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Abstract

Inflammation plays an important role in the pathophysiology of Chagas disease, caused by
Trypanosoma cruzi. Prostanoids are regulators of homeostasis and inflammation and are
produced mainly by myeloid cells, being cyclooxygenases, COX-1 and COX-2, the key
enzymes in their biosynthesis from arachidonic acid (AA). Here, we have investigated the
expression of enzymes involved in AA metabolism during T. cruzi infection. Our results
show an increase in the expression of several of these enzymes in acute T. cruzi infected
heart. Interestingly, COX-2 was expressed by CD68* myeloid heart-infiltrating cells. In addi-
tion, infiltrating myeloid CD11b*Ly6G™ cells purified from infected heart tissue express
COX-2 and produce prostaglandin E, (PGEy) ex vivo. T. cruzi infections in COX-2 or PGE,-
dependent prostaglandin receptor EP-2 deficient mice indicate that both, COX-2 and EP-2
signaling contribute significantly to the heart leukocyte infiltration and to the release of che-
mokines and inflammatory cytokines in the heart of T. cruzi infected mice. In conclusion,
COX-2 plays a detrimental role in acute Chagas disease myocarditis and points to COX-2
as a potential target forimmune intervention.

Author Summary

The role of prostanoids, products of the arachidonic acid pathway, during Trypanosoma
cruzi infection has been studied by inhibiting key enzymes in prostanoid synthesis as
cyclooxygenases (COX-1 and COX-2), with opposed results. Here we analyzed the expres-
sion of cyclooxygenases, prostanoid synthases and receptors in the heart of mice suscepti-
ble and non-susceptible to T. cruzi infection and found that they were highly increased
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respect to non-infected mice. We previously identified the presence of myeloid-derived
suppressor cells expressing arginase-1 (Arg-1). Further analysis showed that COX-2 was
expressed in Arg-1" myeloid cells in heart tissue, suggesting the existence of different mye-
loid populations involved in the leukocyte infiltration (COX-2"Arg-1") and tissue repair
(COX-27Arg-1"). Mice deficient in the expression of COX-2 and the prostaglandin PGE,
receptor EP-2 infected with T. cruzi showed a marked reduction in the cardiac inflamma-
tory infiltration in comparison with infected wild type mice, indicating an adverse effect of
COX-2 and PGE,; signaling through EP-2 receptor in the development of myocarditis dur-
ing acute T. cruzi infection, suggesting the possibility of immune intervention using COX
inhibitors.

Introduction

Chagas disease is a multisystemic disorder caused by Trypanosoma cruzi infection that affects
more than 8 million people worldwide, being endemic in Latin America. Due to the scarcity of
preventive and therapeutic tools and population at risk, it is considered as a neglected tropical
disease [1, 2]. More than 40,000 new infected people and 12,550 deaths per year are estimated.
The high rate of migration towards non-endemic countries has spread the boundaries of the
infection to other continents. Non-vectorial transmission is possible through oral ingestion,
blood transfusion, organ transplantation and during pregnancy. The risk of infection is related
to the country of origin of the migrants and the rate of prevalence in a given country [3].

Chagas disease is characterized by acute and chronic phases. Death occurs occasionally in
the acute phase (<5-10% of symptomatic cases) as a result of severe myocarditis, meningoen-
cephalitis, or both. The experimental model of infection in mice recapitulates many clinical fea-
tures observed in human infection, although different strains of mice and parasites produce
different disease outcomes [4].

Heart inflammation during the acute phase of T. cruzi experimental infection is initiated by
lymphoid and myeloid mononuclear cell infiltration [5]. We have isolated from infected hearts
an infiltrating monocytic CD11b"Ly6C*Ly6G™ population expressing both classical (M1) and
alternatively (M2) activated macrophage markers that is able to suppress T cell proliferation ex
vivo, characteristics that define them as myeloid-derived suppressor cells (MDSCs) [6, 7].

Myeloid cells are thought to be the major source of prostanoids, end products of cell mem-
brane arachidonic acid (AA) catabolism, which include prostaglandins, prostacyclin and
thromboxanes [8]. Enzymes implicated in prostanoid production have been investigated for
many years [9]. All these lipid mediators have important roles in homeostasis and immune
response regulation [10]. Cyclooxygenases, COX-1 and COX-2, are principal enzymes in pros-
tanoid production. COX-1 expression is involved in homeostasis while COX-2 is induced by
several factors, including infection [9]. However, the specific role of COX-2 and downstream
enzymes in the context of infection varies depending on the infectious agent [11-13].

PGE,, a product of terminal PGE, synthases (PGES) has pro-inflammatory properties [14]
but also immunosuppressive properties [15] by signaling through G-protein coupled PGE
receptors (EP), termed EP-1, EP-2, EP-3 and EP-4. PGE, also decreases the ability of macro-
phages to phagocytize and kill microorganisms [16, 17], and is required for monocyte migra-
tion in response to chemokines [18, 19].

There are few studies about the role of prostanoids in human chagasic pathology [20, 21],
but it has been described that monocyte inflammatory mediators inhibit cellular proliferation
and enhance cytokine production in patients [22]. In rodent models of acute infection, the
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levels of PGF,,, TXB,, 6-0x0-PGF, [23] and PGE, [24] in plasma, were increased. Macro-
phages from infected rats show an increased number of lipid bodies, where COX-2 produces
PGE, [25]. Recently, it has been shown that the absence of Phospholipase A2y, an enzyme
implicated in AA release from membranes, decreases mice survival [26].

The role of COX in mice infected with T. cruzi has been studied using non-selective inhibi-
tors of COX-1 and COX-2, as well as COX-2-selective inhibitors (NSAIDs), with conflicting
results. Thus, it has been described that COX inhibitors cause an increase in mortality and par-
asitism [27] in T. cruzi infection, but contrarily, other reports claim that COX-2 inhibition
decreases the level of parasitism [28, 29]. In addition, both beneficial and adverse effects of
COX inhibitors have been reported, depending on the phase of T. cruzi infection and the mice
strain used [30]. Discrepancies between these studies could be explained by the different ability
of BALB/c and C57BL/6 mouse strains to produce PGE, [31]; the presence of distinct levels of
cytokines in serum [32] or because of differences in cardiac cytokine expression profile [6].

Thus, in order to clarify the role of prostanoids in acute cardiac inflammation, we infected
susceptible and non-susceptible mice, as well as COX-2 and EP-2 deficient mice with T. cruzi
and analyzed cardiac inflammation, leukocyte infiltration and expression of cytokines, chemo-
kines and inflammatory mediators in the infected mice.

Results

Prostanoid-synthesizing enzymes in the heart tissue of T. cruzi infected
mice

We infected mice with the Y strain of T. cruzi. Immunopathology caused by this parasite strain
is characterized by cardiac inflammatory damage. As we previously reported [33], C57BL/6,
but not BALB/c, infected mice recovered from infection and survived (S1A Fig). Parasitemia
was detectable between 9 and 21 d.p.i. and was higher in BALB/c mice (S1B Fig). Hearts of
BALB/c infected mice showed more leukocyte infiltration and parasite nests than C57BL/6
mice (S1C Fig). We next studied the expression level of enzymes involved in the AA pathway
in the heart of both strains after infection (Fig 1A). COX-2 gene expression (Ptgs2), but not
COX-1 (PtgsI), was increased in heart tissue during the acute phase of T. cruzi infection simi-
larly in both mouse strains. Ptges (microsomal prostaglandin E2 synthase, mPGES-1), Hpgds
(leucocyte type PGD synthase) and TbxasI (thromboxane synthase) mRNA expression levels
were also incremented. However, Ptgds (lipocalin-type prostaglandin D synthase) mRNA basal
level of expression in heart tissue did not change upon T. cruzi infection. These results indicate
that T. cruzi infection promoted the selective up-regulation of some of the enzymes involved in
prostanoid production in heart tissue, including COX-2 and mPGES-1.

Myeloid cells in inflamed cardiac tissue express COX-2

Since COX-2 plays a key role in the synthesis of PGs in inflammatory processes, we aimed to
identify the cells expressing this enzyme in the heart of T cruzi infected mice. Hearts from
C57BL/6 (Fig 1B) and BALB/c (Fig 1C) mice were immunostained for COX-2 and myeloid
and lymphoid markers, and imaged by confocal microscopy. Cells expressing COX-2 were
abundant in the infected hearts of both mice strains, showing a strong staining in the perinuc-
lear region of both myeloid CD68 positive and non-myeloid CD68 negative infiltrating cells.
Interestingly, there was no co-localization of COX-2 and Arg-1, a marker of M2 macrophages
and MDSCs (Fig 1D). Although COX-2 expression by activated lymphocytes has been previ-
ously described [34], CD4 staining was not detected in infiltrating COX-2" cells in hearts of
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Fig 1. Expression of prostanoid synthases in T. cruzi infected cardiac tissue. (A) Expression of Ptgs1, Ptgs2, Ptges (MPGES1), Ptgds, Hpgds and
Tbxas1 in heart tissue of, either non-infected (0) or at different d.p.i. (7 to 28), BALB/c and C57BL/6 mice. Means + SEM from three independent experiments
(n =9) are shown. Statistical comparisons are indicated * p< 0.05, *** p< 0.001. (B) Heart tissue samples from C57BL/6 mice at 14 d.p.i. and (C) BALB/c
mice at 21 d.p.i., were stained with DAPI for nuclei (Blue) and specific antibodies for the macrophage marker CD68 (green) and the enzyme COX-2 (red). (D)
Heart tissue from BALB/c mice at 21 d.p.i. stained for COX-2 (red), CD68 (green) and Arg-1 (magenta). In the merge of B, C and D, red, yellow and white
arrows point to COX-2*, CD68"COX-2* and CD68"Arg-1* cells, respectively. Pictures are representative of several sections analyzed in 3 different mice from
three independent experiments; the scale bar is 20 um.

doi:10.1371/journal.pntd.0004025.9001
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infected C57BL/6 (S2A Fig) nor BALB/c mice (S2C Fig). No staining was observed in negative
control sections incubated with secondary antibodies alone (S2B, S2D and S2E Fig).

We next isolated myeloid cells from hearts of T. cruzi infected C57BL/6 and BALB/c mice at
the times,14 and 21 d.p.i. respectively, when maximum Arg-1 and inducible nitric oxide
synthase (iNOS) expression is observed [7]. Using anti-Ly6G antibody labeled magnetic
microbeads we obtained the Ly6G™ population. CD11b" cells were selected from the remaining
Ly6G population, (Fig 2A). As previously described [7], the CD11b*Ly6G™ cell population
expressed iNOS and Arg-1, and here we show that they also expressed COX-2 (Fig 2A). Inter-
estingly, COX-2 gene expression was much higher in CD11b" cells obtained from infected car-
diac tissue than those from the blood (Fig 2B), pointing to infiltrating myeloid cells in inflamed
tissue as the source of COX-2.

CD11b*Ly6G" cells from infected cardiac tissue produce PGE,

In agreement with the increase in COX-2 expression, a significant increase in the production
of prostanoids as PGE, and 6-oxo PGF1la in infected hearts was detected by mass spectrometry
analysis on total heart extracts (Fig 2C). Further ex vivo analysis on Ly6G* and CD11b*Ly6G
purified heart infiltrating myeloid cells cultured in the presence of radiolabeled AA, showed
that Ly6G" cells did not produce any detectable prostanoid (Fig 2D). In contrast, CD11b*
Ly6G" cells produced high levels of PGE, and low amounts of PGF,,, (Fig 2E). These results
indicate that the CD11b"Ly6G™ myeloid population is able to synthesize high levels of PGE,
from AA, while other cell types in heart tissue are likely producing PGE, and 6-oxo PGFlo.

" mice

Cardiac inflammation is reduced in COX-2
In order to study the role of COX-2 in the development of cardiac leukocyte infiltration, we
infected COX-2"/* and COX-2"" mice with the Y strain of the parasite. COX-2"" mice showed
30% reduction in blood parasite number compared to COX-2*/* mice at the peak of parasite-
mia (Fig 3A). However, COX-2 deficiency did not significantly affect cardiac parasite burden
compared to COX-2""* infected mice (Fig 3B). No mortality was observed neither in COX-2*"*
nor in COX-2"" infected mice up to 42 d.p.i.

Inflammatory infiltrates were analyzed and quantified in T. cruzi infected hearts from
COX-2""" and COX-2"" mice. Fig 3C shows the extent of leukocyte infiltration calculated from
several tissue sections as described in Methods. We observed significant less inflammatory
infiltration in infected COX-2"" than in COX-2*"* mice. Representative images corresponding
to the quantification of cell infiltration are shown in Fig 3D.

We next analyzed the cellular composition of the immune inflammatory infiltrate by deter-
mining gene expression of surface markers characteristic of various immune cell populations
by qRT-PCR and normalizing the data from infected animals respect to non-infected controls.
In agreement with histological findings, infection in COX-2"" mice compared to COX-2*'*
mice, led to lower expression of the common leukocyte marker Ptprc (CD45) as well as of Cd4,
Cd8, Cd68, and Itgax (CD11c) as markers of T helper cells, cytotoxic T cells, macrophages and
dendritic cells, respectively (Fig 4A).

To characterize the immune response in hearts of COX-2"" infected mice, gene expression
of chemokines and cytokines were analyzed. mRNA levels of chemokines (Ccl2, Ccl5 and
Cxcl9) and cytokines (Ifng, Tnf, Il4, 1l6 and 1110) were significantly increased during T. cruzi
infection in hearts of both COX-2*" and COX-2"" mice (Fig 4B and 4C). However, chemokine
expression presented different patterns in COX-2** and COX-2"" mice. Ccl2 and Ccl5 expres-
sion, but not Cxcl9, was significantly higher in COX-2"'* mice than in COX-2"" mice (Fig 4B).
Induction of pro-inflammatory cytokines Ifng, Tnf and Il6 was lower, whereas I/4 expression
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Fig 2. COX-2 expression and activity in heart and infiltrating myeloid cells during T. cruzi infection. (A) Purified Ly6G*, Ly6G CD11b*and
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Ly6G CD11b" cells were obtained from infected C57BL/6 (14 d.p.i.) and BALB/c (21 d.p.i.) mice hearts, by magnetic cell separation. Arg-1,iNOS and COX-2
levels were analyzed by Western blot. Protein levels of Actin are shown as loading control. A representative experiment of the two performed is shown. (B)
CD11b* cells were obtained from pooled infected BALB/c mouse hearts or blood at 21 d.p.i (n = 15). Ptgs2 (COX-2) expression in blood and heart tissue was
determined by real time gRT-PCR. Mean + SEM of two independent experiments is shown. (C) PGE, and 6-oxo-PGF levels in total heart extracts of BALB/

¢ from non-infected (0 d.p.i.) and 21 d.p.i., were determined as described in Methods and represented as scaled imputed data (ScaledimpData) after

normalizing raw data values respect to median values of each day run (*p<0.05). Prostanoid production in purified Ly6G™* (D) and Ly6G™ CD11b* (E) cells
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from BALB/c mice hearts at 21 d.p.i. was determined by incubation with labeled 25 uM [C“‘] AA and analysis by HPLC (black line and text). Prostanoid
standards (red line and text) were run in parallel as described in Methods. A representative experiment out of two performed is shown.

doi:10.1371/journal.pntd.0004025.9002

was higher, in COX-2"" compared to COX-2""* mice (Fig 4C). The anti-inflammatory cytokine
1110 showed lower expression in the COX-2"" infected mice. There were no significant differ-
ences in Argl expression between COX-2""* or COX-2"" mice (Fig 4D), but induction of Nos2
mRNA (iNOS) was significantly lower in COX-2" infected mice (Fig 4D). There was no
induction of Ptgs1 (COX-1) expression that could compensate for the COX-2"" deficiency (Fig
4D). Ptges (mPGES-1) expression was increased upon infection, with lower levels in heart tis-
sue from COX-2"" mice compared to COX-2""" mice (Fig 4D). Nevertheless, protein analysis
by western blot showed lower expression of both iNOS and Arg-1 in infected COX-2"" respect
to COX-2""* mice (Fig 5). Analysis of TNF-a levels in plasma showed a similar increase in
both COX-2""* and COX-2"" infected mice, indicating that the effect of COX-2 deficiency is
not systemic but specific of the heart (S3A Fig). Basal levels of gene expression did not signifi-
cantly change between COX-2*"* and COX-2"" mice (54 Fig).

Cardiac inflammation is reduced in EP-27" mice

We found increased levels of PGE, in heart tissue and cardiac infiltrating cells after T. cruzi
infection. Since the effector function of PGE, produced by myeloid cells depends on its binding
to EP receptors, we studied gene expression of its 4 receptors, EP-1 (PtgerI), EP-2 (Ptger2), EP-
3 (Ptger3) and EP-4 (Ptger4), in hearts of mice during infection. The results show that in con-
trol infected mice the overall expression of EP receptors is higher than in non-infected hearts,
except for Ptger3 (Fig 6A). However, in C57BL/6 infected hearts Ptger2 expression showed the
highest increases suggesting a potential role of this receptor in T.cruzi infection. Thus, we used
mice deficient in the expression of the EP-2 (in the C57BL/6 background), which has been
involved in inflammation [35], and also in an autocrine loop of macrophage activation by
PGE, [36], in order to study the role of this receptor during T. cruzi infection. The results show
that EP-2*"* and EP-2”" mice survived infection and no significant differences in parasitemia
or in heart parasite burden were observed between them (Fig 6B and 6C). These results suggest
that EP-2 signaling does not play an essential role in parasite elimination.

However, significant less heart inflammatory infiltrates were observed in infected EP-27"
in comparison with EP-2*"* mice at 14 d.p.i. (Fig 6D). Representative images of cardiac tissue
and inflammatory infiltration are shown in Fig 6E. The expression of the common leukocyte
marker Ptprc (CD45) was lower in the heart of infected EP-2/" mice respect to EP-2"'",
whereas mRNA levels of cell markers as Cd4 (Th cells), Cd8 (Tc cells), and Itgax- (CD11g¢;
DCs), did not show significant differences. However, the expression of Cd68, a macrophage
marker, significantly increased in EP-27" respect to EP-2*"* mice (Fig 7A). Regarding chemo-
kines, Ccl2 expression, but not Ccl5 and Cxcl9, was significantly reduced in the EP-2”7" com-
pared to EP-2"'" infected mice (Fig 7B). Induction of pro-inflammatory cytokines Ifng and I16,
the Th2 cytokine Il4 and the anti-inflammatory cytokine I/10, but not Tnf, was lower in EP-2""
compared with EP-2"/* (Fig 7C). Similarly to COX-2"", no differences were observed in TNF-o,
plasma levels in EP-2”7" as compared to EP-2*'* infected mice (S3B Fig). Ptgs2 (COX-2) gene
expression was significantly lower in EP-2"" infected mice (Fig 7D). There were no differences
between mouse strains in Nos2 mRNA (iNOS) expression (Fig 7D), but Argl mRNA expres-
sion was higher in EP-2”" mice (Fig 7D). Western blot analysis showed a significant increase in
EP-2"" respect to EP-2*"* mice, in the protein levels of these enzymes involved in L-arginine
metabolism (Fig 8). Basal levels of gene expression did not significantly change between EP-2"/
*and EP-2"" mice (S5 Fig).
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Fig 3. Parasite burden and heart inflammation in T. cruzi infected COX-2** and COX-2"" mice. (A) The presence of parasites in the blood of COX-2*/*+
or COX-2" mice at different d.p.i. was quantified by direct counting under optical microscopy. (B) DNA from heart tissue was isolated and gPCR using T. cruzi
DNA standard was performed to determine parasite burden in COX-2*"* or COX-2"" infected mice at 14 d.p.i. Means + SEM from three independent
experiments are shown (n = 4). (C) Heart tissue sections of COX-2*"* and COX-2"~ mice either non-infected (0 d.p.i.) or 14 d.p.i., were stained with Masson’s
Trichrome and inflammatory cell infiltration was quantified as described in Methods. (D) Representative pictures of heart tissue sections described in C.
Arrows indicate inflammatory infiltration. Scale bar is 100 ym. (ns = non-significant; *p<0.05; **p< 0.01; ***p<0.001).

doi:10.1371/journal.pntd.0004025.9003
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COX-2" mice. mRNA levels of the different genes analyzed was determined by qRT-PCR in heart tissue RNA samples isolated from non-infected (0 d.p.i.)
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myeloid cell markers as Ptprc, Cd4, Cd8a, Cd68 and ltgax (A), chemokines as Ccl2, Ccl5 and Cxcl9 (B), cytokines as Ifng, Tnf, Il4, 116 and /10 (C) and
enzymes as Arg1, Nos2, Ptgs1 and Ptges (mMPGES1) (D) is shown. Means + SEM from one representative experiment (n = 3) out of four is shown (n = 5;
* p<0.05; **p<0.01; ***p<0.001).

doi:10.1371/journal.pntd.0004025.9004

Methods

Parasites and mice

BALB/c and C57BL/6 mice (6 to 8-week-old) were purchased from Harlan, Interfauna Iberica.
B6;129S7-Ptg52"”1] 4] (COX-2"") mice were purchased from The Jackson Laboratory. C57BL/
6 Ptger2"™'*"® (EP-27") mice were a gift form Dr. Shu Narumiya, (Faculty of Medicine, Univer-
sity of Kyoto). Wild type B6/129S (COX-2"'*) and C57BL/6 (EP-2*"*) mice were obtained by
breeding heterozygote pairs.
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Fig 5. iNOS and Arg-1 expression in T. cruzi infected cardiac tissue of COX-2"* and COX-2"" mice. (A)
Western blot analysis of INOS and Arg-1 protein in extracts from hearts of COX-2*+ and COX-2” from non-
infected mice (0 d.p.i.) and at 14 d.p.i. Ponceau staining of the blot is shown as a loading control. Samples for
6 different infected mice are shown. (B) Quantification of INOS and Arg-1 band areas relative to the Ponceau
staining from COX-2** (dashed black bars) and COX-2"" (dashed gray bars) is represented as means + SEM
in arbitrary units. A representative experiment (n = 5) out of two is shown (**p<0.01).

doi:10.1371/journal.pntd.0004025.9005
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Fig 6. Parasite burden and heart inflammation in T. cruzi infected EP-2** and EP-2"" mice. (A) mRNA levels of EP receptors (Ptger1, Ptger2, Ptger3
and Ptger4) was determined by gRT-PCR in heart tissue RNA samples isolated from C57BL/6 mice non-infected (0 d.p.i.) and at 14 days post-infection
(n=5). (B) The presence of the parasites in the blood of EP-2*/* or EP-2”" mice at different d.p.i. was quantified by direct counting under optical microscopy.
(C) DNA from heart tissue was isolated and qPCR using T. cruzi DNA standard was performed to determine parasite burden in EP-2*"* or EP-2”" infected
mice at 14 d.p.i. Means + SEM from a representative experiment (n = 4) from three independent experiments are shown (n = 4). (D) Heart tissue sections of
EP-2*"* and EP-2"" from non-infected mice (0 d.p.i.) and at 14 d.p.i., were stained with Masson’s Trichrome and inflammatory cell infiltration was quantified as
described in Methods. (***p<0.001). (E) Representative pictures of heart sections described in C. Arrows indicate inflammatory infiltration. Scale bar is

100 ym.

doi:10.1371/journal.pntd.0004025.9006
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Fig 7. Gene expression of cell markers, chemokines, cytokines and inflammatory enzymes during T. cruzi infection in the heart of EP-2*'* and EP-
27" mice. Expression of the different genes was analyzed by gqRT-PCR in RNA samples of heart tissue isolated from EP-2** and EP-2”" non-infected mice (0
d.p.i.) and at 14 d.p.i. Data are expressed as RQ calculated from CT values as described in Methods. Gene expression of lymphoid and myeloid cell markers
as Ptprc, Cd4, Cd8a, Cd68 and Itgax (A), chemokines as Ccl2, Ccl5 and Cxcl9 (B), cytokines as Ifng, Tnf, ll4, lI6 and //10 (C) and enzymes as Nos2, Ptgs2
and Arg1 (D) is shown. Means + SEM from a representative experiment (n = 3) out of two is shown (n = 4;* p<0.05; **p<0.01; ***p<0.001).

doi:10.1371/journal.pntd.0004025.9007
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Fig 8. iINOS and Arg-1 expression in T. cruzi infected cardiac tissue of EP-2*"* and EP-2"" mice. (A)
Western blot analysis of INOS and Arg-1 protein in extracts from hearts of EP-2*/* and EP-27" non-infected
mice (0 d.p.i.) and at 14 d.p.i. Ponceau staining of the blot is shown as a loading control. Extracts from 3
different infected mice were loaded. (B) Quantification of INOS and Arg-1 band areas relative to the Ponceau
staining from EP-2*/* (black bars) and EP-2”" (gray bars) is represented as means + SEM in arbitrary units. A
representative experiment out of two is shown (**p<0.01; ***p<0.001).

doi:10.1371/journal.pntd.0004025.9008

In vivo infections were performed with Y T. cruzi strain as described [6, 7]. Groups of 3-15
mice were infected with 2,000 trypomastigotes per mice by intraperitoneal injection. Groups of
3-6 non-infected mice were included in the experiments as a control. Survival was monitored
daily and parasitemia levels were checked every 2-3 days. Mice blood and tissues were collected
at 0 (non-infected), 14 and 21 days post-infection (d.p.i.), as indicated.

Ethics statement

This study was carried out in strict accordance with the European Commission legislation for the
protection of animals used for scientific purposes (Directives 86/609/EEC and 2010/63/EU).
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Mice were maintained under pathogen-free conditions at the Centro de Biologia Molecular
Severo Ochoa (CSIC-UAM) animal facility. The protocol for the treatment of the animals was
approved by the “Comité de Etica de Investigacion de la Universidad Auténoma de Madrid”,
Spain (permits CEI-14-283 and CEI-47-899). Animals had unlimited access to food and water.
They were euthanized in a CO, chamber and all efforts were made to minimize their suffering.

Quantitative PCR

Hearts were perfused with Phosphate buffered saline (PBS) solution containing 1UI/ml of
heparin, minced into small pieces with a sterile scalpel and DNA was isolated with High
PurePCR Template preparation Kit (Roche). For T. cruzi detection, we used the quantitative
PCR (qPCR) assay described by Piron et al. [37]. 100, 10, 1, 0.1 and 0.01 pg of DNA purified
from Y strain epimastigotes were used to generate the standard curve. qPCR reactions were
performed with 100 ng of genomic DNA and murine Tnf gene primers were used as DNA
loading control.

mMRNA analysis by quantitative RT-PCR

For RNA extraction, heart tissue was perfused with PBS containing 1UI/ml of heparin, cut in
small pieces using a sterile scalpel blade, followed by mechanical disruption using a PT 1300 D
homogenizer (Kinematica Polytron, Fisher Scientific) in TRIzol reagent (Invitrogen) as indi-
cated by the manufacturer. Gene expression was analyzed by quantitative reverse transcription
PCR (qRT-PCR). Reverse transcription of total RNA was performed using the components of
the High Capacity cDNA Archive Kit (Applied Biosystems. Life Sciences) or the SuperScript
Enzyme (Invitrogen, Life Sciences). Amplification were performed using TagMan MGB probes
(S1 Table) and the TagMan Universal PCR Master Mix (Applied Biosystems) on an ABI
PRISM 7900 HT instrument (Applied Biosystems. Life Sciences). For cultured cells, samples
were treated as mentioned above except for the mechanical disruption. All samples were
assayed in triplicate. Quantification of gene expression by real-time PCR was calculated by

the comparative threshold cycle (CT) method as described in [38] (RQ = 27AACTY A quantifi-
cations were normalized to the ribosomal 188 control to account for the variability in the
initial concentration of RNA and in the conversion efficiency of the reverse transcription
reaction.

Protein expression analysis

Protein extracts were prepared from heart tissue perfused with PBS containing 1UI/ml of hepa-
rin, cut in small pieces using a sterile scalpel blade followed by mechanical disruption in Triton
X-100 based protein lysis buffer. Protein concentration was determined by the bicinchoninic
acid method (BCA, Pierce) using Bovine Serum Albumin (BSA) for the standard curve. West-
ern blot analyses were performed as follows: 15 or 50 pg of cell or tissue extract were fraction-
ated on SDS polyacrylamide gel and transferred to a Nitrocellulose membrane Hybond-ECL
(Amersham Biosciences) and blocked in 5% fat free dry milk or 5% BSA in 0,1% Tween-20
Tris Buffered Saline. Membranes were incubated overnight with diluted primary antibodies (S2
Table) at 4-8°C. The membranes were incubated with horseradish peroxidase conjugated sec-
ondary antibodies (S2 Table) and detection was carried out with Supersignal detection reagent
(Pierce) followed by photographic film exposure. Fiji package software was used to quantify
band intensity normalizing band areas of the sample to their respective loading control.

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004025 August 25,2015 14/23



@' PLOS NEGLECTED
2 : TROPICAL DISEASES COX-2 Favors Myocarditis in Acute T. cruzi Infection

Histological studies

Cardiac tissues from mice were placed in 10% neutral buffered formalin for at least 4 hours at
room temperature followed by incubation in 70% ethanol overnight. Samples were then
embedded in paraffin (Tissue Embedding Station Leica EG1160), and 5 pm tissue sections
were prepared (Microtome Leica RM2155). Samples were deparaffinized and rehydrated using
a Tissue Processing Station Leica TP1020. Slides were stained with Masson s Trichrome stain-
ing and mounted permanently in Eukitt’s quick hardening mounting medium (Biochemika,
Fluka analytical). The sections were microscopically analyzed in a Leica microscope (DMD
108, Leica microsystems Wetzlar GmbH, Germany) using the 20x magnification objective lens
and Lamp intensity 10 and f/Stop 12. Ventricular myocardium micrographs were taken avoid-
ing pericardium, endocardium, atria and big vessels. Nine pictures of different sections, sepa-
rated by at least 50 um, per heart were taken. The degree of inflammatory-cell infiltration was
quantified using the Fiji package [39] and the plugin Trainable Weka Segmentation developed
by Ignacio Arganda Carreras (Versailles, France) [39] (Image ] macro used for automated
image analysis is detailed in S1 File) and expressed as the percentage of the nuclei/tissue area
ratio.

Confocal immunofluorescence

Organs were removed from mice at different d.p.i.,, cut and fixed in a 4% paraformaldehyde
PBS buffered solution for 2h at room temperature, followed by incubation in a 30% sucrose
solution at 4°C overnight. Tissues were then embedded in Tissue-Tek OCT in Cryomolds
(Sakura) and frozen. 10 pm sections were cut using a cryostat Leica CM1900. Slides were fixed
in acetone for 10 min at room temperature and incubated 10 min with NH,Cl to reduce auto-
fluorescence. Then, slides were washed with PBS, permeabilized with 0,1% Triton X-100,
blocked and incubated over night at 4°C with primary antibodies (52 Table) in blocking buffer
(PBS 0,1% Triton X-100, 5% BSA). The samples were washed with PBS and secondary antibod-
ies (S2 Table) were added in blocking buffer and incubated overnight at 4°C. Blocking of
unspecific secondary antibody binding was achieved by addition of 2% of normal serum of the
species in which the secondary antibody was raised. As a negative control, sections were treated
in the same manner, except that incubation with primary antibody was omitted. Nuclei were
stained using 1 pg/ml of DAPI (268298, Merck). Prolong Gold Antifade Reagent (Invitrogen)
was used to mount the slides that were kept at 4°C until observation. Stained slides were
observed with the confocal laser scanning microscope LSM710, coupled to an AxioimagerM2
microscope (Zeiss). The micrographs were processed using the software ZEN (Zeiss) or the Fiji
Package.

Isolation of Ly6G™ and CD11b*Ly6G™ cells by magnetic sorting

BALB/c (n = 15) or C57BL/6 mice (n = 15) were infected i.p. with 2,000 trypomastigotes of the
Y strain. At 21 d.p.i. for BALB/c and 14 d.p.i. for C57BL/6, mice were euthanized in a CO,
chamber and hearts were aseptically removed, perfused with 10 ml PBS containing 1UI/ml of
heparin, and kept in cold Hank s balanced saline solution (HBSS). Then, hearts were pooled in
a cell culture dish, washed thoroughly with HBSS and minced into small pieces with a sterile
surgery blade. Mouse hearts (maximum 4 per tube) were transferred into the gentleMACS C
tube containing 4,7 mL of HBSS. 300uL of Collagenase II solution (600 U/ml) and 10 pl DNase
I solution (60U/ml) were added. Then tissue was disrupted with GentleMACS Dissociator
(Miltenyi Biotec GMbH). To obtain cell suspensions, a 70 um cell strainer (Falcon BD) was
used. After red blood cells lysis, the cells were magnetically sorted. For Ly6G™ cell sorting, anti
Ly-6G MicroBead kit was used with MACS LS columns and MACS Separators (Miltenyi Biotec
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GmbH), following manufacturer instructions. Ly6G™ fraction of the cell suspension was after-
wards processed for CD11b" cell sorting using CD11b Microbeads kit.

Analysis of prostanoids

Prostanoid levels were determined in mouse tissue extracts from 0 (non-infected) and 21 d.p.i.
by Metabolon Inc., and expressed as ScaledImpData as previously described [40]. To determine
in vitro prostanoid production, heart infiltrating cells were magnetically sorted as described
above and incubated 30 minutes at 37°C in 500 pl of RPMI without Fetal bovine serum (FBS)
in the presence of 25 uM [*C] AA, PerkinElmer (Massachusetts, USA). 500 ul of 2% acetic
acid in cold methanol was added to extract and preserve AA derivatives. Samples were vortexed
and the air inside the tube was substituted by inert nitrogen gas. Samples were kept frozen at
-80°C until HPLC was performed. HPLC device was composed by a Beckman Solvent Module
126 with the column Ultraphere ODS (C-18, Beckman-Coulter) 5 um diameter sphere particle,
4.5 mm and 25 cm column diameter and length respectively and a Beckman 171 Radioisotope
Detector. Scintillation liquid Ecoscint H was purchased from National Diagnostics. Prosta-
noids were resolved with the isocratic flow (1ml/min) of the mobile phase: Acetonitrile/water/
acetic acid 33:67:0.1 v/v/v. Standards were produced using [**C] Arachidonic Acid and differ-
ent cell types expressing the respective enzymes, and ['“C] Arachidonic Acid incubated in
medium was used as input control as described [41].

Statistical analysis

For in vivo experiments, data are shown as means + SEM. All the in vitro experiments were
performed at least three times. Significance was evaluated by Student’s t-test when two groups
were compared. ANOVA one way followed by Tukey post-test was used when groups of sam-
ples from an experiment had different time points. ANOVA two way followed by Bonferroni
post-test were used when the experiment included time and mice strain as variables. For sur-
vival analysis, we used Gehan-Breslow-Wilcoxon method. GraphPad Prism 5.00 software (La
Jolla, CA, USA) was used for statistical analysis.

Discussion

In order to clarify the role of prostanoids in the outcome of T. cruzi infection we first analyzed
the expression of prostanoid-synthesizing enzymes in cardiac tissue from T. cruzi susceptible
(BALB/c) and non-susceptible (C57BL/6) mice. Our results showed an increase of COX-2/
mPGES-1/PGE, axis in heart tissue upon infection in both strains of mice, indicating that it
has no direct effect on susceptibility to infection. Confocal microscopy analysis showed the
presence of CD68"Arg-1"COX-2" cells and CD68"Arg-1"COX-2", suggesting that there are at
least two subpopulations of monocytic infiltrating cells with mutually exclusive expression of
those enzymes. Thus, our results show that the myeloid population infiltrating the heart in T.
cruzi infection is more complex than previously described [7], and suggests a difference in the
function of these two myeloid populations. Macrophages can rapidly change their phenotype
and function in response to local microenvironmental signals, playing key roles in the initiation
and resolution of inflammation and tissue homeostasis [42] and could be involved in tissue
repair and fibrosis [43]. Thus, myeloid cardiac infiltration could inhibit parasite replication
and also facilitate the repair of damaged muscular tissue [44]. A suggestive hypothesis is that
COX-2 expressing macrophages could be linked to inflammation meanwhile Arg-1* macro-
phages could be involved in tissue repair.

Immunostaining of heart tissue sections showed the presence of myeloid and non-myeloid
cells positive for COX-2 in heart tissue sections of both BALB/c and C57BL/6 mice. However,
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after purification of myeloid cells from heart tissue, we found that only a particular subset
expressed COX-2, being the levels of COX-2 expression higher in C57BL/6 than BALB/c mice.
Likely, non-myeloid COX-2 positive cells are lost in the purification process, a fact that might
account for the apparent contrary results.

Interestingly, we demonstrated that PGE, and 6-oxo-PGF,,, (stable hydrolysis product of
PGIL,) were elevated in infected heart tissue. Furthermore, monocytes (CD11b"Ly6G") isolated
from infected heart express COX-2, and are able to produce high levels of PGE, ex vivo. The
differences in metabolites detected in total heart extracts versus purified myeloid cells are likely
due to their synthesis by other cell types and/or enrichment after cell purification. In agreement
with this, we have previously reported that T. cruzi infection induces COX-2 in cardiomyo-
cytes, leading to PGF,, and TXA, production [45]. Although COX-2 expression can be
induced in CD4" T cells upon activation [34], heart infiltrating CD4" cells did not express
detectable levels of COX-2.

On the other hand, the increase of ThxasI and Hpgds gene expression observed upon T.
cruzi infection in both C57BL/6 and BALB/c mice suggests the production of their respective
TXA, and PGD, metabolites in infected cardiac tissue. TbxasI was elevated up to 28 d.p.i. and
its product, TXA,, besides its vascular functions [46], could have a pro-inflammatory role for
monocytes [47]. In contrast, Hpgds expression showed a gradual increase during the acute
phase, and its product, PGD,, could be involved in resolution of inflammation, as described in
other settings [48-50]. Resistant C57BL/6 mice showed significantly higher expression of
Hpgds at 21 d.p.i. and lower expression of TbhxasI at 28 d.p.i. than the susceptible BALB/c mice,
suggesting that C57BL/6 may resolve inflammation earlier than BALB/c infected mice. How-
ever, TXA, and PGD, metabolites were not detected in purified Ly6G" nor in CD11b"Ly6G
cells, suggesting that they could be produced by other infiltrating cell types or by infected cardi-
omyocytes [45].

Previous reports using COX-2 inhibitors in T. cruzi infection showed discordant results
[30]. Moreover, COX-2 inhibitors may interfere with the immune response [34], but more
importantly, many COX-2 inhibitors have effects independent of their ability to inhibit cyclo-
oxygenase activity [51-53]. For those reasons, we analyzed the contribution of COX-2 by using
a mouse model deficient for its expression. We found a small variation in parasitemia (30%
reduction at the peak of parasitemia) in COX-2"" respect to the COX-2*""* mice, which cannot
be taken as indicative of resistance. In addition, no changes were observed in cardiac parasite
burden, in spite that COX-2"" mice expressed less iNOS than COX-2""* mice, considered to be
key for resistance in T. cruzi infection [54], indicating that heart parasite load is not affected by
the lack of COX-2 expression. Interestingly, we found that COX-2 was required for leukocyte
infiltration and inflammation in the heart upon T. cruzi infection, but it did not affect systemic
inflammation. However, COX-2"" mice are resistant to death in sepsis, indicating that in this
case COX-2 has a systemic pro-inflammatory role [55]. An important role of endogenous
COX-2 derived PGs in migration of immune cells to infected tissues or lymphoid organs is
becoming evident [19]. Thus, the decrease in cardiac inflammation and in local production of
cytokines and chemokines observed in COX-2"" infected mice, indicate a pro-inflammatory
role of prostanoids as PGE, in acute myocarditis.

We have previously described that PGE, induces COX-2 and mPGES-1 expression in an
autocrine loop required for full activation of macrophages [36]. Thus, the fact that COX-2""
mice showed a reduced Ptges mRNA expression (mPGES-1) suggest a blockade of the auto-
crine loop that may impair full activation of macrophages, resulting in the reduced cardiac
infiltration observed. In the same direction, lack of PGE, signaling through EP-2 receptor in
EP-2"" infected mice, resulted in reduced Ptgs (COX-2) mRNA expression that may also block
the autocrine loop, impairing macrophages to infiltrate the cardiac tissue. This is in agreement
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with the observed decrease in Ccl2 mRNA expression in COX-2"" and EP-2"" infected mice
respect to wild type infected mice, since this chemokine is required for migration of monocytes
to the inflamed infected tissue [56]. Moreover, PGE, also affects migration of myeloid cells
potentiating CCL2 activity [19]. Therefore, the reduction of cardiac infiltration in both animal
models suggest a detrimental pro-inflammatory role of COX-2 in the onset of cardiac
inflammation.

Strikingly, Arg-1 and iNOS expression, markers of MDSCs, was higher in hearts of infected
EP-2"" mice than in those from COX-2"" infected mice hearts, indicating that infiltrating cells
from EP-2"" mice present a more marked MDSCs phenotype. In addition, the effect of EP-2
deficiency on cytokine and chemokine production in heart, was milder than the observed in
COX-2"" infected mice. In the hearts of C57BL/6 mice, infection caused a greater significant
increase in the expression of Ptger2, which validates the use of EP-2”" mice in the C57BL/6
background. But still Ptgerl and Ptger4 were significantly increased although in a minor extent.
Thus in EP-2" infected mice PGE, can still signal through PtgerI and Ptger4 causing this
milder effect in EP-2”" mice in comparison to the observed in COX-2"" infected hearts. In con-
trast, in COX-2"" infected mice, mPGES] synthase expression is substantially reduced and
PGH, substrate for PGE, production likely relies on constitutive COX-1 activity. Thus, the
decreased levels of PGE, may affect signaling through all PGE, receptors, having a broader
effect on leukocyte infiltration. The response to T. cruzi infection in mice deficient in other
enzymes and products of the AA pathway has been scarcely studied [26, 27]. Sharma et al.
described that deficiency of iPLA, y (Ca*" independent PLA, isoform-y), which is involved in
AA membrane release, aggravated infection and decreased survival, while Mukherjee et al.
described that COX-1"" mice showed higher parasitemia than wild type infected mice, but no
difference in survival was noted [27]. In our hands, interference within the AA pathway at a
different level, as COX-2 mediated production of prostanoids or PGE,/EP-2 signaling, results
in decreased inflammation in heart of T. cruzi infected mice, with low incidence in parasite
burden and survival. Altogether, these results point to an essential role of the AA pathway in
heart inflammation during T. cruzi infection.

In the other hand, related with the prostanoid pathway, 5-lipoxygenase (5-LO) has been
shown to play a detrimental role during T. cruzi infection by potentiating heart parasitism and
inflammation [57, 58] through the regulation of iNOS activity [59]. However, further studies
are needed to elucidate the crosstalk between LO and COX pathways during infection.”

Besides, we have previously showed that monocytic CD11b"Ly6G™ heart infiltrating cells
(MDSCs), expressing iNOS and Arg-1 suppressed ex vivo T cell proliferation [7]. Since some of
these infiltrating cells also express COX-2 and produce PGE, it is possible that COX-2-derived
PGs could contribute to immune suppression, a possibility that should be addressed in the
future.

In conclusion, during acute T. cruzi infection there is an increase in the expression of many
enzymes of the AA metabolism, including COX-2 and mPGES-1 that leads to an increase in
their metabolite PGE,, partially due to infiltrating myeloid cells in the heart. Besides, we have
identified a new myeloid infiltrating population characterized by the expression of COX-2.
Thus, so far there are at least three different myeloid populations infiltrating the T. cruzi
infected heart: granulocytes, monocytic MDSCs expressing iNOS and Arg-1 and monocytic
cells expressing COX-2. COX-2 activity likely increases PGE, levels in heart tissue, which play
a pro-inflammatory role by signaling through EP-2. However, the phenotype of EP-2" is not
as strong as COX-2"" infected mice probably due to PGE, signaling through alternative EP
receptors. Our findings suggest that COX-2 plays a detrimental role in acute Chagas disease
myocarditis. Further research of the AA pathway is needed to completely understand its role
during T. cruzi infection for immune intervention approaches.
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Supporting Information

S1 Fig. Survival, parasite burden and inflammation of BALB/c and C57BL/6 mice infected
with T. cruzi. (A) Survival was checked every day during the infection in BALB/c and C57BL/6
mice (n = 5). (B) The presence of the parasites in the blood of BALB/c and C57BL/6 mice was
quantified by direct counting under optical microscopy. Means + SEM of a representative
experiment (n = 4) from two independent experiments are shown. (* p< 0.05; ** p< 0.01). (C)
Histology of cardiac tissue in non-infected (0 d.p.i.) or 21 d.p.i T. cruzi infected BALB/c and
C57BL/6 mice. Representative pictures of heart tissue sections of each group, processed for
Masson's Trichrome histology staining, are shown. Black arrows point to the infiltrating leu-
kocytes and red arrows point to parasite nests. Scale bar is 100 pm.

(TIF)

$2 Fig. COX-2 and CD4 expression in T. cruzi infected mouse cardiac tissue. (A) Heart tis-
sue was isolated at 14 d.p.i. from infected C57BL/6 mice and sections were stained with DAPI
for nuclei (Blue), the lymphocyte marker CD4 (green) or COX-2 (red). A representative picture
of several sections analyzed in at least three different mice from two independent experiments
is shown. (B) Control sample from heart of C57BL/6 mice at 14 d.p.i. incubated with secondary
antibodies coupled to Alexa Fluor (AF) 488, and 647 in the absence of primary antibodies. (C)
Same as in A from heart of BALB/c mice at 21 d.p.i.. (D) Same as in B from heart of BALB/c
mice at 21 d.p.i. (E) Control samples from heart of BALB/c mice at 21 d.p.i. incubated with sec-
ondary antibodies coupled to Alexa Fluor (AF) 488, 555 and 647 in the absence of primary
antibodies. Scale bar is 20 um.

(TTF)

$3 Fig. Serum levels of TNFa in COX-2""*, COX-2"", EP-2** and EP-2"" mice during T.
cruzi infection. TNFa concentration in non-infected mice (0 d.p.i.) and at 14 d.p.i. in blood
serum of (A) COX-2*"* and COX-2"" and (B) EP-2*'* and EP-2"" mice. Representative
means + SEM from two independent experiments are shown (n = 6) (ns = non-significant).
(TTF)

S4 Fig. Comparison of the gene expression of cell markers, chemokines, cytokines and
inflammatory enzymes basal levels in the heart of COX-2*'* and COX-2"" mice. mRNA lev-
els of the different genes analyzed was determined by qRT-PCR in heart tissue RNA samples
isolated from non-infected (0 d.p.i.) COX-2"* or COX-2"" mice. Data are expressed as RQ cal-
culated from CT values as described in Methods. Gene expression of lymphoid and myeloid
cell markers as Ptprc, Cd4, Cd8a, Cd68 and Itgax (A), chemokines as Ccl2, Ccl5 and Cxcl9 (B),
cytokines as Ifng, Tnf, 114, Il6 and 1110 (C) and enzymes as Argl, Nos2, PtgsI and Ptges
(mPGES1) (D) is shown. Means + SEM from one representative experiment (n = 3) out of four
is shown (n = 5; * p<0.05).

(TIF)

S5 Fig. Comparison of the gene expression of cell markers, chemokines, cytokines and
inflammatory enzymes basal levels in the heart of EP-2** and EP-2"" mice. mRNA levels

of the different genes analyzed was determined by qRT-PCR in heart tissue RNA samples
isolated from non-infected (0 d.p.i.) EP-2*/* or EP-2"" mice. Data are expressed as RQ calculated
from CT values as described in Methods. Gene expression of lymphoid and myeloid cell markers
as Ptprc, Cd4, Cd8a, Cd68 and Itgax (A), chemokines as Ccl2, Ccl5 and Cxcl9 (B), cytokines as
Ifng, Tnf, Il4, 116 and 1110 (C) and enzymes as Nos2, Ptgs2 and Argl (D) is shown. Means + SEM
from one representative experiment (n = 3) out of four is shown (n = 5; * p<0.05).

(TIF)
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