

Journal of Reproduction and Development, Vol. 68, No 2, 2022

Original Article

Effects of heat stress on the endometrial epidermal growth factor profile 
and fertility in dairy cows
Kohei KAWANO1), Yojiro YANAGAWA2), Masashi NAGANO2, 3) and Seiji KATAGIRI2)

1)Laboratory of Theriogenology, Department of Clinical Sciences, Graduate School of Veterinary Medicine,  
Hokkaido University, Sapporo 060-0818, Japan

2)Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, 
Sapporo 060-0818, Japan

3)Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, 
Towada 034-8628, Japan

Abstract.  The endometrial epidermal growth factor (EGF) profile is an indicator of uterine function and fertility in 
cattle. The present study aimed to investigate the effects of heat stress on the endometrial EGF profile and fertility 
in lactating Holstein cows. The endometrial EGF profiles of 365 cows in the Hokkaido and Kyushu regions were 
examined between June and September (heat stress period, n = 211) and between October and January (control 
period, n = 154). EGF profiles were investigated using uterine endometrial tissues obtained by biopsy 3 days after 
estrus (Day 3). The proportion of cows with an altered EGF profile was higher between June and September than 
between October and January (41.2 vs. 16.2%, P < 0.05). The effects of rectal temperature on Days 0 and 3 on the 
endometrial EGF profile were also assessed in cows (n = 79) between June and September in the Kyushu region. A 
single embryo was transferred to cow on Day 7 to evaluate fertility (n = 67). Regardless of the rectal temperature on 
Day 3, the proportion of cows with an altered EGF profile was higher (64.1 vs. 30.0%, P < 0.05) and the pregnancy 
rate after embryo transfer (ET) was lower (26.7 vs. 51.4%, P < 0.05) in cows with a rectal temperature ≥ 39.5°C on 
Day 0 than in cows with a rectal temperature < 39.5°C on Day 0. The present results indicate that alterations in the 
endometrial EGF profile induced by an elevated body temperature on Day 0 contributed to reductions in fertility in 
lactating dairy cows during the heat stress period.
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Heat stress is one of the major contributing factors to low fertility 
in dairy cows. It is defined as an environment that increases 

body temperature to above the set-point temperature [1]. Ambient 
temperature (AT), humidity, wind, and solar radiation are some of 
the factors contributing to heat stress [2]. A negative correlation has 
been reported between an elevated body temperature and fertility in 
lactating dairy cows. The conception rate of artificial insemination (AI) 
begins to decline when uterine temperature at insemination increases 
by approximately 0.5°C above the normal range (38.3–38.6°C) [3]. 
The temperature-humidity index (THI), which is calculated from AT 
and relative humidity (RH), has been widely used as an indicator of 
heat stress in dairy cows. The typical stress threshold of THI is 72 
[4]. THI higher than 72 may be reached in tropical and subtropical 
zones, and recently in temperate and some cold zones [5]. The effect 
of heat stress on fertility was not examined in detail in the latter 
zones approximately 3–4 decades ago, however, it is now becoming 
a major contributing factor for low fertility in high-yielding cows.

Summer heat stress decreases fertility through multifactorial 
causes, such as disturbed follicular growth and ovulation, impaired 
corpus luteum (CL) function, the suppressed expression of estrus, 
and embryonic loss [6, 7]. The detrimental effects of heat stress on 

oocytes and early embryos are considered to be the main cause of 
increased embryonic loss [8]. The exposure of cattle to heat stress 
between the follicular phase and within 3 days after AI at estrus in the 
natural cycle as well as after superovulatory treatment was found to 
decrease fertility [9–12]. Accordingly, studies using in vitro embryo 
production systems demonstrated that the developmental competence 
of oocytes obtained from cows exposed to heat stress [13–15] or a 
high temperature (41.0°C) during in vitro maturation cultures [16, 
17] was reduced. Furthermore, the developmental competence of 
zygotes and two-cell stage embryos was reduced in an in vitro culture 
at a high temperature (41.0°C) [18, 19].

Early embryos after Day 3 were found to be less sensitive to 
heat stress [10, 18, 19]. Consequently, heat stress decreases the 
pregnancy rate of AI more than that of embryo transfer (ET) [20, 21] 
and, thus, ET has been used to compensate for low fertility during 
the hot season [22]. The effects of heat stress on pregnancy after 
ET currently remain unclear. A previous study reported a decreased 
pregnancy rate after ET between the hot and cool seasons [23], while 
other studies found no or only slight differences in pregnancy rates 
[24–27]. Nevertheless, changes in the production and circulating 
levels of ovarian steroid hormones [4], and the synthesis and secretion 
of proteins [28] and prostaglandins [29–31] in the endometrium 
by heat stress may increase the incidence of embryonic loss even 
after ET due to an improper endocrine environment [7] or uterine 
dysfunction [32, 33].

In cattle, the epidermal growth factor (EGF) profile in the uterine 
endometrium has been identified as an indicator of endometrial 
function and fertility [34, 35]. Endometrial EGF concentrations 
exhibit a cyclic change with two peaks on Days 2–4 and 13–14 
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during the estrous cycle [34, 36]. The loss of these peaks reduces 
fertility with an increase in embryonic loss [37] in repeat breeder 
(RB) and high-yielding dairy cows [35, 38, 39]. The normalization 
of the EGF profile by treatments with hormonal drugs [40] and 
seminal proteins [41] restored fertility in RB cows. Furthermore, 
the pregnancy rate was lower in apparently normal recipient cows 
with low EGF concentrations on Day 3 (< 4.70 ng/g tissue weight) 
than in those with EGF concentrations within the normal range 
(33.3 vs. 76.9%) [42].

Alterations in the endometrial EGF profile have been linked to 
changes in circulating estradiol (E2) and progesterone (P4) concentra-
tions in RB and high-yielding cows [39]. In dairy cows, a high feed 
intake supporting a large amount of milk production increases liver 
blood flow and, in turn, the clearance of E2 and P4 from the circulation 
[43]. This may cause a slower increase and lower peaks in E2 and 
P4 concentrations in the circulation [44]. Although RB cows may 
not necessarily be high producers, they show similar alterations in 
ovarian steroid hormone profiles to those in high-yielding cows 
[35]. Since the expression of EGF in the endometrium is primarily 
regulated by E2 and P4 [45, 46], changes in circulating E2 and P4 
concentrations may be amplified in the endometrium as an altered 
EGF profile [35]. Seasonal heat stress was also found to suppress 
the production and circulating concentrations of E2 and P4 in dairy 
cows [4]; therefore, reduced fertility during the heat stress period 
may be attributed, at least in part, to uterine dysfunction caused by 
alterations in the endometrial EGF profile.

The present study examined the relationship between decreased 
fertility during the heat stress period and uterine dysfunction caused 
by an altered endometrial EGF profile in dairy cows. We initially 
investigated the effects of seasons and regions on the EGF profile on 
Day 3. We then examined the effects of an elevated body temperature 
on Day 0 (estrus) and Day 3 on the EGF profile on Day 3 and 
pregnancy rate after ET.

Materials and Methods

Animals
A total of 444 Holstein cows (8,500–12,000 kg of 305-day fat-

corrected milk) between 2 and 5 in parity in commercial farms in 
the Hokkaido (central area: 42–44°N, 141–142°E) and Kyushu 
(north-west area: 32–34°N, 130–131°E) regions in Japan were used. 
All cows were observed for estrus at least twice a day or estrus was 
detected using an automated activity monitor. All cows showed a 
normal inter-estrus interval (18–23 days) and ovulated within 48 
h of the onset of estrus. In cows exhibiting weak signs of estrus, 
particularly during the heat stress period, estrus was confirmed by 
ovulation within 48 h and blood concentrations of E2 (≥ 5 pg/ml) and 
P4 (< 1 ng/ml). All experimental procedures were approved by the 
Hokkaido University Animal Care and Use Committee (No. 16-0071).

Biopsy of endometrial tissues
Uterine endometrial tissues were obtained using a biopsy instrument 

(3050100, Fujihira Industry, Tokyo, Japan) under caudal epidural 
anesthesia with 3 ml of 2% lidocaine (2% xylocaine, AstraZeneca, 
Osaka, Japan) as previously described [38]. Two pieces of uterine 
endometrial tissues from the inter-caruncle region (25–50 mg) were 
obtained from the middle of 3 sections in the uterine horns, which 
were equally divided along the longitudinal axis. The caruncle region 
was distinguished from the inter-caruncle region as fluffy cut surface 
due to rich blood vessels. If the caruncle was greater than one-third 
of the tissue, another biopsy was collected. However, if the caruncle 

was approximately one-third or less of the biopsy, the caruncle was 
dissected out and the rest of the tissue was used [34]. All tissue 
samples were obtained from the uterine horns on the contralateral 
side to CL. Tissues were immediately frozen in liquid nitrogen and 
stored at –30°C for the EGF assay.

Measurement of EGF concentrations and judgement of the 
EGF profile

Uterine endometrial tissue samples were processed as previously 
described [38, 47] with a modification of changing the concentration 
of acetic acid (01021-70, Kanto Chemical Co., Inc., Tokyo, Japan) for 
extraction solution from 1 M to 0.1 M. EGF concentrations in uterine 
endometrial tissue extracts were assessed using double-antibody 
sandwich EIA with 96-well microtiter plates (Costar 3590, Corning, 
NY, USA) [38]. An anti-human EGF mouse monoclonal antibody 
(MAB636, R & D Systems, Inc., Minneapolis, MN, USA) was used 
as the solid-phase antibody and anti-human EGF rabbit antiserum 
(5022-100, Biogenesis, Poole, UK) for detection with a peroxidase-
conjugated anti-rabbit IgG goat antibody (270335, Seikagaku, Tokyo, 
Japan). Neither of these antibodies showed significant cross-reactivity 
with other cytokines tested by the manufacturers. The assay system was 
verified using increasing concentrations of recombinant bovine EGF. 
A linear regression analysis of recombinant bovine EGF concentra-
tions and assay results gave y = 0.96x + 0.39, r = 0.97 [41]. The 
sensitivity of the assay was 10 pg/well. Intra- and inter-assay CVs 
at 50 pg/well were 4.2 and 5.3%, respectively. The EGF profile was 
determined by the endometrial EGF concentration on Day 3; EGF 
concentration between 4.70 and 13.50 ng/g tissue weight (normal 
range) was considered to be normal, whereas that of lower than 
4.70 and higher than 13.50 ng/g tissue weight was considered to be 
altered based on previous findings [36, 38].

Measurement of rectal temperature
Rectal temperature was measured using a clinical thermometer 

once a day between 1300 and 1700 h on the day of estrus (Day 0) 
and Day 3.

Measurement of plasma E2 and P4 concentrations
Plasma E2 and P4 concentrations were determined using competitive 

double-antibody enzyme immunoassays, as described previously 
[48]. The primary antibodies used for the E2 and P4 assays were 
anti-estradiol-17β-6-carboxymethiloxime (CMO)-BSA (FKA204; 
Cosmo Bio, Tokyo, Japan) and anti-progesterone-3-CMO-BSA 
(KZ-HS-P13; Cosmo Bio), respectively. Goat anti-rabbit serum 
(111-005-003; Jacson Immuno Research Laboratories, West Grove, 
PA, USA) was used as the secondary antibody. The inter- and intra-
assay coefficients of variations were 9.7 and 3.5% for E2, and 4.7 
and 6.5% for P4, respectively.

AT, RH, and THI
Data on hourly AT and RH during the study period (3 years; 

2015–2017) were obtained from the local meteorological observatory 
in the Hokkaido region (Sapporo and Tomakomai) and Kyushu 
region (Fukuoka and Kumamoto), in which the commercial farms 
used in the present study are located. The following equation was 
used to calculate THI [49].

THI = (1.8 × AT + 32) – (0.55 – 0.0055 × RH) × (1.8 × AT – 26)
Monthly THI in the Kyushu region ranged from 44.3 to 79.8, 

whereas that in the Hokkaido region was from 31.0 to 70.4 (Fig. 1). 
Mean AT and THI between June and September and between October 
and January in each of the four areas are summarized in Table 1. In 
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the four areas, mean THI between June and September ranged from 
63.7 to 76.0, while that between October and January was from 39.6 
to 55.5. The number of days when daily maximum THI exceeded 72 
between June and September was from 26 to 118, and that between 
October and January was from 0 to 15.

Embryo transfer (ET)
ET was performed by one technician and two veterinarians. A 

frozen in vivo produced embryo (IETS standards; Codes 1–2) was 
transferred into the uterine horn ipsilateral to CL on Day 7.

Study design
Study 1: Study 1 was conducted between 2015 and 2017. Lactating 

Holstein cows (n = 365) between 60 and 90 days postpartum in the 
Hokkaido and Kyushu regions were used to examine the effects of 
seasons and regions on the proportion of cows with an altered EGF 
profile and the endometrial EGF concentration on Day3. Hokkaido 
is located in the northeastern region of Japan and has a cool and dry 
climate, whereas Kyushu is in the southwestern region and has a hot 
and humid climate (Table 1 and Fig. 1). During the heat stress period 
(between June and September), endometrial tissues were obtained 
for the EGF assay on Day 3 of the estrous cycle from 211 cows (90 
cows in the Hokkaido region and 121 cows in the Kyushu region). 
During the control (cool) period (between October and January), 
endometrial tissues were obtained from 154 cows (86 cows in the 

Hokkaido region and 68 cows in the Kyushu region).
Study 2: Study 2 was performed between June and September 

in 2017. Lactating Holstein cows (n = 79) between 60 and 90 days 
postpartum in the Kyushu region were used to examine the effects 
of rectal temperature on Days 0 and 3 on the proportion of cows 
with an altered EGF profile and the pregnancy rate after ET. Rectal 
temperature on Days 0 and 3 and the endometrial EGF concentration 
on Day 3 were measured in all cows. ET was performed on Day 
7 of the same estrous cycle (n = 67). Pregnancy was diagnosed by 
palpation of the uterine tract per rectum between Days 56 and 60.

Data analysis
In study 1, the proportion of cows with an altered EGF profile 

was compared between the different regions and seasons using 
the chi-squared test. The effects of seasons (June-September and 
October-January), regions (Hokkaido and Kyushu) and EGF profile 
(normal and altered) on endometrial EGF concentrations were evalu-
ated by the three-way ANOVA. In study 2, cows were divided into 
four groups based in combination of rectal temperature; 39.5°C 
or higher (≥ 39.5°C) and lower than 39.5°C (< 39.5°C), on Days 
0 and 3. The effects of rectal temperature on Days 0 and 3 on the 
proportion of cows with an altered EGF profile and the pregnancy 
rate after ET were evaluated using Fisher’s exact test. Endometrial 
EGF concentrations were not normally distributed based on the 
Shapiro-Wilk test, and, thus, were transformed to ranks. The effects 
of the rectal temperature category (≥ 39.5°C and < 39.5°C) and days 
of heat stress (Days 0 and 3) on endometrial EGF concentrations were 
evaluated by a nonparametric two-way ANOVA. EGF concentrations 
were compared between cows with a rectal temperature ≥ 39.5°C and 
< 39.5°C on Day 0 using the Mann-Whitney U test. Pregnancy rates 
were compared between cows with normal and altered EGF profiles 
by Fisher’s exact test. All statistical analyses were performed using 
JMP software version 14.0.0 (SAS Institute Japan, Tokyo, Japan) or 
SPSS software version 18.0 (SPSS Inc., Chicago, IL, USA).

Results

Study 1
In the present study, the endometrial EGF concentrations on Day 

3 were within or lower than the lower limit of the normal range 
(4.70 ng/g tissue weight) and, thus, all altered EGF profiles were 
characterized with a suppressed EGF peak [36, 38]. The proportion 
of cows with an altered EGF profile was higher between June and 
September than between October and January in both regions (P 

Fig. 1. Mean monthly temperature humidity index (THI) of the study 
period (2015–2017) in two regions (Hokkaido: Sapporo Δ and 
Tomakomai □; Kyushu: Fukuoka ♦ and Kumamoto ●).

Table 1. Ambient temperature (AT), temperature humidity index (THI), and number of days 
when daily maximum THI exceeded 72 between June and September and between 
October and January in two study regions, Hokkaido and Kyushu

Regions Seasons AT (°C) THI Number of days when daily 
maximum THI exceeded 72

Hokkaido Sapporo Jun–Sep 19.8 ± 4.3 66.0 ± 6.2 50
Oct–Jan 2.7 ± 6.8 40.7 ± 10.1 0

Tomakomai Jun–Sep 17.9 ± 3.8 63.7 ± 6.2 26
Oct–Jan 2.4 ± 6.9 39.6 ± 10.8 0

Kyushu Fukuoka Jun–Sep 26.2 ± 3.7 76.0 ± 5.1 116
Oct–Jan 12.7 ± 6.2 55.5 ± 9.3 9

Kumamoto Jun–Sep 26.0 ± 3.9 75.8 ± 5.1 118
Oct–Jan 12.0 ± 7.2 51.1 ± 11.1 15

Values are presented as means ± SDs.
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< 0.05) (Table 2). The proportion of cows with an altered EGF 
profile increased by approximately 2- and 3-fold in the Hokkaido 
and Kyushu regions, respectively, during the heat stress period. No 
significant differences were observed in the proportion of cows with 
an altered EGF profile between the two regions in each seasonal 
period; however, the proportion of cows with an altered EGF profile 
was slightly higher in the Kyushu region than in the Hokkaido region 
throughout the study period (P = 0.07). The three-way ANOVA for 
seasons (June–September and October–January), regions (Hokkaido 
and Kyushu) and EGF profile (normal and altered) indicated only 
main effect of EGF profile for the endometrial EGF concentrations 
(P < 0.01). EGF concentrations in cows with normal and altered EGF 
profiles did not differ between the seasons in both regions. On the 
other hand, EGF concentrations in all cows (subtotal) were lower 
between June and September than between October to January in 
both regions (P < 0.05), reflecting the higher proportion of cows 
showing an altered EGF profile with low EGF concentrations in 
June to September than October to January.

Study 2
Rectal temperature between Days 0 and 3 was similar in both rectal 

temperature groups (Table 3). Regardless of rectal temperature on 
Day 3, the proportion of cows with an altered EGF profile was higher 
in the cows with a rectal temperature ≥ 39.5°C on Day 0 than in the 
cows with a rectal temperature < 39.5°C on Day 0 (P < 0.05) (Table 
4). EGF concentrations in all cows, and in cows with normal and 
altered EGF profiles indicated the significant main effects of rectal 
temperature on Day 0 (P < 0.05). EGF concentrations were lower 
in the cows with a rectal temperature ≥ 39.5°C on Day 0 than in the 

cows with a rectal temperature < 39.5°C (P < 0.05), regardless of the 
EGF profie. Regardless of rectal temperature on Day 3, pregnancy 
rates after ET were lower in the cows with a rectal temperature 
≥ 39.5°C on Day 0 than in the cows with a rectal temperature < 
39.5°C on Day 0 (P < 0.05) (Table 5). EGF concentrations in all 
recipient cows and in recipient cows with a normal EGF profile 
indicated the significant main effects of rectal temperature on Day 
0 (P < 0.05). EGF concentrations in cows with a normal EGF profile 
were lower in the cows with a rectal temperature ≥ 39.5°C on Day 
0 than in the cows with a rectal temperature < 39.5°C on Day 0 (P 
< 0.05). EGF concentrations in cows with an altered EGF profile 
tended to low in the cows with a rectal temperature ≥ 39.5°C on 
Day 0 than in the cows with a rectal temperature < 39.5°C on Day 
0 (P = 0.09). However, in cows with the normal EGF profile, no 
significant differences were observed in the pregnancy rate after ET 
between the two rectal temperature groups on Day 0. In cows with 
an altered EGF profile, no difference was observed in the pregnancy 
rate after ET between the cows with a rectal temperature ≥ 39.5°C 
and < 39.5°C on Day 0. The pregnancy rate after ET was markedly 
lower in cows with an altered EGF profile (6.3%, n = 32) than in 
those with a normal EGF profile (71.4%, n = 35) (P < 0.05). The 
overall conception rate of all recipient cows throughout the present 
study (n = 67) was 40.3%.

Discussion

The present results demonstrated that an elevated body temperature 
on the day of estrus caused by heat stress increased the incidence of 
abnormalities in the uterine endometrial EGF profile and reduced 

Table 3. Rectal temperature on Days 0 and 3 in cows with a rectal temperature ≥ 39.5ºC and < 39.5ºC in Study 2

Rectal temperature ≥ 39.5ºC (n) Rectal temperature < 39.5ºC (n) Total (n)
Day 0 40.0 ± 0.32 (39.6–40.8) 39 39.0 ± 0.27 (38.2–39.4) 40 39.5 ± 0.59 (38.2–40.8) 79
Day 3 40.0 ± 0.26 (39.5–40.4) 34 39.0 ± 0.28 (38.3–39.4) 45 39.4 ± 0.54 (38.3–40.4) 79

Rectal temperatures are presented as means ± SDs. Numbers in parentheses show the ranges of rectal temperature.

Table 2. Proportion of dairy cows showing the normal and altered epidermal growth factor (EGF) profile and their EGF concentrations on day 3 in 
Hokkaido and Kyusyu regions

Region EGF 
profile

June–September October–January Total

No. (%) of cows 
showing indicated 

profile

EGF concentrations 
(ng/g tissue weight)

No. (%) of cows 
showing indicated 

profile

EGF concentrations 
(ng/g tissue weight)

No. (%) of cows 
showing indicated 

profile

EGF concentrations 
(ng/g tissue weight)

Hokkaido Normal 58 (64.4) a 6.71 ± 0.97 72 (83.7) b 6.71 ± 1.04 130 (73.9) 6.71 ± 0.99
Altered 32 (35.6) a 1.66 ± 0.73 14 (16.3) b 1.42 ± 0.70 46 (26.1) A 1.59 ± 0.71
Subtotal 90 (100) 4.92 ± 2.59 a 86 (100) 5.81 ± 1.83 b 176 (100) 5.37 ± 2.11

Kyushu Normal 66 (54.5) a 7.01 ± 1.32 57 (83.8) b 6.76 ± 0.62 123 (65.1) 6.89 ± 0.44
Altered 55 (45.5) a 1.12 ± 0.48 11 (16.2) b 1.68 ± 0.66 66 (34.9) B 1.21 ± 0.53
Subtotal 121 (100) 4.33 ± 2.61 a 68 (100) 5.97 ± 2.34 b 189 (100) 5.01 ± 2.42

Total Normal 124 (58.8) a 6.87 ± 1.12 129 (83.8) b 6.73 ± 0.92 253 (69.3) 6.80 ± 0.99
Altered 87 (41.2) a 1.32 ± 0.68 25 (16.2) b 1.53 ± 0.68 112 (30.7) 1.37 ± 0.68
Subtotal 211 (100) 4.58 ± 2.60 a 154 (100) 5.88 ± 2.06 b 365 (100) 5.13 ± 2.32

a, b Values with different letters within the same row significantly differ (P < 0.05). A, B Values with different letters within the same column slightly 
differ (P = 0.07). The three-way ANOVA for seasons (June–September and October–January), regions (Hokkaido and Kyushu) and EGF profile (normal 
and altered) indicated only main effect of EGF profile on the endometrial EGF concentrations (P < 0.01). None of the interactions were significant. EGF 
concentrations are presented as means ± SDs. EGF profile was determined by the value of endometrial EGF concentration on Day 3; EGF concentration 
of between 4.7 and 13.5 ng/g tissue weight (normal range) was considered to be normal, whereas that of < 4.70 and 13.5 < ng/g tissue weight was 
considered to be altered based on previous findings [36, 38].
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fertility. This may be one of the mechanisms contributing to reduced 
fertility in summer.

The proportion of cows with an altered EGF profile (i.e. lowered 
EGF peak on Day 3) was similar in both regions (approximately 
16%) during the control period and increased by approximately 
2- and 3-fold in the Hokkaido and Kyushu regions, respectively, 
during the heat stress period. An altered endometrial EGF profile has 
been linked to reduced fertility [35]; therefore, greater alterations in 
endometrial EGF profiles may explain, at least partly, the reductions 
observed in conception rates in summer. The degree of summer heat 
stress is milder in the Hokkaido region than in the Kyushu region. 
Kyushu is classified as a temperate zone. The number of days on 

which daily maximum THI exceeded 72 in this region was more than 
115 and the monthly average of daily maximum THI ranged from 
75.4 to 83.4 between June and September during the study period. 
Hokkaido is classified as a cold zone. The number of days on which 
daily maximum THI exceeded 72 in this region was approximately 
40 and the monthly average of daily maximum THI ranged from 
61.5 to 74.5 during the same period. The present results indicate 
that even the milder heat stress in Hokkaido was sufficient to alter 
the EGF profile. This may be attributed to differences in the cooling 
management of herds. In the Kyushu region, the majority of farms use 
intensive cooling management typically involving a combination of 
fan cooling and intermittent sprinklers, while cooling management in 

Table 4. Effects of rectal temperature on Days 0 and 3 on endometrial epidermal growth factor (EGF) concentrations in dairy cows

Rectal temperature No. of 
cows

Proportion of cows with 
an altered EGF profile †

EGF concentrations

Day 0 Day 3 Altered Normal All
≥ 39.5ºC ≥ 39.5ºC 18 66.7 2.48 ± 1.03 (12) 6.62 ± 1.45 (6) 3.86 ± 2.28 (18)
≥ 39.5ºC < 39.5ºC 21 61.9 2.09 ± 1.01 (13) 6.82 ± 1.42 (8) 3.89 ± 2.58 (21)

Sub total 39 64.1 a 2.28 ± 1.04 a (25) 6.73 ± 1.44 a (14) 3.88 ± 2.45 a (39)
< 39.5ºC ≥ 39.5ºC 16 31.3 3.63 ± 0.40 (5) 7.74 ± 1.38 (11) 6.46 ± 2.23 (16)
< 39.5ºC < 39.5ºC 24 29.2 2.86 ± 1.30 (7) 8.02 ± 1.15 (17) 6.51 ± 2.63 (24)

Sub total 40 30.0 b 3.18 ± 1.10 b (12) 7.91 ± 1.25 b (28) 6.49 ± 2.48 b (40)
a, b Values with different letters significantly differ between cows with a rectal temperature of 39.5°C or higher (≥ 39.5°C) and lower 
than 39.5°C (< 39.5°C) on Day 0 (P < 0.05). EGF concentrations are presented as means ± SDs. Numbers in parentheses show the 
number of cows. † EGF profile was determined by the value of endometrial EGF concentration on Day 3; EGF concentration of 
between 4.7 and 13.5 ng/g tissue weight (normal range) was considered to be normal, whereas that of < 4.70 and 13.5 < ng/g tissue 
weight was considered to be altered based on previous findings [36, 38].

Table 5. Effects of rectal temperature on Days 0 and 3 on endometrial epidermal growth factor (EGF) 
concentrations and conception rates after embryo transfer (ET) in dairy cows

Rectal temperature
EGF profile † (n) EGF conc. Conception (%)

Day 0 Day 3
≥ 39.5ºC ≥ 39.5ºC Normal (3) 6.05 ± 0.54 2/3 (66.7)

Altered (9) 2.76 ± 0.98 1/9 (11.1)
≥ 39.5ºC < 39.5ºC Normal (7) 6.68 ± 0.55 5/7 (71.4)

Altered (11) 2.22 ± 1.03 0/11 (0.0)
Sub total Normal (10) 6.49 ± 1.35 a 7/10 (70.0)

Altered (20) 2.47 ± 1.05 A 1/20 (5.0)
All (30) 3.81 ± 2.22 a 8/30 (26.7 a)

< 39.5ºC ≥ 39.5ºC Normal (10) 7.95 ± 1.28 6/10 (60.0)
Altered (5) 3.63 ± 0.40 1/5 (20.0)

< 39.5ºC < 39.5ºC Normal (15) 7.93 ± 1.18 12/15 (80.0)
Altered (7) 2.86 ± 1.30 0/7 (0.0)

Sub total Normal (25) 7.93 ± 1.18 b 18/25 (72.0)
Altered (12) 3.18 ± 1.10 B 1/12 (8.3)
All (37) 6.39 ± 2.52 b 19/37 (51.4 b)

Total Normal (35) 7.52 ± 1.42 25/35 (71.4 x)
Altered (32) 2.73 ± 1.12 2/32 (6.3 y)
All (67) 5.23 ± 2.71 27/67 (40.3)

a, b Values with different letters significantly differ between cows with a rectal temperature of 39.5°C 
or higher (≥ 39.5°C) and lower than 39.5°C (< 39.5°C) on Day 0 (P < 0.05). A, B Values with different 
letters within the same column slightly differ between cows with a rectal temperature ≥ 39.5°C and 
< 39.5°C on Day 0 (P = 0.09). x, y Values with different letters significantly differ between cows with 
normal and altered EGF profiles (P < 0.05). EGF concentrations are presented as means ± SDs. † EGF 
profile was determined by the value of endometrial EGF concentration on Day 3; EGF concentration 
of between 4.7 and 13.5 ng/g tissue weight (normal range) was considered to be normal, whereas that 
of < 4.70 and 13.5 < ng/g tissue weight was considered to be altered based on previous findings [36, 38].
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the Hokkaido region is limited to a less intensive fan cooling system.
The present study revealed that a rectal temperature of 39.5°C 

and higher on the day of estrus (Day 0), regardless of that on Day 
3, resulted in the suppression of EGF concentrations on Day 3. The 
underlying mechanisms by which heat stress on Day 0 impairs the 
endometrial EGF profile may be multifactorial. Most importantly, 
an elevated body temperature on Day 0 may induce similar changes 
in E2 and P4 concentrations to those found in RB and high-yielding 
cows [35]. The alterations in plasma steroid hormones suppresses 
the expression of EGF in the uterus since E2 and P4 are the primary 
regulators of EGF in the endometrium [45, 46]. Heat stress suppresses 
ovarian steroid hormone production by inhibiting the systemic 
endocrine system and ovarian cell activity [4]. Heat stress was 
previously shown to reduce the number of luteinizing hormone (LH) 
pulses in lactating dairy cows [50]. This may lead to a decline in E2 
secretion by granulosa cells. The exposure of cultured follicle tissues 
from dominant follicles to a high temperature (41.0°C) decreased E2 
production by approximately 30% from that in the control (37°C) [51]. 
Therefore, plasma concentrations of E2 at the time of luteolysis [52] 
and estrus [53] decrease under heat stress conditions. Furthermore, 
heat stress was found to suppress the LH surge during the natural 
estrous cycle in Guernsey heifers [54] and its release in response to 
gonadotropin-releasing hormone administration in dairy cows [55]. 
The suppressed LH surge may delay the time of ovulation and CL 
formation; therefore, increases in the plasma concentration of P4 
may be delayed.

A reduced blood flow to the uterus may also be one of the 
mechanisms by which heat stress decreased the endometrial EGF 
concentrations on Day 3. Blood flow to the uterus increases, par-
ticularly on the day of estrus (Day 0) with positive correlations to 
the increased estrogen concentration and the ratio of plasma E2/P4 
concentrations [56, 57]. However, the redistribution of blood flow 
from visceral organs, including the ovary and uterus, to the periphery 
occurs for thermoregulation during heat stress [32]. An elevated 
uterine blood flow in response to treatment with E2 in ovariectomized 
cows decreased under the heat stressed condition [58]. Decreased 
blood flow to the uterus under the heat stressed condition at estrus 
may reduce the supply of hormones including E2 to the endometrial 
tissues [32] and alter the endometrial EGF profile.

Elevations induced in body temperature by heat stress may 
have a direct adverse effect on the expression of EGF. A high body 
temperature has been suggested to exert detrimental effects on 
uterine cell functions [32, 59]. The exposure of the cultured bovine 
endometrium to a high temperature increased the synthesis of heat 
shock protein (HSP) 70 and HSP90 [28]. Since HSPs are part of the 
complex of proteins that associate with P4 and estrogen receptors 
[60–62], changes in HSP synthesis may alter the assembly, transport, 
or binding activities of steroid receptors. Therefore, heat stress may 
inhibit the effects of ovarian steroid hormones on EGF production 
in the uterus. A previous study demonstrated that an increase in 
the cellular levels of HSP90 at an elevated temperature negatively 
interfered with ER-dependent transcription [62].

The rectal temperature showed a relatively wide range from 
38.2°C to 40.8°C in the present study. This may be due to the dif-
ferences in cooling management of farms or the daily variation of 
ambient temperature and relative humidity. Difference in rectal 
temperature can also be attributed to the difference in susceptibility 
to heat stress of individual cows associated with the levels of milk 
yield [63]. Further, genetic variation for tolerance of heat stress in 
dairy cows [64] could be a potential cause since the specific single 
nucleotide polymorphisms of genes for tolerance to heat stress has 

been identified [65, 66].
The pregnancy rate of ET recipients showing an altered EGF 

profile during the summer months in the present study (6.3%, n = 32) 
was lower than that in a previous study that reported year-round ET 
results (33.3%, n = 87) [42]. However, the pregnancy rate of recipients 
with a normal EGF profile in the present study was similar to that in 
the previously reported (71.4 vs. 76.9%, respectively). Differences 
in pregnancy rates in recipients with an altered EGF profile may be 
associated with a combination of potential role of EGF in the regulation 
of luteal function via prostaglandin synthesis in the endometrium 
and heat stress-induced enhancements in luteolytic effects. The EGF 
peak on Days 13–14 (the second peak) appeared to be important 
for the maintenance of CL. Although the EGF concentration at the 
second peak was not examined in the present study, the absence and 
recovery of the first and second peaks coincided in approximately 
90% of cows [38]. The absence of EGF peaks would be associated 
with enhanced luteolytic effects because EGF increases the production 
ratio of PGE2/PGF2α [67] in the cultured endometrium and PGE2 
functions as a luteotropic agent [68]. Moreover, the adverse effect 
of the absence of EGF peak on luteolysis may become apparent 
since an elevated temperature enhances the secretion of PGF2α (i.e., 
luteolytic factor) from a cultured bovine endometrium collected on 
Day 17 of the estrous cycle [69, 70].

The pregnancy rate after ET between June and September (the 
summer period) in the present study (40.3%) was similar to that in 
a previous study, which was performed during the same season in 
the same region (43.7%, n = 197) [71]. The pregnancy rate in the 
present study was within the range of previously reported pregnancy 
rates after ET during the hot season (14.3–55.4%) [20, 21, 23–26, 
72–75], and higher than that of AI during the summer period in 
the commercial farms used in the present study (24.5%, n = 3863, 
data were obtained between 2016 and 2017) (unpublished data). 
Therefore, the present pregnancy rate after ET may be acceptable 
in summer trials. However, the present results indicated that heat 
stress, particularly on the day of estrus, decreased the pregnancy rate 
after ET through improper uterine functions that may be attributed 
to alterations in EGF profile. The pregnancy rate of ET in summer 
may be further improved by treatment targeting the uterine EGF 
expression [40, 41] or an intensive cooling around the day of estrus, 
which has been shown to increase the conception rate of AI during 
the summer period [76].

In conclusion, the present results indicate that impaired fertility 
under heat stress conditions is associated with an increase in the 
proportion of cows with an altered endometrial EGF profile. The 
pregnancy rate after ET was reduced in cows with a high body 
temperature on Day 0. This result cannot be explained by the direct 
effects of a high body temperature on periovulatory oocytes, sperm, 
and zygotes [32]. It suggests that heat stress causing an elevated body 
temperature (≥ 39.5°C) on Day 0, but not on Day 3, disturbed the 
endometrial EGF profile and increased embryonic loss.
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