Research Article: Methods/New Tools

eMeuro

Novel Tools and Methods

Machine Learning for Neural Decoding

Joshua . Glaser,%%7%1% Ari S. Benjamin,” Raeed H. Chowdhury,*® ®Matthew G. Perich,*®

Lee E. Miller,23*% and Konrad P. Kording®3%°6:7:8

https://doi.org/10.1523/ENEURO.0506-19.2020

Interdepartmental Neuroscience Program, Northwestern University, Chicago, lllinois 60611, 2Department of Physical
Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, lllinois 60611, 3Shirley
Ryan AbilityLab, Chicago, lllinois 60611, “Department of Physiology, Feinberg School of Medicine, Northwestern
University, Chicago, lllinois 60611, 5Department of Biomedical Engineering, McCormick School of Engineering,
Northwestern University, Evanston, lllinois 60208, ®Department of Engineering Sciences & Applied Mathematics,
McCormick School of Engineering, Northwestern University, Evanston, lllinois 60208, “Department of Bioengineering,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
8Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
19104, °Department of Statistics, Columbia University, New York, New York 10027, and '®Mortimer B. Zuckerman
Mind Brain Behavior Institute, Columbia University, New York, New York 10027

Abstract

Despite rapid advances in machine learning tools, the majority of neural decoding approaches still use tradi-
tional methods. Modern machine learning tools, which are versatile and easy to use, have the potential to sig-
nificantly improve decoding performance. This tutorial describes how to effectively apply these algorithms for
typical decoding problems. We provide descriptions, best practices, and code for applying common machine
learning methods, including neural networks and gradient boosting. We also provide detailed comparisons of
the performance of various methods at the task of decoding spiking activity in motor cortex, somatosensory
cortex, and hippocampus. Modern methods, particularly neural networks and ensembles, significantly outper-
form traditional approaches, such as Wiener and Kalman filters. Improving the performance of neural decoding
algorithms allows neuroscientists to better understand the information contained in a neural population and
can help to advance engineering applications such as brain-machine interfaces. Our code package is available
at github.com/kordinglab/neural_decoding.
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Significance Statement

Neural decoding is an important tool for understanding how neural activity relates to the outside world and
for engineering applications such as brain-machine interfaces. Despite many advances in machine learning,
it is still common to use traditional linear methods for decoding. Here, we present a tutorial and accompany-
ing code package so that neuroscientists can more easily implement machine learning tools for neural
decoding.

Introduction

Neural decoding uses activity recorded from the brain
to make predictions about variables in the outside world.
For example, researchers predict movements based on
activity in motor cortex (Serruya et al., 2002; Ethier et al.,
2012), decisions based on activity in prefrontal and
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parietal cortices (Baeg et al., 2003; Ibos and Freedman,
2017), and spatial locations based on activity in the hippo-
campus (Zhang et al., 1998; Davidson et al., 2009). These
decoding predictions can be used to control devices
(e.g., a robotic limb) or to better understand how areas of
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the brain relate to the outside world. Decoding is a central
tool in neural engineering and for neural data analysis.

In essence, neural decoding is a regression (or classifi-
cation) problem relating neural signals to particular varia-
bles. When framing the problem in this way, it is apparent
that there is a wide range of methods that one could
apply. However, despite the recent advances in machine
learning (ML) techniques for regression, it is still common
to decode activity with traditional methods such as linear
regression. Using modern ML tools for neural decoding
has the potential to boost performance significantly and
might allow deeper insights into neural function.

This tutorial is designed to help readers start applying
standard ML methods for decoding. We describe when one
should (or should not) use ML for decoding, how to choose
an ML method, and best practices such as cross-validation
and hyperparameter optimization. We provide companion
code that makes it possible to implement a variety of
decoding methods quickly. Using this same code, we dem-
onstrate here that ML methods outperform traditional de-
coding methods. In example datasets of recordings from
monkey motor cortex, monkey somatosensory cortex, and
rat hippocampus, modern ML methods showed the highest
accuracy decoding of the available methods. Using our
code and this tutorial, readers can achieve these perform-
ance improvements on their own data.

Materials and Methods

In this section, we provide (1) general background
about decoding, including when to use ML for decoding
and considerations for choosing a decoding method; (2)
the practical implementation details of using ML for de-
coding, including data formatting, proper model testing,
and hyperparameter optimization; and (3) methods that
we use to compare ML techniques in the Results section,
including descriptions of the specific ML techniques we
compare and datasets we use.

When to use machine learning for decoding

Machine learning is most helpful when the central research
aim is to obtain greater predictive performance. This is in
part because of the general success of machine learning for
nonlinear problems (He et al., 2015; LeCun et al., 2015; Silver
et al., 2016). We will demonstrate this later in this tutorial in
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Results. There are multiple separate research aims for de-
coding that benefit from improved predictive performance,
including engineering applications and, if used carefully, for
understanding neural activity (Glaser et al., 2019).

Engineering applications

Decoding is often used in engineering contexts, such as
for brain-machine interfaces (BMls), where signals from
motor cortex are used to control computer cursors
(Serruya et al., 2002), robotic arms (Collinger et al., 2013),
and muscles (Ethier et al., 2012). When the primary aim of
these engineering applications is to improve predictive
accuracy, ML should generally be beneficial.

Understanding what information is contained in neural
activity

Decoding is also an important tool for understanding how
neural signals relate to the outside world. It can be used to
determine how much information neural activity contains
about an external variable (e.g., sensation or movement;
Hung et al., 2005; Raposo et al., 2014; Rich and Wallis,
2016), and how this information differs across brain areas
(Quiroga et al., 2006; Hernandez et al., 2010; van der Meer et
al., 2010), experimental conditions (Dekleva et al., 2016;
Glaser et al., 2018), and disease states (Weygandt et al.,
2012). When the goal is to determine how much information
a neural population has about an external variable, regard-
less of the form of that information, then using ML will
generally be beneficial. However, when the goal is to deter-
mine how a neural population processes that information
or to obtain an interpretable description of how that infor-
mation is represented, one should exercise care with ML,
as we describe in the next section.

Benchmarking for simpler decoding models

Decoders can also be used to understand the form of the
mapping between neural activity and variables in the outside
world (Pagan et al., 2016; Naufel et al., 2019). That is, if re-
searchers aim to test whether the mapping from neural ac-
tivity to behavior/stimuli (the “neural code”) has a certain
structure, they can develop a “hypothesis-driven decoder”
with a specific form. If that decoder can predict task varia-
bles with some arbitrary accuracy level, this is sometimes
held as evidence that information within neural activity in-
deed has the hypothesized structure. However, it is impor-
tant to know how well a hypothesis-driven decoder performs
relative to what is possible. This is where modern ML meth-
ods can be of use. If a method designed to test a hypothesis
decodes activity much worse than ML methods, then a re-
searcher knows that their hypothesis likely misses key as-
pects of the neural code. Hypothesis-driven decoders
should thus always be compared against a good-faith effort
to maximize performance accuracy with a good machine
learning approach.

Caution in interpreting machine learning models of
decoding
Understanding how information in neural activity relates to
external variables

It is tempting to investigate how an ML decoder, once
fit to neural data, transforms neural activity to external
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variables. This may be especially tempting if the ML
model resembles neural function, such as in a neural net-
work decoder. Still, high predictive performance is not
evidence that transformations occurring within the ML de-
coder are the same as, or even similar to, those in the
brain. In general, and unlike hypothesis-driven decoders,
the mathematical transformations of most ML decoders
are hard to interpret and themselves are not meant to rep-
resent any specific biological variable. Some recent ef-
forts have started to investigate how ML models might be
interpreted once fit to data (Ribeiro et al., 2016; Olah et
al., 2018; Cranmer et al., 2020). However, users should be
cautious that this is an active research area and that, in
general, ML methods are not designed for mechanistic
interpretation.

Understanding what information is contained in neural
activity

It is important to be careful with the scientific interpreta-
tion of decoding results, both for ML and other models
(Weichwald et al., 2015). Decoding can tell us how much
information a neural population has about a variable X.
However, high decoding accuracy does not mean that a
brain area is directly involved in processing X, or that X is
the purpose of the brain area (Wu et al., 2020). For exam-
ple, with a powerful decoder, it could be possible to accu-
rately classify images based on recordings from the
retina, since the retina has information about all visual
space. However, this does not mean that the primary pur-
pose of the retina is image classification. Moreover, even
if the neural signal temporally precedes the external vari-
able, it does not necessarily mean that it is causally in-
volved (Weichwald et al., 2015). For example, movement-
related information could reach somatosensory cortex
before movement because of an efference copy from
motor cortex, rather than somatosensory cortex being re-
sponsible for movement generation. Researchers should
constrain interpretations to address the information in
neural populations about variables of interest, but not use
this as evidence for the roles or purposes of areas.

On a more technical level, there are some decoders that
will not directly tell us what information is contained in the
neural population. As described further in the following sec-
tion, some neural decoders incorporate prior information
(e.g., incorporating the overall probability of being in a given
location when decoding from hippocampal place cells;
Zhang et al., 1998). If a decoder uses prior information
about the decoded variable, then the final decoded variables
will not only reflect the information contained in the neural
population, but will also reflect the prior information: the two
will be entangled (Kriegeskorte and Douglas, 2019).

What decoder should | use to improve predictive
performance?

Depending on the recording method, location, and vari-
ables of interest, different decoding methods may be
most effective. Neural networks, gradient boosted trees,
support vector machines, and linear methods are among
the dozens of potential candidates. Each makes different
assumptions about how inputs relate to outputs. We will
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describe a number of specific methods suitable for neural
decoding later in this tutorial. Ultimately, we recommend
testing multiple methods, perhaps starting with the meth-
ods we have found to work best for our demonstration
datasets. Still, it is important to have a general under-
standing of differences between methods.

Different methods make different implicit assumptions
about the data

There is no such thing as a method that makes no assump-
tions. This idea derives from a key theorem in the ML litera-
ture called the “No Free Lunch” theorem, which essentially
states that no algorithm will outperform all others on every
problem (Wolpert and Macready, 1997). The fact that some
algorithms perform better than others in practice means that
their assumptions about the data are better. The knowledge
that all methods make assumptions to varying degrees can
help one be intentional about choosing a decoder.

The assumptions of some methods are very clear.
Regularized (ridge, or L) linear regression, for example,
makes three: the change in the outputs is assumed to be
proportionate to the change in the inputs, any additional
noise on the outputs is assumed to be Gaussian noise
(implied by the mean squared error), and the regression
coefficients are assumed to pull from a Gaussian distribu-
tion (Hoerl and Kennard, 1970; Bishop, 2006). For more
complicated methods like neural networks, the assump-
tions are more complicated (and are still under debate;
Arora et al., 2019) but still exist.

One crucial assumption that is built into decoders is the
form of the input/output relation. Some methods (e.g., lin-
ear regression or a Kalman filter) assume this mapping
has a fixed linear form. Others (e.g., neural networks)
allow this mapping to have a flexible nonlinear form. In the
scenario in which the mapping is truly linear, making this
linear assumption will be beneficial; it will be possible to
accurately learn the decoder when there are less data or
more noise (Hastie et al., 2009). However, if the neural ac-
tivity relates nonlinearly to the task variable, then it can be
beneficial to have a decoder that is relatively agnostic
about the overall input/output relationship, in the sense
that it can express many different types of relationships.

A challenge of choosing a model that is highly expres-
sive or complex is the phenomenon of “overfitting,” in
which the model learns components of the noise that are
unique to the data that the model is trained on, but do not
generalize to any independent test data. To combat over-
fitting, one can choose a simpler algorithm that is less
likely to learn to model this noise. Alternatively, one can
apply regularization, which essentially penalizes the com-
plexity of a model. This effectively reduces the expressiv-
ity of a model, while still allowing it to have many free
parameters (Friedman et al., 2001). Regularization is an
important way to include the assumption that the input/
output relationship is not arbitrarily complex.

Additionally, for some neural decoding problems, it is
possible to incorporate assumptions about the output
being predicted. For example, let us say we are estimating
the kinematics of a movement from neural activity. The
Kalman filter, which is frequently used for movement
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decoding (Wu et al., 2003; Wu and Hatsopoulos, 2008;
Gilja et al.,, 2012), uses the additional information that
movement kinematics transition over time in a smooth and
orderly manner. There are also Bayesian decoders that can
incorporate prior beliefs about the decoded variables. For
example, the Naive Bayes decoder, which is frequently
used for position decoding from hippocampal activity
(Zhang et al., 1998; Barbieri et al., 2005; Kloosterman et al.,
2014), can take into account prior information about the
probability distribution of positions. Decoders with task
knowledge built in are constrained in terms of their solutions,
which can be helpful, provided this knowledge is correct.

Maximum likelihood estimates versus posterior
distributions

Different classes of methods also provide different types
of estimates. Typically, machine learning algorithms provide
maximum likelihood estimates of the decoded variable. That
is, there is a single point estimate for the value of the de-
coded variable, which is the estimate that is most likely to
be true. Unlike the typical use of machine learning algo-
rithms, Bayesian decoding provides a probability distribu-
tion over all possibilities for the decoded outputs (the
“posterior” distribution), thus also providing information
about the uncertainty of the estimate (Bishop, 2006). The
maximum likelihood estimate is the peak of the posterior
distribution when the prior distribution is uniform.

Ensemble methods

It is important to note that the user does not need to
choose a single model. One can usually improve on the per-
formance of any single model by combining multiple mod-
els, creating what is called an “ensemble.” Ensembles can
be simple averages of the outputs of many models, or they
can be more complex combinations. Weighted averages
are common, which one can imagine as a second-tier linear
model that takes the outputs of the first-tier models as in-
puts (sometimes referred to as a “super learner”). In princi-
ple, one can use any method as the second-tier model.
Third- and fourth-tier models are uncommon but imagina-
ble. Many successful ML methods are, at their core, ensem-
bles (Liaw and Wiener, 2002). In ML competition sites like
Kaggle (Kaggle, 2020), most winning solutions are compli-
cated ensembles.

Under which conditions will ML techniques improve de-
coding performance?

Whether ML will outperform other methods depends on
many factors. The form of the underlying neural code, the
length of the recording session, and the level of noise will all
affect the predictive accuracy of different methods to differ-
ent degrees. There is no way to know ahead of time which
method will perform the best, and we recommend creating
a pipeline to quickly test and compare many ML and simpler
regression methods. For typical decoding situations, how-
ever, we expect certain modern ML methods to perform
better than simpler methods. In the demonstration that fol-
lows in Results, we show that this is true across three data-
sets and a wide range of variables like training data length,
number of neurons, bin size, and hyperparameters.
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A practical guide (“the nitty gritty”) for using machine
learning for decoding

In any decoding problem, one has neural activity from
multiple sources that is recorded for a period of time.
While we focus here on spiking neurons, the same meth-
ods could be used with other forms of neural data, such
as the BOLD signal in fMRI, or the power in particular fre-
quency bands of local field potential or electroencepha-
lography signals. When we decode from the neural data,
whatever the source, we would like to predict the values
of recorded outputs (Fig. 1a).

Data formatting/preprocessing for decoding

Preparing for regression versus classification. Depending
on the task, the desired output can be variables that are
continuous (e.g., velocity or position) or discrete (e.g.,
choices). In the first case, the decoder will perform regres-
sion, while in the second case it will perform classification.
In our Python package, decoder classes are labeled to re-
flect this division.

In the data processing step, take note whether a predic-
tion is desired continuously in time or only at the end of
each trial. In this tutorial, we focus on situations in which a
prediction is desired continuously in time. However, many
classification situations require only one prediction per
trial (e.g., when making a single choice per trial). If this is
the case, the data must be prepared such that many time-
points in a single trial are mapped to a single output.

Time binning divides continuous data into discrete
chunks. A number of important decisions arise from the
basic problem that time is continuously recorded, but de-
coding methods generally require discrete data for their
inputs (and, in the continual-prediction situation, their out-
puts). A typical solution is to divide both the inputs and
outputs into discrete time bins. These bins usually contain
the average input or output over a small chunk of time,
but could also contain the minimum, maximum, or the
regular sampling of any interpolation method fit to the
data.

When predictions are desired continuously in time, one
needs to decide on the temporal resolution, R, for decod-
ing. That is, do we want to make a prediction, for example,
every 50 or 100 ms? We need to put the input and output
into bins of length R (Fig. 1a). It is common (although not
necessary) to use the same bin size for the neural data
and output data, and we do so here. Thus, if T is the
length of the recording, we will have approximately T/R
total data points of neural activity and outputs.

Next, we need to choose the time period of neural activ-
ity used to predict a given output. In the simplest case,
the activity from all neurons in a given time bin would be
used to predict the output in that same time bin. However,
it is often the case that we want the neural data to precede
the output (e.g., in the case of making movements) or fol-
low the decoder output (e.g., in the case of inferring the
cause of a sensation). Plus, we often want to use neural
data from more than one bin (e.g., using 500 ms of pre-
ceding neural data to predict a movement in the current
50 ms bin). In the following, we use the nomenclature that
B time bins of neural activity are being used to predict a
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Figure 1. Decoding schematic. a, To decode (predict) the output in a given time bin, we used the firing rates of all N neurons in B
time bins. In this schematic, N=4 and B=4 (3 bins preceding the output and 1 concurrent bin). As an example, preceding bins of
neural activity could be useful for predicting upcoming movements, and following bins of neural activity could be useful for predict-
ing preceding sensory information. Here, we show a single output being predicted. b, For nonrecurrent decoders (Wiener filter,
Wiener Cascade, Support Vector Regression, XGBoost, and Feedforward Neural Network in our subsequent demonstration), this is
a standard machine learning regression problem where N x B features (the firing rates of each neuron in each relevant time bin) are
used to predict the output. ¢, To predict outputs with recurrent decoders (simple recurrent neural network, GRUs, LSTMs in our
subsequent demonstration), we used N features, with temporal connections across B bins. A schematic of a recurrent neural net-
work predicting a single output is on the right. Note that an alternative way to view this model is that the hidden state feeds back on
itself (across time points).
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Figure 2. Schematic of cross-validation. a, After training a decoder on some data (green), we would like to know how well it per-
forms on held-out data that we do not have access to (red). b, Left, By splitting the data we have into test (orange) and train (green)
segments, we can approximate the performance on held-out data. In k-fold cross-validation, we retrain the decoder k times, and
each time rotate which parts of the data are the test or train data. The average test set performance approximates the performance
on held-out data. Right, If we want to select among many models, we cannot maximize the performance on the same data we will
report as a score. (This is very similar to “p-hacking” statistical significance.) Instead, we maximize performance on “validation”
data (blue), and again rotate through the available data. ¢, All failure modes are ways in which a researcher lets information from the
test set “leak” into the training algorithm. This happens if you explicitly train on the test data (top), or use any statistics of the test
data to modify the train data before fitting (middle), or select your models or hyperparameters based on the performance on the test

data (bottom).

given output. For example, if we use three bins preceding
the output and one concurrent bin, then B=4 (Fig. 1a).
Note that when multiple bins of neural data are used to
predict an output (B > 1), then overlapping neural data will
be used to predict different output times (Fig. 1a), making
them statistically dependent.

When multiple bins of neural data are used to predict an
output, then we will need to exclude some output bins. For
instance, if we are using one bin of neural data preceding
the output, then we cannot predict the first output bin, and if
we are using one bin of neural data following the output,
then we cannot predict the final output bin (Fig. 1a). Thus,
we will be predicting K total output bins, where K is less
than the total number of bins (T/R). To summarize, our de-
coders will be predicting each of these K outputs using B
surrounding bins of activity from N neurons.

The format of the input data depends on the form of the
decoder

Nonrecurrent decoders. For most standard regression
methods, the decoder has no persistent internal state or
memory. In this case N x B features (the firing rates of
each neuron in each relevant time bin) are used to predict
each output (Fig. 1b). The input matrix of covariates, X, has
N x B columns (one for each feature) and K rows (corre-
sponding to each output being predicted). If there is a single
output that is being predicted, it can be put in a vector, Y, of
length K. Note that for many decoders, if there are multiple
outputs, each is independently decoded. If multiple outputs

July/August 2020, 7(4) ENEURO.0506-19.2020

are being simultaneously predicted, which can occur with
neural network decoders, the outputs can be put in a matrix
Y, that has K rows and d columns, where d is the number of
outputs being predicted. Since this is the format of a stand-
ard regression problem, many regression methods can eas-
ily be substituted for one another once the data have been
prepared in this way.

Recurrent neural network decoders. When using recur-
rent neural networks (RNNs) for decoding, we need to put
the inputs in a different format. Recurrent neural networks
explicitly model temporal transitions across time with a per-
sistent internal state, called the “hidden state” (Fig. 1c). At
each time of the B time bins, the hidden state is adjusted as
a function of both the N features (the firing rates of all neu-
rons in that time bin) and the hidden state at the previous
time bin (Fig. 1c). Note that an alternative way to view this
model is that the hidden state feeds back on itself (across
time points). After transitioning through all B bins, the hidden
state in this final bin is used to predict the output. In this
way, an RNN decoder can integrate the effect of neural in-
puts over an extended period of time. For use in this type of
decoder, the input can be formatted as a three-dimensional
tensor of size K x N x B (Fig. 1¢). That is, for each row (cor-
responding to one of the K output bins to be predicted),
there will be N features (second tensor dimension) over B
bins (third tensor dimension) used for prediction. Within this
format, different types of RNNs, including those more so-
phisticated than the standard RNN shown in Figure 1c, can
be easily switched for one another.
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Applying machine learning

The typical process of applying ML to data involves
testing several methods and seeing which works best.
Some methods may be expected to work better or worse
depending on the structure of the data, and in the next
part of this tutorial we provide a demonstration of which
methods work best for typical neural spiking datasets.
That said, applying ML is unavoidably an iterative pro-
cess, and for this reason we begin with the proper way to
choose among many methods. It is particularly important
to consider how to avoid overfitting our data during this
iterative process.

Compare method performance using cross-validation

Given two (or more) methods, the ML practitioner must
have a principled way to decide which method is best. It
is crucial to test the decoder performance on a separate,
held-out dataset that the decoder did not see during train-
ing (Fig. 2a). This is because a decoder typically will overfit
to its training data. That is, it will learn to predict outputs
using idiosyncratic information about each datapoint in
the training set, such as noise, rather than the aspects
that are general to the data. An overfit algorithm will de-
scribe the training data well but will not be able to provide
good predictions on new datasets. For this reason, the
proper metric to choose between methods is the perform-
ance on held-out data, meaning that the available data
should be split into separate “training” and “testing” data-
sets. In practice, this will reduce the amount of training
data available. In order to efficiently use all of the data, it
is common to perform cross-validation (Fig. 2b). In 10-
fold cross-validation, for example, the dataset is split into
10 sets. The decoder is trained on 9 of the sets, and per-
formance is tested on the final set. This is done 10 times
in a rotating fashion, so that each set is tested once. The
performance on all test sets is generally averaged to-
gether to determine the overall performance.

When publishing about the performance of a method, it
is important to show the performance on held-out data
that was additionally not used to select between methods
(Fig. 2c). Random noise may lead some methods to per-
form better than others, and it is possible to fool oneself
and others by testing a great number of methods and
choosing the best. In fact, one can entirely overfit to a
testing dataset simply by using the test performance to
select the best method, even if no method is trained on
that data explicitly. Practitioners often make the distinc-
tion between the “training” data, the “validation” data
(which is used to select between methods), and the “test-
ing” data (which is used to evaluate the true performance).
This three-way split of data complicates cross-validation
somewhat (Fig. 2b). It is possible to first create a separate
testing set, then choose among methods on the remain-
ing data using cross-validation. Alternatively, for maxi-
mum data efficiency, one can iteratively rotate which split
is the testing set, and thus perform a two-tier nested
cross-validation.

Hyperparameter optimization
When fitting any single method, one usually has to addi-
tionally choose a set of “hyperparameters.” These are
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parameters that relate to the design of the decoder itself
and should not be confused with the “normal” parameters
that are fit during optimization (e.g., the weights that are
fit in linear regression). For example, neural networks can
be designed to have any number of hidden units. Thus, the
user needs to set the number of hidden units (the hyperpara-
meter) before training the decoder. Often, decoders have
multiple hyperparameters, and different hyperparameter val-
ues can sometimes lead to greatly different performance.
Thus, it is important to choose the hyperparameters of a de-
coder carefully.

When using a decoder that has hyperparameters, one
should take the following steps. First, always split the data
into three separate sets (training set, testing set, and validation
set), perhaps using nested cross-validation (Fig. 2b). Next, it-
erate through a large number of hyperparameter settings and
choose the best based on validation set performance. Simple
methods for searching through hyperparameters are a grid
search (i.e., sampling values evenly) and a random search
(Bergstra and Bengio, 2012). There are also more efficient
methods (Snoek et al., 2012; Bergstra et al., 2013) that can in-
telligently search through hyperparameters based on the per-
formance of previously tested hyperparameters. The best
performing hyperparameter and method combination (on the
validation set) will be the final method, unless one is combin-
ing multiple methods into an ensemble.

Methods for our decoding comparisons and
demonstrations

In this section, we demonstrate the usage of our code
package and show which of its methods work better than
traditional methods for several neural datasets.

Code accessibility

We have prepared a Python package that implements
the machine learning pipeline for decoding problems. It
is available at github.com/kordinglab/neural_decoding
and in Extended Data 1, and it includes code to correctly
format the neural and output data for decoding, to imple-
ment many different decoders for both regression and
classification, and to optimize their hyperparameters.

Specific decoders

The following decoders are available in our package,
and we demonstrate their performance on the example
datasets below. We included both historical linear techni-
ques (e.g., the Wiener filter) and modern ML techniques
(e.g., neural networks and ensembles of techniques).
Additional details of the methods, including equations
and hyperparameter information, can be found in a table
in Extended Data Figure 4-3.

Wiener filter. The Wiener filter uses multiple linear re-
gression to predict the output from multiple time bins of
spikes of all neurons (Carmena et al., 2003). That is, the
output is assumed to be a linear mapping of the number
of spikes in the relevant time bins from every neuron (Fig.
1a,b).

Wiener cascade. The Wiener cascade (also known as a
linear-nonlinear model) fits a linear regression (the Wiener
filter) followed by a fitted static nonlinearity (Pohimeyer et
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al., 2007). This allows for a nonlinear input-output rela-
tionship and assumes that this nonlinearity is purely a
function of the linear output. Thus, there is no nonlinear
mixing of input features when making the prediction. The
default nonlinear component is a polynomial with degree
that can be determined on a validation set.

Support vector regression. In support vector regres-
sion (SVR; Smola and Schélkopf, 2004; Chang and Lin,
2011), the inputs are projected into a higher-dimensional
space using a nonlinear kernel, and then linearly mapped
from this space to the output to minimize an objective
function (Smola and Schoélkopf, 2004; Chang and Lin,
2011). That is, the input/output mapping is assumed to be
nonlinear, but is constrained by the kernel being used (it is
not completely flexible). In our toolbox, the default kernel
is a radial basis function.

XGBoost. XGBoost (Extreme Gradient Boosting; Chen
and Guestrin, 2016) is an implementation of gradient
boosted trees (Natekin and Knoll, 2013; Chen, 2014).
Tree-based methods sequentially split the input space
into many discrete parts (visualized as branches on a tree
for each split) to assign each final “leaf” (a portion of input
space that is not split any more) a value in output space
(Breiman, 2017). XGBoost fits many regression trees, which
are trees that predict continuous output values. “Gradient
boosting” refers to fitting each subsequent regression tree
to the residuals of the previous fit. This method assumes
flexible nonlinear input/output mappings.

Feedforward neural network. A feedforward neural net
(Rosenblatt, 1961; Goodfellow et al., 2016) connects the
inputs to sequential layers of hidden units, which then
connect to the output. Each layer connects to the next
(e.g., the input layer to the first hidden layer or the first
to second hidden layers) via linear mappings followed
by nonlinearities. Note that the Wiener cascade is a spe-
cial case of a neural network with no hidden layers.
Feedforward neural networks also allow flexible nonlinear
input/output mappings.

Simple RNN. In a standard RNN (Rumelhart et al.,
1986; Goodfellow et al., 2016), the hidden state is a linear
combination of the inputs and the previous hidden state.
This hidden state is then run through an output nonlinear-
ity and is linearly mapped to the output. Like feedforward
neural networks, RNNs allow flexible nonlinear input/out-
put mappings. Additionally, unlike feedforward neural net-
works, RNNs allow temporal changes in the system to be
modeled explicitly.

Gated recurrent unit. Gated recurrent units (GRUs;
Cho et al., 2014; Goodfellow et al., 2016) are a more
complex type of recurrent neural network. It has gated
units, which determine how much information can
flow through various parts of the network. In practice,
these gated units allow for better learning of long-term
dependencies.

Long short-term memory network. Like the GRU, the
long short-term memory (LSTM) network (Hochreiter and
Schmidhuber, 1997; Goodfellow et al., 2016) is a more
complex recurrent neural network with gated units that
further improve the capture of long-term dependencies.
The LSTM has more parameters than the GRU.
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Kalman filter. Our Kalman filter for neural decoding was
based on the study by Wu et al. (2003). In the Kalman fil-
ter, the hidden state at time t is a linear function of the hid-
den state at time t — 1, plus a matrix characterizing the
uncertainty. For neural decoding, the hidden state is the
kinematics (x and y components of position, velocity, and
acceleration), which we aim to estimate. Note that although
we only aim to predict position or velocity, all kinematics are
included because this allows for better prediction. Kalman
filters assume that both the input/output mapping and the
transitions in kinematics over time are linear.

Naive Bayes. The Naive Bayes decoder is a type of
Bayesian decoder that determines the probabilities of dif-
ferent outcomes, and it then predicts the most probable.
Briefly, it fits an encoding model to each neuron, makes
conditional independence assumptions about neurons,
and then uses Bayes’ rule to create a decoding model
from the encoding models. Thus, the effects of individual
neurons are combined linearly. This probabilistic frame-
work can incorporate prior information about the output
variables, including the probabilities of their transitions
over time. We used a Naive Bayes decoder similar to the
one implemented in the study by Zhang et al. (1998).

In the comparisons below, we also demonstrate an en-
semble method. We combined the predictions from all
decoders except the Kalman filter and Naive Bayes de-
coders (which have different formats) using a feedforward
neural network. That is, the predictions of the eight meth-
ods were provided as input into a feedforward neural net-
work that we trained to predict the true output.

Demonstration datasets

We first examined which of several decoding methods
performed the best across three datasets from motor cor-
tex, somatosensory cortex, and hippocampus. All data-
sets are linked from our GitHub repository.

In the task for decoding from motor cortex, monkeys
moved a manipulandum that controlled a cursor on a
screen (Glaser et al., 2018), and we aimed to decode the x
and y velocity of the cursor. Details of the task can be
found in the study by Glaser et al. (2018). The 21 min re-
cording from motor cortex contained 164 neurons. The
mean and median firing rates, respectively, were 6.7 and
3.4 spikes/s. Data were put into 50ms bins. We used
700 ms of neural activity (the concurrent bin and 13 bins
before) to predict the current movement velocity.

The same task was used in the recording from somato-
sensory cortex (Benjamin et al., 2018). The recording from
S1 was 51 min and contained 52 neurons. The mean and
median firing rates, respectively, were 9.3 and 6.3 spikes/
s. Data were put into 50 ms bins. We used 650 ms sur-
rounding the movement (the concurrent bin, 6 bins be-
fore, and 6 bins after).

In the task for decoding from hippocampus, rats
chased rewards on a platform (Mizuseki et al., 2009a,b),
and we aimed to decode the x and y position of the rat.
From this recording, we used 46 neurons over a time pe-
riod of 75 min. These neurons had mean and median firing
rates of 1.7 and 0.2 spikes/s, respectively. Data were put
into 200 ms bins. We used 2 s of surrounding neural activ-
ity (the concurrent bin, 4 bins before, and 5 bins after) to
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predict the current position. Note that the bins used for
decoding differed in all tasks for the Kalman filter and
Naive Bayes decoders (Extended Data Fig. 4-3).

All datasets, which have been used in prior publications
(Mizuseki et al., 2009a,b; Benjamin et al., 2018; Glaser et
al., 2018), were collected with approval from the
Institutional Animal Care and Use Committees of the ap-
propriate institutions.

Demonstration analysis methods
Scoring metric. To determine the goodness of fit, we

> i)
used R =1 — % where y; are the predicted val-
Yi—y

ues, y; are the true values, and y is the mean value. This
formulation of R? (Serruya et al., 2003; Fagg et al., 2009;
which is the fraction of variance accounted for, rather
than the squared Pearson’s correlation coefficient) can be
negative on the test set because of overfitting on the train-
ing set. The reported R? values are the average across the
x and y components of velocity or position.

Preprocessing. The training output was zero centered
(mean subtracted), except in SVR, where the output was
normalized (z scored), which helped algorithm perform-
ance. The training input was z scored for all methods. The
validation/testing inputs and outputs were preprocessed
using the preprocessing parameters from the training set.

Cross-validation. When determining the R? for every
method (Fig. 3), we used 10-fold cross-validation. For
each fold, we split the data into a training set (80% of
data), a contiguous validation set (10% of data), and a
contiguous testing set (10% of data). For each fold, de-
coders were trained to minimize the mean squared error
between the predicted and true velocities/positions of the
training data. We found the algorithm hyperparameters
that led to the highest R? value on the validation set using
Bayesian optimization (Snoek et al., 2012). That is, we fit
many models on the training set with different hyperpara-
meters and calculated the R? on the validation set. Then,
using the hyperparameters that led to the highest valida-
tion set R?, we calculated the R? value on the testing set.
Error bars on the test set R? values were computed across
cross-validation folds. Because the training sets on differ-
ent folds were overlapping, computing the SEM as 0'/\/:/
(where o is the SD and J is the number of folds) would
have underestimated the size of the error bars (Nadeau
and Bengio, 2000). We thus calculated the SEM as

o#y/3+ 75 (Nadeau and Bengio, 2000), which takes into

account that the estimates across folds are not
independent.

Bootstrapping. When determining how performance
scaled as a function of data size (see Fig. 5), we used sin-
gle test and validation sets, and varied the amount of
training data that directly preceded the validation set. We
did not do this on 10 cross-validation folds because of
long run-times. The test and validation sets were 5min
long for motor and somatosensory cortices, and 7.5min
for hippocampus. To get error bars, we resampled from
the test set. Because of the high correlation between tem-
porally adjacent samples, we did not resample randomly
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from all examples (which would create highly correlated
resamples). Instead, we separated the test set into 20
temporally distinct subsets, S1-S5g (€.9., Sq is from t=1
to t=T/20, S, is from t=T/20 to t=2T7/20, where T is the
end time), to ensure that the subsets were more nearly in-
dependent of each other. We then resampled combina-
tions of these 20 subsets (e.g., Ss, S13, ... Sp) 1000 times
to get confidence intervals of R? values.

Results

We investigated how the choice of machine learning
technique affects decoding performance using a number
of common machine learning methods that are included
in our code package. These ranged from historical linear
techniques (e.g., the Wiener filter) to modern machine
learning techniques (e.g., neural networks and ensembles
of techniques). We tested the performance of these tech-
niques across datasets from motor cortex, somatosen-
sory cortex, and hippocampus.

Performance comparison

In order to get a qualitative impression of the perform-
ance, we first plotted the output of each decoding method
for each of the three datasets (Fig. 3). In these examples,
the modern methods, such as the LSTM and ensemble,
appeared to outperform traditional methods. We next
quantitatively compared the performances of the meth-
ods, using the metric of R? on held-out test sets. These
results confirmed our qualitative findings (Fig. 4). In partic-
ular, neural networks and the ensemble led to the best
performance, while the Wiener or Kalman filters led to the
worst performance. In fact, the LSTM decoder explained
>40% of the unexplained variance from a Wiener filter (R?
values of 0.88, 0.86, and 0.62 vs 0.78, 0.75, and 0.35).
Interestingly, while the Naive Bayes decoder performed
relatively well when predicting position in the hippocam-
pus dataset (mean R? just slightly less than the neural net-
works), it performed very poorly when predicting hand
velocities in the other two datasets. Another interesting
finding is that the feedforward neural network did almost
as well as the LSTM in all brain areas. Across cases, the
ensemble method added a reliable, but small increase to
the explained variance. Overall, modern ML methods led
to significant increases in predictive power.

Concerns about limited data for decoding

We chose a representative subset of the 10 methods to
pursue further questions about particular aspects of neu-
ral data analysis: the feedforward neural network and
LSTM (two effective modern methods), along with the
Wiener and Kalman filters (two traditional methods in
widespread use). The improved predictive performance of
the modern methods is likely because of their greater
complexity. However, this greater complexity may make
these methods unsuitable for smaller amounts of data.
Thus, we tested performance with varying amounts of
training data. With only 2 min of data for motor and soma-
tosensory cortices, and 15min of hippocampus data,
both modern methods outperformed both traditional
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Figure 3. Example decoder results. Example decoding results from motor cortex (left), somatosensory cortex (middle), and hippo-

campus (right), for all 11 methods (top to bottom). Ground truth traces are in black, while decoder results are in various colors.

methods (Fig. 5a, Extended Data Fig. 5-1). When decreas-
ing the amount of training data further, to only 1 min for
motor and somatosensory cortices and 7.5min for hippo-
campus data, the Kalman filter performance was sometimes
comparable to the modern methods, but the modern meth-
ods significantly outperformed the Wiener filter (Fig. 5a).
Thus, even for limited recording times, modern ML methods
can yield significant gains in decoding performance.
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Besides limited recording times, neural data are often
limited in the number of recorded neurons. Thus, we com-
pared methods using a subset of only 10 neurons. For
motor and somatosensory data, despite a general de-
crease in performance for all decoding methods, the
modern methods significantly outperformed the tradi-
tional methods (Fig. 5b). For the hippocampus dataset, no
method predicted well (mean R® < 0.25) with only 10
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Figure 4. Decoder result summary. R? values are reported for all
decoders (different colors) for each brain area (top to bottom).
Error bars represent the mean = SEM across cross-validation
folds. Xs represent the R® values of each cross-validation fold.
The NB decoder had mean R? values of 0.26 and 0.36 (below the
minimum y-axis value) for the motor and somatosensory cortex
datasets, respectively. Note the different y-axis limits for the hip-
pocampus dataset in this and all subsequent figures. In Extended
Data, we include the accuracy for multiple versions of the Kalman
filter (Extended Data Fig. 4-1), accuracy for multiple bin sizes
(Extended Data Fig. 4-2), and a table with further details of all
these methods (Extended Data Fig. 4-3).

neurons. This is likely because 10 sparsely firing neurons
(median firing of HC neurons was ~0.2 spikes/s) did not
contain enough information about the entire space of po-
sitions. However, in most scenarios, with limited neurons
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and for limited recorded times, modern ML methods can
be advantageous.

Concerns about run-time

While modern ML methods lead to improved perform-
ance, it is important to know that these sophisticated de-
coding models can be trained in a reasonable amount of
time. To get a feeling for the typical timescale, consider
that when running our demonstration data on a desktop
computer using only CPUs, it took <1 s to fit a Wiener fil-
ter, <10 s to fit a feedforward neural, and <8 min to fit an
LSTM. (This was for 30 min of data, using 10 time bins of
neural activity for each prediction and 50 neurons.) In
practice, these models will need to be fit tens to hundreds
of times when incorporating hyperparameter optimization
and cross-validation. As a concrete example, let us say
that we are doing fivefold cross-validation, and hyperpara-
meter optimization requires 50 iterations per cross-valida-
tion fold. In that case, fitting the LSTM would take ~30 h,
and fitting the feedforward neural net would take <1 h.
Note that variations in hardware and software implementa-
tions can drastically change run-time (e.g. newer software
versions have more than doubled the speed of the LSTM
reported above, and modern graphics processing units
(GPUs) can often increase speeds ~10-fold). Thus, while
modern methods do take significantly longer to train (and
may require running overnight without GPUs), that should
be manageable for most offline applications.

Concerns about robustness to hyperparameters

All our previous results used hyperparameter optimiza-
tion. While we strongly encourage a thorough hyperpara-
meter optimization, a user with limited time might just do
a limited hyperparameter search. Thus, it is helpful to
know how sensitive results may be to varying hyperpara-
meters. We tested the performance of the feedforward
neural network while varying the following two hyperpara-
meters: the number of units and the dropout rate (a regu-
larization hyperparameter for neural networks). We held
the third hyperparameter in our code package, the num-
ber of training epochs, constant at 10. We found that the
performance of the neural network was generally robust
to large changes in the hyperparameters (Fig. 6). As an ex-
ample, for the somatosensory cortex dataset, the peak
performance of the neural network was R? = 0.86 with
1000 units and 0 dropout, and virtually the same (R® =
0.84) with 300 units and 30% dropout. Even when using
limited data, neural network performance was robust to
hyperparameter changes. For instance, when training the
somatosensory cortex dataset with 1 min of training data,
the peak performance was R? = 0.77 with 700 units and
20% dropout. A network with 300 units and 30% dropout
had R? = 0.75. Note that the hippocampus dataset, in par-
ticular when using limited training data, did have greater
variability, emphasizing the importance of hyperpara-
meter optimization on sparse datasets. However, for most
datasets, researchers should not be concerned that
slightly nonoptimal hyperparameters will lead to largely
degraded performance.
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Figure 5. Decoder results with limited data. a, Testing the effects of limited training data. Using varying amounts of training data, we
trained two traditional methods (Wiener filter and Kalman filter), and two modern methods (feedforward neural network and LSTM). R?
values are reported for these decoders (different colors) for each brain area (top to bottom). Error bars are 68% confidence intervals
(meant to approximate the SEM) produced via bootstrapping, as we used a single test set. Values with negative R?s were not shown. b,
Testing the effects of few neurons. Using only 10 neurons, we trained two traditional methods (Wiener filter and Kalman filter), and two
modern methods (feedforward neural network and LSTM). We used the same testing set as in a, and the largest training set from a. R?
values are reported for these decoders for each brain area. Error bars represent the mean = SEM of multiple repetitions with different
subsets of 10 neurons. Xs represent the R? values of each repetition. Note that the y-axis limits are different in a and b. In Extended
Data, we provide examples of the decoder predictions for each of these methods (Extended Data Fig. 5-1).

Discussion published online, show that machine learning works well on

Here we have provided a tutorial, code package, and dem-  typical neural decoding datasets, outperforming traditional de-
onstrations of the use of machine learning for neural decoding.  coding methods. In our demonstration, we decoded continu-
Our comparisons, which were made using the code we have  ous-valued variables. However, these same methods can be
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Figure 6. Sensitivity of neural network results to hyperparameter selection. In a feedforward neural network, we varied the number
of hidden units per layer (in increments of 100) and the proportion of dropout (in increments of 0.1), and evaluated the performance
of the decoder on all three datasets (top to bottom). The neural network had two hidden layers, each with the same number of hid-
den units. The number of training epochs was kept constant at 10. The colors show the R? on the test set, and the colors of each
panel were put in the range: [maximum R? - 0.2, maximum R?]. a, We used a large amount of training data (the maximum amount
used in Fig. 5a), which was 10, 20, and 37.5 min of data for the motor cortex, somatosensory cortex, and hippocampus datasets, re-
spectively. b, Same results for a limited amount of training data: 1, 1, and 15 min of data for the motor cortex, somatosensory cor-

tex, and hippocampus datasets, respectively.

used for classification tasks, which often use classic decoders
such as logistic regression and support vector machines. Our
available code also includes classification methods.

We find it particularly interesting that the neural network
methods worked so well with limited data, counter to the
common perception. We believe the explanation is simply
the size of the networks. For instance, our networks have
on the order of 10° parameters, while common networks
for image classification (Krizhevsky et al., 2012) can have
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on the order of 108 parameters. Thus, the smaller size of
our networks (hundreds of hidden units) may have al-
lowed for excellent prediction with limited data (Zhang et
al., 2016). Moreover, the fact that the tasks we used had a
low-dimensional structure, and therefore the neural data
were also likely low dimensional (Gao et al., 2017), might
allow high decoding performance with limited data.

In order to find the best hyperparameters for the decod-
ing algorithms, we used a Bayesian optimization routine
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(Snoek et al., 2012) to search the hyperparameter space
(see Demonstration methods). Still, it is possible that, for
some of the decoding algorithms, the hyperparameters
were nonoptimal, which would have lowered overall accu-
racy. Moreover, for several methods, we did not attempt
to optimize all the hyperparameters. We did this to sim-
plify the use of the methods and to decrease computa-
tional runtime during hyperparameter optimization, and
because optimizing additional hyperparameters (beyond
default values) did not appear to improve accuracy. For
example, for the neural nets we used dropout but not L1
or L2 regularization, and for XGBoost we optimized less
than half the available hyperparameters designed to avoid
overfitting. While our preliminary testing with additional
hyperparameters did not appear to change the results
significantly, it is possible that some methods did not
achieve optimal performance.

We have decoded from spiking data, but it is possible
that the problem of decoding from other data modalities
is different. One main driver of a difference may be the
distinct levels of noise. For example, fMRI signals have far
higher noise levels than spikes. As the noise level goes
up, linear techniques become more appropriate, which
may ultimately lead to a situation where the traditional lin-
ear techniques become superior. Applying the same anal-
yses we performed here across different data modalities
is an important next step.

All our decoding was done “offline,” meaning that the
decoding occurred after the recording and was not part of
a control loop. This type of decoding is useful for deter-
mining how information in a brain area relates to an exter-
nal variable. However, for engineering applications such
as BMIs (Nicolas-Alonso and Gomez-Gil, 2012; Kao et al.,
2014), the goal is to decode information (e.g., predict
movements) in real time. Our results here may not apply
as directly to online decoding situations, since the subject
is ultimately able to adapt to imperfections in the decoder.
In that case, even relatively large decoder performance
differences may be irrelevant. Plus, there are additional
challenges in online applications, such as nonstationary
inputs (e.g., because of electrodes shifting in the brain;
Wu and Hatsopoulos, 2008; Sussillo et al., 2016;
Farshchian et al., 2018). Finally, online applications are
concerned with computational runtime, which we have
only briefly addressed here. In the future, it would be valu-
able to test modern techniques for decoding in online ap-
plications (Sussillo et al., 2012, 2016).

Finally, we want to briefly mention the concept of fea-
ture importance, which our tutorial has not addressed.
Feature importance refers to the determination of which
inputs most affect the predictions of a machine learning
model. For decoding, feature importance methods could
be used to ask which neurons are important for making
the predictions or, if multiple brain areas are input into the
decoder, which of these brain regions matter. Three com-
mon, straightforward approaches that we would recom-
mend are (1) to build separate decoders with individual
features to test the predictive abilities of those features;
(2) leave-one-feature-out, in which the decoder is fit while
leaving out a feature, to evaluate how removing that

July/August 2020, 7(4) ENEURO.0506-19.2020

Research Article: Methods/New Tools 14 of 16
feature decreases prediction performance; and (3) permu-
tation feature importance, in which, after fitting the de-
coder, the values of a feature are shuffled to determine
how much prediction performance decreases. Molnar
(2018) and Dankers et al. (2020) provide more details on
these approaches, and Molnar (2018) describes other
common feature importance methods in the machine
learning literature. These methods can facilitate some
understanding of neural activity even when the ML de-
coder is quite complex.

Machine learning is relatively straightforward to apply
and can greatly improve the performance of neural de-
coding. Its principle advantage is that many fewer as-
sumptions need to be made about the structure of the
neural activity and the decoded variables. Best practices
like testing on held-out data, perhaps via cross-validation,
are crucial to the ML pipeline and are critical for any appli-
cation. The Python package that accompanies this tuto-
rial is designed to guide both best practices and the
deployment of specific ML algorithms, and we expect it
will be useful in improving decoding performance for new
datasets. Our hunch is that it will be hard for specialized
algorithms (Corbett et al., 2010; Kao et al., 2017) to com-
pete with the standard algorithms developed by the ma-
chine learning community.
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