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Abstract

Purpose: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine expressed by urothelial cells that
mediates bladder inflammation. We investigated the effect of stimulation with thrombin, a Protease Activated Receptor-1
(PAR1) agonist, on MIF release and MIF mRNA upregulation in urothelial cells.

Materials and Methods: MIF and PAR1 expression was examined in normal human immortalized urothelial cells (UROtsa)
using real-time RT-PCR, Western blotting and dual immunostaining. MIF and PAR1 immunostaining was also examined in rat
urothelium. The effect of thrombin stimulation (100 nM) on urothelial MIF release was examined in UROtsa cells (in vitro)
and in rats (in vivo). UROtsa cells were stimulated with thrombin, culture media were collected at different time points and
MIF amounts were determined by ELISA. Pentobarbital anesthetized rats received intravesical saline (control), thrombin, or
thrombin +2% lidocaine (to block nerve activity) for 1 hr, intraluminal fluid was collected and MIF amounts determined by
ELISA. Bladder or UROtsa MIF mRNA was measured using real time RT-PCR.

Results: UROtsa cells constitutively express MIF and PAR1 and immunostaining for both was observed in these cells and in
the basal and intermediate layers of rat urothelium. Thrombin stimulation of urothelial cells resulted in a concentration- and
time-dependent increase in MIF release both in vitro (UROtsa; 2.8-fold increase at 1 hr) and in vivo (rat; 4.5-fold) while heat-
inactivated thrombin had no effect. In rats, thrombin-induced MIF release was reduced but not abolished by intravesical
lidocaine treatment. Thrombin also upregulated MIF mRNA in UROtsa cells (3.3-fold increase) and in the rat bladder (2-fold
increase) where the effect was reduced (1.4-fold) by lidocaine treatment.

Conclusions: Urothelial cells express both MIF and PAR1. Activation of urothelial PAR1 receptors, either by locally generated
thrombin or proteases present in the urine, may mediate bladder inflammation by inducing urothelial MIF release and
upregulating urothelial MIF expression.
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Introduction

Macrophage migration inhibitory (MIF), the earliest identified

cyokine, was originally described as produced by activated T cells

and capable of stopping the random migration of macrophages in

vitro [1,2]. Presently, MIF is recognized as a pleiotropic cytokine

that functions as a pivotal mediator of acute and chronic

inflammation and is synthesized by a variety of cell types and

organs [3–5].

MIF is constitutively expressed by urothelial cells and mediates

inflammation in the bladder [6,7]. Inflammatory stimuli elicit MIF

release from the urothelium into the bladder lumen and

upregulation of MIF expression by the bladder in general and

urothelium in particular [8,9]. Released luminal MIF binds and

activates receptors for MIF expressed by urothelial cells [10,11] to

induce a cascade of other inflammatory cytokines to be produced

by the bladder and urothelium [8,9]. Therefore, release of

urothelial preformed MIF and activation of MIF production in

the bladder (and urothelium in particular) by inflammatory stimuli

are key elements in MIF-mediated bladder inflammation.

Understanding the triggers evoking urothelial MIF release is an

important component of understanding how cystitis is developed

or maintained.

Protease activated receptors (PAR) are a unique class of

receptors that carry their own ligands tethered to the receptor

complex. Proteases clip and free the tethered ligand to bind to the

receptor and mediate signal transduction [12,13]. To date, four

different PAR receptors have been identified and they are
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implicated in mediating inflammation and pain, among other

functions [12–14]. Thrombin is a serine protease with high affinity

for PAR1 and much lower affinity for PAR4 receptors [12,15].

Recently, thrombin was shown to elicit MIF release and MIF

mRNA upregulation from human endothelial cells in vitro [16,17].

Moreover, a specific PAR1 agonist also elicited MIF mRNA

upregulation establishing that thrombin-mediated MIF effects are

due to its well-described affinity for PAR1 receptors [16].

PAR receptors, although not studied in extensive detail in the

urogenital tract [18], have been described in primary human

urothelial cells and urothelial cancer cells in vitro [19–21]. In

addition, PAR1-4 receptors were described in mouse urothelium

[22], while only PAR2-4 receptors have been examined in the rat

bladder [23]. Given that urothelial cells express PAR1 receptors

and also constitutively synthesize MIF and release MIF (as

reviewed above) in response to inflammatory stimuli, we

hypothesized that thrombin would elicit MIF release from

urothelial cells. Therefore, as part of our investigation of MIF-

mediated bladder inflammation, we examined whether: 1)

Transformed normal human urothelial cells expressed PAR

receptors in general, and PAR1 receptor specifically and also

whether they express MIF; 2) the location of PAR1 receptors (since

it had not been described) and MIF in rat urothelium; 3) whether

thrombin stimulation elicits MIF release from human urothelial

cells in vitro and from rat urothelial cells in vivo and 4) whether

thrombin stimulation elicits MIF upregulation in human urothelial

cells in vitro and from rat urothelial cells in vivo.

Results

UROtsa cells express MIF and PAR receptors
Since MIF and/or PAR receptors had not been studied in

UROtsa cells, we examined expression of these two proteins in

UROtsa cells. RT-PCR showed that UROtsa cells constitutively

expressed MIF (Fig. 1A) and PAR receptors 1 through 4 (Fig. 1B).

In addition, MIF was identified in UROtsa cell lysates using

western blotting (Fig. 1C). A strong band at 12 kDa was identified,

corresponding to monomeric MIF (Fig. 1C; arrow). Two

prominent higher molecular weight MIF bands were also detected

at approximately 80 and 120 kDa (Fig. 1C) corresponding to MIF-

complexes, as described in other systems [24,25].

PAR1 and MIF immunostaining in urothelium
We tested three different PAR1 antibodies for their ability to

detect PAR1 in formaldehyde-fixed rat bladder sections and

compared the results to snap-frozen bladder cryostat sections that

were post-fixed with acetone-PBS. We also compared the effects of

formaldehyde fixation vs acetone-PBS fixation on PAR1 immu-

nostaining in UROtsa cells. Of the three different antibodies

tested, only one (Goat anti-PAR1; R&D Systems) gave positive

results and only in acetone-fixed tissue. Consistently, formalde-

hyde fixation abolished PAR1 immunostaining in rat bladder

when compared to acetone fixation. Formaldehyde fixation also

reduced PAR immunostaining intensity in rat dorsal root ganglia

[23]. UROtsa cells immunostaining was not diminished by

formaldehyde fixation.

We examined PAR1 and MIF immunostaining in UROtsa cells

and rat urothelium using scanning laser confocal dual immuno-

fluorescence. UROtsa cells showed MIF and PAR1 immunostain-

ing. Figure 2 shows a representative field of UROtsa cells

displaying MIF (Fig. 2A) and PAR1 (Fig. 2B) immunostaining

individually and an overlay of the two fields (Fig. 2C). PAR1

immunostaining was located mostly on the cell surface, although

cytoplasmic staining was also noted (Fig. 2B). Cells that showed

PAR1 immunostaining also displayed MIF immunostaining

(Fig. 2C). However, considerable heterogeneity of PAR1 immu-

nostaining was observed with some cells showing intense PAR1

immunostaining while other cells were devoid of PAR1 or MIF

immunostaining (Fig. 2C; arrows). The percent of unlabeled

(showing neither MIF nor PAR1 immunostaining) UROtsa cells

(determined by counting unlabeled cells in 20 separate fields at 20x

magnification in two separate experiments) was 13:1%+0:7
(S.E.M.). Immunohistochemistry control slides where primary

antisera had been omitted showed no immunofluorescence (except

for nuclear staining with DAPI; Fig. 2D–F). Also, slides where one

of the primary antisera was omitted showed only immunofluores-

cence appropriate in the appropriate wavelength (not shown).

In rat urothelium, basal and intermediate cells showed MIF

immunostaining, while superficial cells were lightly immuno-

stained or devoid of MIF immunostaining (Fig. 2G) as reported

earlier [7]. Co-immunostaining with PAR1 revealed immunoflu-

orescence also in basal cells, where it appeared stronger, and in

intermediate cells but not superficial cells (Fig. 2H). Similar to

results in UROtsa cells, PAR1 staining was not homogeneous and

areas of relatively intense staining were interspersed with areas of

weaker PAR1 immunostaining. Composite images showed that

PAR1 and MIF immunostaining was limited to basal and

occasional intermediate cells (Fig. 2I). Sections where primary

antisera had been omitted showed no immunofluorescence (not

shown) and omission of either one of the primary antibodies

resulted in fluorescence only in the appropriate wavelength (not

shown).

Thrombin evokes MIF release and upregulates MIF mRNA
UROtsa cells

We examined release of MIF into the culture media by UROtsa

cells in response to different concentrations of thrombin. Figure 3A

shows that thrombin stimulation in the range of 10 nM to 200 nM

increased MIF released into the culture media in a concentration-

dependent manner. The EC50 was determined to be 47.5 nM.

Because a small amount of endotoxin was detected in the

thrombin stock (14 EU endotoxin/mg thrombin), and since

endotoxin can elicit MIF release [26], experiments were

Figure 1. UROtsa cell constitutively express MIF and PAR
receptors. Results from RT-PCR experiments showed that UROtsa cells
express MIF mRNA (A) and all 4 PAR receptors (B; lanes 1–4 represent
PAR1-4 respectively). MIF Western-blotting of UROtsa homogenates (3
representative samples included; C) showed a strong band at
approximately 12 kDa corresponding to monomeric MIF (arrow). In
addition, 2 distinct MIF bands were observed at higher molecular
weight (approximately 80 and 120 kDa) corresponding to MIF binding
to protein complexes as described in other systems [24,25].
doi:10.1371/journal.pone.0015904.g001

MIF and PAR1 in Urothelium
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conducted to rule out that MIF release is due to endotoxin.

Stimulating UROtsa cells with 100 nM thrombin significantly

increased the amount of MIF released into the culture media when

compared to vehicle control (sterile saline: 65.1+7.4 ng MIF/ml;

thrombin: 203.9+14.6; pv0.001). The effects of treatment with

heat-inactivated thrombin (100 nM; 73.7+9.9 ng MIF/ml) were

not different from control treatment.

We also examined the time course of MIF release into the

culture media by UROtsa cells in response to thrombin

stimulation (100 nM). Untreated cells (serving as controls) were

exposed to media only (no thrombin treatment) for the duration of

the experiment (180 min). Media collected from UROtsa cells

after thrombin stimulation showed a statistically significant

increase in the median amount of MIF at 15 minutes of exposure

and reached a maximal effect at 60 minutes of exposure (Fig. 3B).

Longer exposure times (90, 120, 180 min) did not produce any

further MIF release however MIF amounts remained elevated in

the culture media through the observation period (Fig. 3B). In

addition, real-time RT-PCR results showed that stimulation with

thrombin (100 nM) for 1 hour resulted in an increase in MIF

mRNA in UROtsa cells (3.3-fold increase; pv0.05; Table 1) when

compared to untreated UROtsa cells.

Thrombin evokes MIF release from rat bladder and
upregulates bladder MIF mRNA

We also examined the effect of in vivo thrombin stimulation on

MIF release from the rat bladder. Our results show that treatment

with intraluminal thrombin elicited MIF release from the rat

bladder (Fig. 3B). In the control group receiving only saline in the

intraluminal fluid, the median MIF amount was 1.26+0.4 ng

MIF/ml. Intraluminal thrombin (100 nM) for 1 hour increased

the median amount of MIF in the intraluminal fluid to

5.68+0.6 ng MIF/ml, a 4.5-fold increase over control (saline

treatment) that was statistically significant (Fig. 3B; pv0.01).

Concomitant treatment with intraluminal lidocaine (2%) and

100 nM thrombin reduced (compared to thrombin only treat-

ment) the median amount of MIF in the intraluminal fluid to

2.82+4.3 ng MIF/ml, although this amount was still increased

compared to control (2.2-fold increase; pv0.05). There was a

large variability in the amounts of MIF detected in the lidocaine +
thrombin treated group, as reflected in the larger IQR (when

compared to the other two groups). In fact, 2/6 rats in this group

had intraluminal MIF amounts that were similar to the thrombin

only group. Real time RT-PCR showed that thrombin stimulation

resulted in upregulation of MIF mRNA in the bladder (2-fold

increase compared to saline treatment; pv0.001; Dunnet’s test)

while treatment with lidocaine reduced the effect of thrombin on

MIF mRNA upregulation (1.4-fold increase when compared to

saline treatment) so that it was not statistically significant from the

saline treatment group (Table 1).

Discussion

The present study shows that: 1) urothelial cells (human and rat)

express PAR1 receptors and MIF; 2) Thrombin stimulation of

urothelial cells evokes MIF-release in vitro and in vivo and 3)

Thrombin stimulation also induces MIF upregulation in urothelial

cells in vitro and in vivo. These results indicate that activation of

PAR1 receptors mediates MIF release from urothelial cell which

can then mediate MIF-mediated bladder inflammation, given

MIF’s pro-inflammatory role in the bladder [6]. Therefore,

Figure 2. MIF and PAR1 immunostaining in urothelial cells. Representative samples from MIF, PAR1 immunostaining and an overlay showing
both and nuclear staining (DAPI; blue). UROtsa cells displayed MIF (A) and PAR1 (B) immunostaining simultaneously in the same cell (C; overlay).
However, a number of cells were observed that displayed neither immunostaining (C; arrows) and only showed nuclear staining. Control slides where
primary antisera had been omitted (D;E) showed only nuclear staining (F). In rat urothelium, MIF immunostaining was detected in basal and
intermediate cells with surface cells displaying weak or no MIF immunofluorescence. PAR1 immunostaining was also observed in rat urothelium,
mainly on basal cells but also in some intermediate cells (H) while surface cells showed no PAR1 staining. Overlay of the single staining panels
showed that basal cells and some intermediate cells were positive for both MIF and PAR1. Calibration bar = 20 mm.
doi:10.1371/journal.pone.0015904.g002

MIF and PAR1 in Urothelium
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thrombin-induced MIF release represents another mechanism to

initiate MIF release from the urothelium, aside from nerve-

mediated release which has already been described [27,28].

Expression of PAR1 and PAR2 receptors was described for

normal human urothelial cells and an urothelial cancer cell line

(RT4) [19,20] and these receptors were shown to be functional

since they respond to agonist stimulation [20]. Expression of

PAR1-4 receptors has also been reported for an additional human

urothelial cancer cell line (J82) however, receptor functionality was

not investigated [21]. In the current study we document (using

RT-PCR) expression of PAR receptors 1 through 4 in normal

transformed human urothelial cells (UROtsa) [29,30]. In addition,

we document that UROtsa cells express MIF and we show, using

dual-immunofluorescence that UROtsa cells can express PAR1

and MIF simultaneously. We observed heterogeneity in PAR1

(and MIF) immunostaining in most of these cells with approxi-

mately 13% not displaying immunoreactivity for either PAR1 or

MIF. Similarly, only approximately 30% of J82 (urothelial cancer

cell line) cells were reported to be positive for PAR1 immuno-

staining [21]. Differences in PAR1 immunostaining may be due to

differences in the cell cycle, differences between normal and

transformed cell lines or differences in immunostaining protocols

and antibodies. In rat urothelium, we also detected MIF and

PAR1 immunostaining. PAR1 immunostaining was strongest in

Figure 3. Thrombin elicits MIF release from urothelial cells. A)
Effect of increasing concentration of thrombin (nM) on MIF (ng/ml)
released into the culture medium and measured by ELISA. Cells treated

Table 1. Thrombin stimulation upregulates MIF mRNA.

Treatment DCTa
Fold-
changeb

UROtsa

Untreated 12.49+0.20 1

Thrombin 10.78+0.62* 3.27

Rat bladder

Saline 4.84+0.16 1

Thrombin 3.83+0.12** 2.01

Lidocaine +
Thrombin

4.32+0.31 1.43

aMean+S.E.M.,
bDetermined using DDCT method.
*pv0.05,
**pv0.01.
doi:10.1371/journal.pone.0015904.t001

with equivalent volume of sterile saline (0 nM thrombin) served as
control. EC50 was 47.5 nM thrombin (calculated using a log-logistic
regression [42]). B) MIF amounts (ng/ml) detected in culture media of
UROtsa cells that were stimulated with thrombin (100 nM). Untreated
cells (UNT) served as controls. Significant increases in the amount of MIF
in the culture media were observed as early as 15 min after thrombin
treatment and this effect peaked at 60 min and remained elevated
throughout the entire time of the experiment (180 min). C) MIF
amounts were assayed from rat intraluminal fluid collected after 1 hr of
intravesical thrombin (100 nM) stimulation. Intravesical thrombin
treatment (THR; n = 6) significantly increased the amounts of MIF
present in the intraluminal fluid compared to intravesical saline
treatment (SAL; n = 6). This effect was reduced, but not abolished by
simultaneous intravesical treatment with 2% lidocaine and thrombin
(LIDO+THR; n = 6). ANOVA determined overall significance while
Dunnet’s tests, using either the Untreated (UNT) group or saline (SAL)
group as controls for UROtsa and rat experiments respectively.
* = pv0:05; ** = pv0:01; *** = pv0:001 compared to controls. In vitro
experiments were repeated three times and all assays were performed
in duplicate.
doi:10.1371/journal.pone.0015904.g003

MIF and PAR1 in Urothelium
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basal cells of the urothelium with moderate staining in

intermediate cells. No PAR1 immunostaining was observed in

umbrella cells. Similarly, basal and intermediate cells also showed

MIF immunostaining with umbrella cells showing either slight or

no MIF immunostaining. Therefore, the co-existence of PAR1

and MIF is restricted to deeper layers of the rat urothelium.

We also document that thrombin stimulation of urothelial cells,

whether in vitro (using UROtsa cells) or in vivo (using intravesical

thrombin application in rats) results in MIF release, and this effect

occurs quickly after thrombin application (15 min in vitro). Since

thrombin contained a small amount of endotoxin and because

endotoxin can elicit MIF release [26], it was possible that our

thrombin results were due to endotoxin contamination. Heat-

inactivated thrombin was ineffective in stimulating MIF release

from UROtsa cells which argues against this possibility. Much

higher temperatures and longer heating times are needed to

abolish the activity of endotoxin [31,32], therefore it is highly

unlikely that our heating conditions affected the activity of the

small amount (14 EU/mg thrombin) of endotoxin present. Finally,

while endotoxin can elicit MIF release it also results in MIF down-

regulation [26,33] which is opposite to the effect of up-regulation

seen in our studies. Consequently, our findings indicate that the

effects observed from thrombin stimulation are not due to

endotoxin. Our results thus confirm earlier findings of thrombin-

induced MIF release from human endothelial cells [17] and we

extend those results by showing that the same phenomenon occurs

in vivo. Given that both human and rat urothelial cells were shown

to express both MIF and PAR1 we consider it likely that thrombin

stimulated PAR1 receptors on rat urothelial cells to elicit MIF

release.

Since PAR1 and MIF containing cells in rat urothelium are not

located superficially, our findings that intravesical thrombin can

induce MIF release from the rat bladder (presumably urothelium)

suggest that intravesical thrombin was able to reach those cells to

activate PAR1 receptors. Although local thrombin formation

during inflammation is likely to occur in the suburothelial

compartment and thus stimulate basal and intermediate cells to

elicit MIF release, our findings suggest that proteases present in the

urine may also be able to activate PAR1 receptors in the

urothelium, elicit MIF release and thus contribute to the initiation

or maintenance of cystitis. In fact, both mast cell tryptase and

neutrophil elastase were documented to be increased in the urine

of patients with interstitial cystitis [34,35], thus raising the

possibility that PAR1 receptors could be activated in interstitial

cystitis. Activation of PAR1 receptors by neutrophil elastase was

reported to induce apoptosis in lung epithelial cells [36] while

activation of PAR1 and PAR2 receptors were shown to increase

epithelial permeability in intestinal epithelia [37]. Whether these

effects can also be seen in urothelial cells, particularly in clinical

conditions such as interstitial cystitis, remains to be determined.

Treatment with intravesical PAR1, PAR2 and PAR4 agonists

induced inflammation in the mouse bladder [21]. Moreover,

PAR1 receptors appear to mediate inflammation caused by a

variety of inflammatory stimuli thus emphasizing their central role

in the development of cystitis [21]. In addition, activation of PAR1

receptors with specific agonists administered systemically results in

plasma extravasation in the rat bladder due to release of SP from

terminal afferents [38]. Our current results suggest that one

component of PAR1-mediated bladder inflammation may be

release of MIF from urothelial cells and MIF upregulation.

Bladder/urothelial MIF upregulation during inflammation is a

consistent finding regardless of the initiating inflammatory

stimulus [6,8,39]. We have demonstrated that released MIF is

pro-inflammatory since blocking MIF or receptors for MIF reduce

morphological and physiological signs of cystitis as well as decrease

bladder production of pro-inflammatory cytokines, including MIF

[6,11,39]. Therefore, thrombin may activate PAR1 receptors in

the urothelium to elicit MIF release from urothelial cells and thus

continue and/or augment inflammation in the bladder.

We showed previously that substance P elicits MIF release from

the bladder in general, and urothelium in particular, dependent on

bladder nerve activation [9,10,24]. Therefore, it is possible that

intravesical thrombin may also be functioning in a similar manner

to elicit MIF release. Our results with intravesical lidocaine +
thrombin treatment indicates that a considerable portion of MIF

released is due to non-neurogenic mechanisms. We consider it a

likely explanation that direct stimulation of MIF and PAR1

containing cells in the urothelium is involved in thrombin-

stimulated MIF release in the rat bladder. In fact, our earlier

results investigating MIF release during neurogenic inflammation

(Substance P-evoked) showed that intravesical lidocaine abolished

MIF release in that model [27], and thus are different from

findings in the present study. These observations suggest that there

may be two components to MIF release, one a neurogenic

component involving SP release and a direct mechanism involving

PAR1 stimulation of urothelial cells (Fig. 4). Blocking activation of

PAR1 receptors, blocking MIF or receptors for MIF should thus

lead to decreased bladder inflammation.

Figure 4. Model of urothelial MIF release mechanisms in vivo.
Evidence suggests that substance P elicits MIF release in a process that
is dependent on bladder afferent and post-ganglionic activation of
muscarinic and adrenergic bladder receptors. Since this release appears
is initiated by substance P, it is referred to as ‘‘neurogenic’’ MIF release
[9,10,24]. In addition, findings from the present experiments show that
activation of PAR1 receptors in deep layers of the urothelium can also
elicit MIF release. Since this effect occurs in vitro (UROtsa) cells, this
pathway appears to be independent of nerve-activation. However,
nerve-activation may still contribute, since intravesical lidocaine (to stop
all bladder nerve activity) reduced such release in vivo. This alternate
pathway for MIF release may be activated by thrombin generated
locally as part of the inflammation process or may be activated by
proteases found in the urine. Activation of either or both pathways
results in MIF release from urothelial cells, MIF binding to cell-surface
CD74 in urothelial cells and activating extracellular regulated kinase
(ERK) signaling and a pro-inflammatory cytokine cascade. Thus, by
standing upstream of such a pro-inflammatory cytokine cascade, MIF
maintains or augments bladder inflammation.
doi:10.1371/journal.pone.0015904.g004

MIF and PAR1 in Urothelium
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Materials and Methods

Ethics Statement
Animal experiments were approved by the Bay Pines VA

Healthcare System Institutional Animal Care and Use Committee

(approval no. 2636) and conformed to NIH guidelines for animal

experimentation.

In vitro experiments
Normal immortalized human urothelial cells (UROtsa; derived

from normal urothelium lining the ureter and transformed using

simian virus 40 [29,30]; a kind gift of Scott H Garrett) were

routinely cultured in plastic flasks in Dulbecco’s modified Eagle’s

medium (DMEM) with Glutamax supplemented with 10% fetal

bovine serum (FBS) (Invitrogen Life Technologies, Carlsbad, CA)

at 370 C in 5% CO2; 95% air environment. Cells were plated in 24

well plates at a density of 66104 cells/ml and incubated overnight.

Growth medium was removed and DMEM with 0.1% bovine

serum albumin added. Cells were incubated for 1 hour at 370C

and then exposed to thrombin at different concentrations (in sterile

water; Sigma-Aldrich; St. Louis, MO) for 1 hr and culture

medium collected. Thrombin was tested for the presence of

endotoxin using a chromogenic Limulus Amebocyte lysate assay

(Genscript; Piscataway, NJ; #L00350C) according to the manu-

facturer’s protocol. In order to establish that the effects of

thrombin were due to thrombin and not to endotoxin, control

experiments examined the effects of UROtsa stimulation with

thrombin vs heat-inactivated thrombin (600C; 10 min).

In a separate set of experiments, UROtsa cells were plated and

incubated as above, growth medium removed and replaced with

DMEM with 0.1% bovine serum albumin and were incubated for

1 hour at 370C and then exposed to thrombin (100 nM) for the

following time intervals: 0, 15, 60, 90, 120, 180 min. Culture

medium from untreated cells was collected at 180 min and served

as control.

In vivo experiments
Male rats (250–275 g; Sprague-Dawley; Harlan; Indianapolis,

IN) were anesthetized with halothane and placed on a heating

pad. A ventral abdominal incision exposed the bladder and

ureters. Both ureters were cut and allowed to drain to gauze while

urine was removed from the bladder using a 30 ga needle and a

hypodermic syringe. Rats were divided into three groups (n = 6/

group) and 0.3 ml of either 1) sterile saline (vehicle control); 2)

100 nM thrombin; or 3) 2% lidocaine +100 nM thrombin were

injected into the bladder lumen. After 1 hour the intraluminal

fluid was collected and stored at 2800C until MIF ELISA analysis

(see below). Bladders were removed, sectioned in half longitudi-

nally and stored at 2800C for RNA extraction and placed in

formaldehyde for immunohistochemistry and the rats were

euthanized with an overdose of halothane and a thoracotomy.

Because formaldehyde fixation proved deleterious to PAR1

immunostaining (see Results below), the bladder of one additional

rat was collected under halothane anesthesia, frozen in liquid

nitrogen and stored for immunohistochemistry (described below).

RT-PCR and Western blotting
RNA was extracted from UROtsa cells and bladder tissues

using TRIzol reagent (Invitrogen). One mg of the resulting total

RNA was reverse transcribed to cDNA using Avian Myeloblastosis

Virus (AMV) reverse transcriptase and random primers (Promega;

Madison, WI).

To determine the expression of PAR 1–4 receptors in UROtsa

cells, approximately 26106 subconfluent cells were plated in six

well plates and incubated overnight in DMEM supplemented with

10% FBS under standard conditions and cells harvested by the

direct addition of TRIzol reagent. cDNA for PARs 1, 2, 3 and 4

were amplified by endpoint PCR with specific primers and RT2

SYBR green PCR master mix (Qiagen; Valencia, CA) using a

three step cycling program: 950C, 15 sec; 550C, 40 sec; 720C,

30 sec for 40 cycles on a C1000 thermocycler (BioRad, Hercules,

CA). 20 ml of the resultant PCR reaction was separated on a 4% E-

gel (Invitrogen) and the image captured using Kodak Image

Station (Kodak, Rochester, NY).

Thrombin induced upregulation of MIF expression in UROtsa

cells was determined by real-time PCR (Opticon, BioRad). Total

RNA from thrombin treated cells (as described above, in vitro

experiments) was isolated by the direct addition of TRIzol reagent

(Invitrogen). cDNA was diluted 1:1 with nuclease-free water and 5

ml of the diluted cDNA was amplified using RT2 SYBR green

PCR mix and human MIF specific primers (Qiagen) using the

following cycling program: 950C, 10 min followed by 40 cycles of

(950C, 15 sec; 550C, 30–40 sec, and 720C, 30 sec). The DDCT

method was utilized to determine fold changes using 18S rRNA as

the housekeeping gene. Data are from triplicate wells. Thrombin

induced upregulation of MIF expression in rat bladder tissue was

determined by real time PCR. One-quarter of the snap frozen

bladder was homogenized in TRIzol reagent. cDNA was diluted

1:1 with nuclease-free water and 5 ul of the diluted cDNA was

amplified using RT2 SYBR green PCR mix and rat MIF specific

primers (Qiagen) as described for UROtsa cells.

For protein extraction, cells were directly lysed by the addition

of 1X NuPAGE sample buffer (Invitrogen). The DNA in the

resulting cell lysates was sheared by passing through a 25 ga

needle. Equal volumes of the lysates were separated by 4–12% Bis-

Tris SDS-PAGE (Invitrogen) and transferred to a polyvinylidene

fluoride membrane. Blots were blocked with Odyssey blocking

buffer (Li COR; Lincoln, NE) for 1 h at 37 0C and incubated

overnight with affinity purified goat anti-human MIF polyclonal

antibody (R&D Systems; Minneapolis, MN; AF-289-PB; 1/1000

dilution) at 4 0C, followed by incubation with an anti-goat

secondary antibody labeled with infrared dye 800CW (Li COR).

Individual protein bands were visualized using an Odyssey imager

(LiCOR).

MIF ELISA
MIF amounts in the culture media of UROtsa cells exposed to

thrombin were determined using a commercially available ELISA

to detect human MIF, according to the manufacturer’s protocol

(R&D Systems). MIF amounts in rat intraluminal fluid were

detected using a validated, custom ELISA protocol for detecting

rat and mouse MIF developed in our laboratory and described

previously [6]. In vitro experiments were repeated three times and

all assays were performed in duplicate.

MIF and PAR1 Immunohistochemistry
UROtsa cells were grown in chamber slides, briefly rinsed in

cold (40C) phosphate-buffered saline (PBS) and then fixed either in

frozen in cold (40C) 4% paraformaldehyde or cold (2200C)

solution of 3:1 acetone:PBS for 10 min. Slides were rinsed with

PBS and exposed to primary antibodies as follows: 1) Goat anti-

PAR1 (R&D Systems; 1:100) or Goat anti-PAR1 (BD Bioscience;

San Jose, CA; 1:50) or Mouse anti-PAR1 (Santacruz, Santa Cruz,

CA; 1:100) 2) Rabbit anti-MIF (Abcam; Cambridge, MA; 1:100)

in PBS overnight at 40C. and visualized using AlexaFluor

(Invitrogen) conjugated secondary antibodies (1:200; Donkey

anti-goat AlexaFluor 488; Donkey anti-rabbit AlexaFluor 555).

Paraffin (4 mm) or sections of formaldehyde-fixed bladders and
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frozen (14 mm) sections of intact (fresh-frozen) bladder were

collected. Intact bladder sections were also fixed in cold (2200C)

acetone for 10 min, allowed to air dry for 1 hr at room

temperature and exposed to primary antibodies as follows: 1)

Goat anti-PAR1 (1:50; R&D Systems); 2) Rabbit anti-MIF (1:400;

Torrey Pines; East Orange, NJ) in PBS overnight. Primary

antisera were then detected using secondary antibodies conjugated

to Alexafluor. Slides were coverslipped with Prolong Gold

(Invitrogen; containing DAPI as a nuclear stain) and examined

on an Olympus FV100D laser confocal microscope. Images of

individual dye immunostaining and overlays of both dyes were

obtained using ImageJ [40].

Statistical Analysis
For the effect of different concentrations of thrombin on

UROtsa MIF release, a concentration-response curve was fitted

using log-logistic regression with 4-point parameter estimation

(using R [41] and the drc package [42] and the ED50 was

calculated. Differences in MIF release by UROtsa cells that were

treated with the addition of sterile saline (control), thrombin

(100 nM) or heat-inactivated thrombin (100 nM) are presented as

Mean+ S.E.M and were analyzed using ANOVA, followed by

Dunnet’s tests (if ANOVA reached significance). The remaining

MIF ELISA results are presented as Median + Interquartile Range

(IQR) and were analyzed using Kruskal-Wallis ANOVA followed

by post-hoc tests with comparisons to the control group using

statistical software program (R; [41] and the pgirmess package

[43]). Real time RT-PCR results (changes in DCT) were analyzed

by Student’s t-test in the case of UROtsa cells comparing

thrombin stimulation to untreated cells and by ANOVA using R

[41] followed by Dunnet’s tests (if ANOVA reached significance)

in the case of rat experiments, using the saline treatment group as

control. A p value v0:05 was considered statistically significant.
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