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As the global burden of disease caused by multidrug resistant bacteria is a

major source of concern, credible clinical alternatives to antibiotic therapy,

such as personalized phage therapy, are actively explored. Although phage

therapy has been used for more than a century, the issue of an easy to

implement diagnostic tool for determining phage susceptibility that meets

current routine clinical needs is still open. In this Review, we summarize the

existing methods used for determining phage activity on bacteria, including the

three reference methods: the spot test, the double agar overlay plaque assay,

and the Appelmans method. The first two methods rely on the principle of

challenging the overnight growth of a lawn of bacteria in an agar matrix to a

known relative phage to bacteria concentration and represent good screening

tools to determine if the tested phage can be used for a “passive” and or “active”

treatment. Beside these methods, several techniques, based on “real-time”

growth kinetics assays (GKA) have been developed or are under development.

They all monitor the growth of clinical isolates in the presence of phages, but

use various detection methods, from classical optical density to more

sophisticated techniques such as computer-assisted imagery, flow-

cytometry, quantitative real-time polymerase chain reaction (qPCR) or

metabolic indicators. Practical considerations as well as information provided

about phage activity are reviewed for each technique. Finally, we also discuss

the analytical and interpretative requirements for the implementation of a

phage susceptibility testing tool in routine clinical microbiology.

KEYWORDS

phage (bacteriophage), susceptibility, clinical microbiology, diagnosis,
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Introduction

Bacteriophages or phages are the most abundant biological

entities on Earth (estimated at 1031) (Fuhrman, 1999; Fernández

et al., 2019). Phages are natural predators of bacteria that employ

the cellular machinery of their host for replication (Adesanya

et al., 2020). A productive infection starts with phage adsorption

to the bacterial cell surface, followed by injection of the viral

genetic material into the cytoplasm. Obligately lytic phages then

hijack or replace host cell genomic replication, transcription and

translation machineries for the production of new virions. The

last step involves the release of these newly produced virions

(Maura and Debarbieux, 2011). Viral progeny can then continue

the cycle by diffusing to new permissive bacterial hosts (Abedon

et al., 2011). These cycles, conducted on a global scale, account

for 20-50% of bacterial morta l i ty (Wommack and

Colwell, 2000).

Bacterial and phage populations co-exist through dynamic

evolution, and competition among them is one of the major

forces driving the evolution of both types of organisms

(Rodriguez-Brito et al., 2010). New phage functions are

constantly selected during evolution and constitute a

promising resource for potential therapeutic application

(Schoenfeld et al., 2010), especially in human bacterial

infections. Indeed, multidrug resistant (MDR) bacteria are an

increasing source of concern (Maura and Debarbieux, 2011), as

the pipeline of drugs targeting such bacteria is almost empty

(Kumarasamy et al., 2010).

The use of phages in human therapy began over a century

ago, in 1919, but was overshadowed a generation later in

Western countries when antibiotics were taken into use during

the Second World War (Gordillo Altamirano and Barr, 2019).

Seeing phage therapy as an alternative to Western advances in

antibiotic development and production, the former Soviet

Union, its satellite states and allies further developed it as a

parallel method of antimicrobial control (Abedon et al., 2011;

Pires et al., 2020). As antibiotic resistance is now perceived as the

current biggest threat to public health (Malik and Bhattacharyya,

2019), the medical application of phages is being reconsidered in

Western countries (Pires et al., 2020). Studies in Eastern Europe

have provided some evidence of phage efficiency in the

treatment of certain infections (Sulakvelidze et al., 2001;

Abedon et al., 2011; Międzybrodzki et al., 2012; Kincaid,

2019), such as skin or wound infection, pleural infection and

bacterial dysentery (for a systematic review of phage therapy

safety and efficacy in difficult-to-treat infections see Uyttebroek

et al. (2022)). However, clear efficacy data from randomized

controlled clinical trials remain scarce (Uyttebroek et al., 2022).

Despite abundant and promising pre-clinical work, randomized

controlled trials (RCTs) using fixed cocktails of phages, whether

or not produced according to Good Manufacturing Practice

(GMP), have repeatedly failed to show the expected efficacy
Frontiers in Cellular and Infection Microbiology 02
(Sarker et al., 2016; Jault et al., 2019; Leitner et al., 2021). The

premise of these cocktails, which are formulated following

extensive pre-clinical screening against large bacterial

collections, is to infect broad proportions of clinical strains of

a given pathogen. Administrated to patients while waiting for

confirmation of specific in vitro activity, they often either failed

to be effective against the patient’s strain, or were administered

at insufficient (much lower than expected) concentrations due to

compromised stability (Pirnay et al., 2011; Pirnay et al., 2018;

Rohde et al., 2018; Huang et al., 2019). This has led many to

propose the “personalized” model, where the cocktail is

formulated to contain phages that have been determined to be

active against the patient’s specific clinical isolate, as a more

credible path towards efficacious phage therapy (Pirnay et al.,

2011; Pirnay et al., 2018; Rohde et al., 2018).

Due to the high host-specificity of phages, the search for a

phage that lyses a particular bacterial strain often requires the

screening of large phage collections (Pires et al., 2020). While

numerous studies on the safety and efficacy of phage

preparations are currently being conducted in animal models

as well as in humans, no rapid laboratory test has been developed

so far that can be implemented to evaluate the susceptibility of a

bacterial strain to phages in a “routine” clinical microbiology

laboratory setting. Yet, in cases of acute infection, the timely

administration of an active treatment is crucial. Therefore, an

appropriate diagnostic method for determining phage

susceptibility in a clinically relevant time frame is a

prerequisite for the routine use of personalized phage therapy.

To consider phage therapy as a credible 21st century answer

or addition to failing antibiotics, developing appropriate reliable

testing methods that reach at least the same turn-around time as

current antibiotic susceptibility testing is now pressing. We

review here the methods available to assess the efficacy of a

phage library against a specific bacterial strain focusing on their

strengths and weaknesses: well-proven ‘historical’methods, such

as the double agar overlay plaque assay, the spot test, and the

Appelmans method; but also more emerging techniques are

addressed. Practical considerations from our daily experience in

a clinical microbiology laboratory and unmet needs for testing

and reporting phage activity are also discussed.
Current methods for bacteriophage
activity testing

The life cycle of an obligately lytic tailed phage can be

disambiguated into the following sequential steps: virion

interaction and adhesion to the bacterial cell (adsorption

period), nucleic acid translocation, latent period, and progeny

release (Hyman and Abedon, 2009). The duration of these steps,

together with the number of phage progeny produced (phage

burst size), are parameters that influence a phage’s activity
frontiersin.org
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against a bacterial strain. Furthermore, a phage can kill a

bacterial cell without being able to replicate at its expense

(without releasing progeny), as phenomena such as “abortive

infection” or “lysis from without” can occur (Hyman and

Abedon, 2009; Abedon et al., 2011).

In addition, bacterial phage resistance mechanisms may act

at different stages of the infection: at the “adsorption” stage (loss

or absence of receptor, physical barriers), leading to impaired

adsorption of the phage to the bacterium; or later on (phage-

genome uptake blocks, restriction-modification, CRISPR…),

preventing the release of infectious phage particles from the

infected cell (Khan Mirzaei and Nilsson, 2015). As all these

parameters can affect the clinical success of phage therapy, the

extent to which each testing method is able to detect and/or

estimate them is of importance. The double agar overlay plaque

assay and the spot test are both widely considered as reference

methods and both rely on the principle of challenging the

overnight growth of a lawn of bacteria in an agar matrix to a

known concentration of phage (Carlson, 2005).
Double agar overlay plaque assay

Originally developed by André Gratia (Gratia, 2000) and

formalized by Mark Hancock Adams (Adams, 1959), the double

agar overlay plaque assay is a quantitative method on solid

medium where a densely growing culture of bacteria is exposed

to multiple phage dilutions, using one Petri dish per phage

dilution. The relative phage to bacteria concentration is known

as multiplicity of infection (MOI) input. Phage preparations are

mixed with the bacterial strain in a molten 0.6% agar matrix and

dispersed evenly onto solid 1.5% agar medium (Kropinski et al.,

2009) (Figure 1B). If the phage is capable of propagating on the

bacterial strain, the replication-lysis-infection cycle of the phage

starts and propagates, being constrained to the surrounding agar

gel area. After overnight incubation, the host bacterium forms a

lawn on the solid medium, except where infectious phage

particles have lysed bacterial cells, propagating outward from

an infectious centre. This forms what is known as a “plaque”, a

zone without bacterial growth caused by the propagation of one

phage particle.

A visible plaque is a complex emergent phenomenon that

reflects several critical properties of a phage as it relates to a

particular bacterial strain. Indeed, plaque assay demonstrates

that not only does the phage kill a bacterial isolate, but that it

successfully adsorbs to the relevant bacterium, produces and

releases phage progeny (productivity) to infect more cells

(propagation). Thus, the formation of a true plaque

demonstrates that the phage is not only able to undergo all

steps of the lytic cycle, but that the cycle is able to continue in a

self-supplying way. The titration of the specific activity of the

phage preparation against the bacterium tested is also possible:

as the phage suspension mixed with the bacteria is spread out
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over the complete Petri dish, the number of plaques per plate can

be counted as “plaque forming units” (PFU) and reported to the

volume of phage dilution added, to end with the titre of the

starting suspension expressed in PFU/mL (see Figure 1C).

Furthermore, the relative activity of a phage against a specific

clinical bacterial strain can also be expressed as compared to its

activity against the reference host strain (titred in parallel

through this method). This is expressed as its “Efficiency of

Plating” (EOP):

EOP =
(PFU=mL)tested bacterium

(PFU=mL)reference host bacterium

EOP can either be expressed as a positive real number or as a

percentage. While, by definition, the EOP of the phage against its

reference host strain is 1 (or 100%), its EOP against a test

bacterial strain can either be below or above 1, following its

activity on that particular strain. As an example, some authors

even use to categorize phage activity against test bacterial strains

as high (0.1< EOP), moderate (0.005< EOP< 0.099), low (EOP<

0.005), or inexistent (no plaques detected) (Green et al., 2017).

Besides EOP, the double agar overlay plaque assay allows to

study the plaques’ morphology and size which are also of

importance when evaluating phage activity as they can vary

according to the phage’s size, its latency period, burst size and

diffusion rate (Figures 1E–P).

From a clinical point of view, double agar overlay plaque

assay indexes if a phage can be used as an “active” treatment (see

Glossary), which is, by definition, dependent on both bacterial

lysis and in situ phage proliferation (Abedon, 2017).
Spot test

A pure culture of a bacterial strain is diluted in a molten agar

matrix (top agar 0.3% to 0.8%) and dispersed evenly in a Petri

dish onto solid agar medium (bottom agar 1.5%) so that it can

grow into a bacterial lawn. After solidification of the top agar

matrix, a small defined volume (usually 10 µL) of a known

dilution of phage suspension, is dropped on the top

agar (Figure 1B).

Drop deposition is typically repeated on the same dish,

either to test the sensitivity of the bacterial strain to an array

of different phages or to multiple successive dilutions of the same

phage, to determine a titre. The titre is determined by counting

the number of individual plaques within the area of spots at

terminal dilutions that show activity (see Figure 1D). Of note,

when using high phage concentrations, ‘false positive’ results can

occur as phenomena such as lysis from without or abortive

infection can produce a unique large clear zone (Xie et al., 2018).

Consequently, from a clinical point of view, a unique large clear

zone only suggests, as a proximate outcome, that the phage

preparation can at least be used as what is called a “passive”

treatment, where only cell killing needs to occur, with or without
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1000721
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Daubie et al. 10.3389/fcimb.2022.1000721
FIGURE 1

Spot test and double agar overlay plaque assays. Top: Graphical representation of the different layers deposited in a Petri dish for (A) a double
agar overlay plaque assay and (B) a spot test. Middle: Illustration of the testing of the effect of a PEV2 phage suspension (~1011pfu/ml) on a
Pseudomonas aeruginosa isolate by (C) a double agar overlay plaque assay (the dilution illustrated here is 10-9) and (D) a spot test using ten-fold
serial dilutions of the phage (10-6 to 10-11 as indicated). D2: Enlargement of the dilution 10-6 spot showing a completely clear (non-turbid) spot
indicating that phages killed the tested bacteria. D3: The 10-9 dilution spot leads to distinguished plaques. In both (C) and D3, the titration of
phage, expressed in PFU/mL, can be determined by counting the number of plaques, reported to the concentration and the volume of the
phage suspension engaged. In the case illustrated in C, approximately 41 plaques are observed for a plaque assay performed with 100µL of the
10-9 dilution. The titer is thus calculated as follows: T = 41 pfu/(10-1mL*10-9) = 41*1010 pfu/mL Bottom: Examples of different forms and shapes
that can be observed in double agar overlay plaque assays [(E–J) – white background] and spot tests [(K–P) - black background] using 3
different phages (LUZ19, 14/1 and PEV2) on 6 different P. aeruginosa isolates. Plaques size is influenced by multiple phage’s intrinsic factors such
as its size, latency period and burst size. (E) large plaques with halo indicating in situ phage propagation and amplification; (F) clear intermediate
to small plaques with halo, (G) Intermediate clear plaques. I: turbid plaques. In both (E, F), the clear zones in the plaques indicate in situ phage
replication, the turbid halo around the clear zone indicates that the phage replication in this zone does not lyse all the bacterial cells, but slows
their growth noticeably enough that you can distinguish the slight disturbance on the solid medium. If this happens with high enough frequency
all the plaque will look turbid, as observed in (I); (H, J) clear small and tiny plaques indicating in situ lytic phage replication and propagation. (K)
clear lytic spot, indicating phage killing. In situ amplification of phages might occur as well, but is not detected by the method; (L) clear spot
with few re-growing colonies suggesting pre-existing resistance or in vitro occurring of resistance mechanism; (M) turbid spot, and (N) slight
disturbance of the lawn (very faint halo). Both (M, N) are indicative of abortive infection (limited phage propagation); (O) several plaques with
slight disturbance to lawn, and (P) numerous clear to turbid plaques with slight disturbance to lawn. Both (O, P) might indicate the presence of a
temperate phage in the tested bacterial population.
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complete phage replication cycle (Abedon, 2017). Some authors

underline the importance of using low titres of phage when

investigating its capacity to both lyse the host strain and produce

new virions (de Melo et al., 2019). Other consider that the spot

test should only be used as qualitative activity detection method

that has to be confirmed by double agar overlay plaque assay

(Glonti and Pirnay, 2022).
Appelmans method

This method was first developed in the 1920s by René

Appelmans for phage titration in liquid media (Appelmans,

1921). Of importance, the term refers to a multiplicity of

variations of the process by which a phage (or a cocktail of

phages) is grown iteratively in liquid cultures of one or several

bacterial host(s) to increase its activity, inhibit the emergence of

phage-resistant bacterial mutants, extend its host range (in vitro

directed evolution of phages), or assess the stability of its activity

(Mapes et al., 2016; Burrowes et al., 2019). Schematically, in its

use as a diagnostic technique, the Appelmans method monitors

the competition of a phage and a bacterial strain in a liquid

culture medium over time (either in series of tubes or in 96 well

plates). After overnight incubation, the culture is watched for

visible lysis, indicating productive infection. Then over a three-

day time span, the appearance of “re-growth” by resistant

mutants is repeatedly watched for. The longer the medium

stays clear, the more active the phage is against that strain.
Other methods

The three historical methods mentioned above possess the

great advantage of not requiring sophisticated or expensive

material. However, these elaborate techniques require long

hands-on times, overnight incubation and highly skilled and

well-trained operators. Furthermore, as both plaque and spots

can show a wide range of size, shape and clearance

(Figures 1E–P), the results are interpretative, thus subject to

interpersonal variations and subjectivity.

Numerous methods have recently been developed to

overcome these drawbacks. These new methods mostly rely on

the same fundamental principle as historical reference methods,

which is to challenge bacterial growth with phages, either on

solid agar or (for most of them) in liquid media. The innovations

lie in [1] the automation (of the whole process and/or the

detection step) reducing time and resource-consumption and/

or [2] the use of new, more sophisticated detection techniques,

allowing to move from qualitative “end point” results (naked eye

visual observation) to quantitative measurements that, if made

iteratively, enable “real-time” results, mathematical-based data

analysis and long-term saving of results.

For instance the use automatable pipetting robots and

microtiter plates, combined to digital iterative measures applied
Frontiers in Cellular and Infection Microbiology 05
to a liquid-based Applemans technique allows to generate

dynamic growth curves, making possible to accurately calculate

bacterial growth reduction. These emerging techniques based on

“real-time” growth kinetics all monitor the growth of clinical

isolates in the presence of phages but use various detection

methods (Table 1), going from classical optical density (OD) to

more sophisticated techniques that dynamically index either

bacterial cells viability status (live, damaged and dead cells) such

as flow-cytometry -based techniques or specifically target living

bacterial cells, such as metabolic indicators [in particular

Tetrazolium Dye (TD) - for a comprehensive review, see

(Braissant et al., 2020), or quantitative real-time polymerase

chain reaction (qPCR)]. OD and TD growth kinetics assays

(GKA) both possess the double advantage of being potentially

high-throughput and to explore both logarithmic and stationary

bacterial growth phases. But, while bacterial debris caused by lysis

may contribute to underestimate the phage lytic activity using the

OD values, the use of TD, measuring respiration, allows to exclude

the dead cells and other debris from the measurement.

Furthermore, TD assays based on the OmniLog™ system also

allow for more complex analyses, such as phage-antibiotic synergy

(Henry et al., 2012). This is nowadays a substantial asset, as

experts are increasingly agreeing that phages will more probably

be used in combination with antibiotics rather than totally replace

those (Glonti and Pirnay, 2022).

By contrast, instead of monitoring bacterial growth,

computer-assisted imagery techniques applied to solid agar

plaque assay allow to index the number and the growth kinetics

of viral plaque formation in a much shorter turnaround time

(TAT) than the traditional plaque assays. Moreover, it allows the

detection of phage-resistant bacterial microcolonies inside the

boundaries of plaques and can thus track phage resistance, as

bacterial re-growth of initially phage-sensitive bacteria still

requires phage plaque and bacterial colony formation on agar

(Perlemoine et al., 2021; Glonti and Pirnay, 2022).

However, as they usually necessitate large and/or expensive

devices, all these technically faster and/or less hands-on time

consuming approaches are often restricted to reference

laboratories. This implies a subsequent increase of turnaround

time due to the delay needed to ship clinical isolates to the core

facilities where these tests are implemented. Most important is the

total lack of standardization between these methods, let alone the

absence of standardized “breakpoints” to determine if a phage has

adequate activity to be clinically used. As learned with traditional

antibiotics, such technical and interpretation standards are the

cornerstone of an efficient antibacterial activity evaluation.

In summary, while more advanced technologies and

techniques are emerging, the overlay plaque assay continues to

represent the gold standard in determining the susceptibility of

bacterial strains to phage, as it explores the phage-host

interaction comprehensively (covering multiple rounds of

infection, lysis, and release of progeny) in a relatively short

(24-48 h) time span.
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TABLE 1 Features overview of several methods currently used for phage susceptibility determination.

Methods Principles Flexibility Equipment- infrastructure Ref.

Custom
range

(phages/
bacteria)

Specific
equipment

Specific
reagents/

consumables

Expertise

Yes/Yes No No +++ (Khan
Mirzaei and
Nilsson,
2015)

Yes/Yes No No +++ (Khan
Mirzaei and
Nilsson,
2015;
Abedon,
2017; Green
et al., 2017)

Yes/Yes Yes No + (Perlemoine
et al., 2021)

Yes/Yes No No + (Appelmans,
1921)

Yes/No Yes Yes ++ (Liu et al.,
2014)

Yes/Yes Yes Yes ++ (Low et al.,
2020; Melo
et al., 2022)
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Short description EP/
RT

TAT
(h)*

Hands-
on

Detection Throughput Need of
a ref.
strain

Agar
matrix
culture

Ref. Spot test Challenging in a Petri dish the growth in the
agar matrix of a bacterial lawn with drops of
phage suspension. After overnight incubation,
a lysis zone (spot) is visible in areas
corresponding to the drop sites of active
phages.

EP 18 ++
(Manual)

NE,
Automation
possible

Medium No

Ref. Overlay
plaque
assay

Growing multiple preparations composed of a
same titration of a bacterial host with
different phage dilutions, in a molten agar
matrix and dispersed evenly onto solid agar
(one Petri dish per preparation). After
overnight incubation, a “plaque” is a zone
where bacterial growth was prevented by the
effect of the phage.

EP 18 +++
(Manual)

NE,
Automation
possible

Low Yes (EOP
calculation

GKA using
imaging of
plaque growth

Counting and monitoring of plaque growth
(see plaque assay) kinetics of a plaque assay
using computer-assisted lensless device
imaging.

RT 3- 18 ++
(Manual)

Automated Low No

Liquid
culture

Ref. Appelmans Monitoring the competition of a phage and a
bacterial strain in a liquid culture medium
over time (either in series of tubes or in 96
well plates). Over a three days’ incubation,
the culture is first watched for visible lysis,
then for appearance of “re-growth” by
resistant mutants.

EP 18-72 ++ (Manual/
Semi-
automated)

NE,
Automation
possible

Medium/high No

GKA using PMA
- qPCR

Enumeration of bacterial cells surviving
phage exposure in a liquid culture using
propidium monoazide, a microbial
membrane-impermeable dye that inhibits
amplification of extracellular DNA and DNA
within dead or membrane-compromised cells
prior to amplification by qPCR using
bacterial specific primers

RT 5 ++ (Manual/
Semi-
automated)

Automated Medium/high No

GKA using Flow
cytometry

Enumeration and viability status evaluation
(live, damaged and dead cells) of bacterial
cells exposed to phages in a liquid culture,

EP/
RT

1-2 ++
(Manual)

Automated Medium No
)
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TABLE 1 Continued

Methods Principles Flexibility Equipment- infrastructure Ref.

EP/
RT

TAT
(h)*

Hands-
on

Detection Throughput Need of
a ref.
strain

Custom
range

(phages/
bacteria)

Specific
equipment

Specific
reagents/

consumables

Expertise

a

ed

RT up to
12

+
(Automated)

Automated High No Yes/Yes No No + (Xie et al.,
2018)

ed

(Xie et al.,
2018;
Duplessis
and Biswas,
2020)
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Short description

based on light scattering and fluorescence
using live/dead dyes

GKA using
Optical density

Optical density real-time measurement of
liquid bacterial culture in the presence of
phages in a 96 well plate using an automa
plate reader optical density over time in a
incubating, aerated environment.

GKA using
Tetrazolium Dye

Colorimetric real-time measurement of a
liquid bacterial culture in the presence of
phages in a 96 well plate using an automa
plate reader. The signal is produced by
metabolically active cells reducing a
tetrazolium dye.

EP, EndPoint; EOP, Efficiency of Plating; qPCR, quantitative real-time Polym
bacterial culture.
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Laboratory requirement

Many of the logistical challenges currently faced regarding

the development of new diagnostic tests in support of phage

therapy have been gradually overcome in the past for

Antimicrobial Susceptibility Testing (AST), which currently

directs antibiotic therapy: protocols and infrastructure exist to

collect patient samples, in a variety of indications, and to

generate pure cultures of the causative bacterial agents. While

classical AST procedures still require up to 18 hour of additional

incubation after the production of a pure culture isolate,

emerging techniques tend to reach an actionable antibiotic

susceptibility profile within one to two hours, starting from a

pure bacterial culture. For phage susceptibility, the TAT still

remains a logistic challenge. In order to turn personalised phage

therapy into a clinically relevant alternative or addition to

antibiotic therapy, any “Phage Susceptibility Testing” (PST)

method should at least meet both the TATs and the technical

feasibility of existing AST techniques. Ideally, they should also fit

into existing clinical sampling protocols and analytical flows.

As many as possible of the following specifications should

also be met:
Fron
- high sensitivity and specificity

- high throughput

- random access (as opposed to bulk or batch requirement)

- inexpensive disposables or equipment requirement

- user friendliness (as opposed to the need of highly skilled

and trained technical staff)

- low TAT (definitely not longer than the time needed for

AST)

- clear-cut standardized results (as opposed to interpretative

results)
In addition, unequivocal results and easiness of

understanding by clinicians are cornerstones for a broad use

of phage therapy, as it would ease the translation into

standardized clinical actions. A categorical format such as the

“sensitive, intermediate, resistant” (SIR) classification currently

used to report antibiotic activity against bacteria, would be ideal.

Green et al., for example, proposed a four categories

classification (strong, intermediate, weak killer and no killing)

based on EOP (Green et al., 2017).
Regulatory considerations

When developing new medical devices for in vitro diagnostic

use in Europe, one needs to comply with Regulation (EU) 2017/

746 of the European Parliament and of the Council of 5 April

2017 on in vitro diagnostic medical devices (IVDR) and to fulfil
tiers in Cellular and Infection Microbiology 08
its requirements (Verbeken et al., 2007; EUR-Lex, 2017). A CE-

label obtained through a certification procedure with a Notified

Body is necessary to sell the device on the European market, as

this device will probably fall under class C. As for other

diagnostic tools assessing antimicrobial susceptibility, a

diagnostic test for directing phage therapy would be

considered as a medical device for in-vitro diagnostic use with

the intended purpose of testing the effectiveness of a specific

treatment; the specific treatment being here the phage therapy

(European Commission - Public Health, n.d). These IVDR

requirements include clinical performance studies validating

the ability of the device to correlate with in-vivo observations.
Conclusions

Easy access to phage therapy is a challenge that we urgently

need to overcome in the light of the increasing burden of MDR

bacterial infections. Due to their relatively long TATs and a lack

of standardisation, current phage susceptibility tests are not

suitable for routine use in hospital clinical microbiology

laboratories. The development of new user-friendly

technologies providing clinically high-throughput and “easy-

to-interpret” phage susceptibility testing in a timely manner is

essential for a widespread clinical implementation of

phage therapy.
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Glossary

Abortive
infection

phage infection that ends with both bacterial and phage death.

Active
treatment

phage therapy achieving both lysis and “actively” produce new
virions for eliminating the target bacteria, as opposed to a passive
treatment where phages kill bacteria but do not replicate
themselves to achieve the elimination of the target bacteria.

Burst size average number of phage particles produced per lysed
infected bacterium

Latent
period

duration of a phage infection, begins with attachment and nucleic
acid translocation into the bacterial cell, and (for obligately lytic
phages) ends with bacterial lysis.

Lysis from
without

bacterial lysis occurring at the adsorption stage, resulting from
the disruption of the cell wall either due to multiple
phage adsorption or to the action of phage lysins. This lysis -as
opposed to the lysis occurring at the end of a phage life cycle
(lysis from within)- does not release progeny, and can be
considered as a form of abortive excessive multiple infection.

Multiplicity
of infection

ratio of infecting phages to bacterial target cells. When referring
to a suspension of bacterial cells inoculated with phages particles,
the added ratio can be referred to as “MOIinput”, whereas the
terms “MOIactual ” or “multiplicity of adsorption” refer to the
actual adsorbed ratio, counting only those phages that have
attached to and then infected bacteria

Obligately
lytic (as
opposed to
temperate
or chronic)
phage

Obligately lytic phages exclusively attempt to take over the
machinery of the cell, lyse it, and release new phage particles.

Plaque small area without bacterial growth, observed in mixed
suspension of bacteria and phages incubated in agar gel. It
indicates that phages have replicated, lysed the bacteria and
propagated in this area.

Productive
infection

a phage infection that directly leads to the maturation and release
of phage progeny

Reference
host strain

usually the bacterial strain from which the phage has first been
isolated or is produced.

Resistant
bacterium

any bacterial strain that a particular phage is unable to replicate
in

Spot growth inhibition observed in a zone of a bacterial lawn where a
phage suspension was dropped before incubation (spot test). A
spot formation indicates the phage suspension was able to inhibit
the bacterial lawn formation rather than phage infection and/or
adsorption had indeed occurred.

Temperate
phages

phages with the capacity to silence host lethal genes and persist in
their host cell incorporating their nucleic acid into the hosts’
chromosome.
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