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Abstract

Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian
evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced
cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of
transposed elements within human and mouse protein coding genes and subsequent exonization is important for
understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that
exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse
genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be
population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis
revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu
elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization
process within human and mouse genes.
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Introduction

The draft sequences of the human and mouse genomes

confirmed that transposed elements (TEs) have played a major

role in shaping mammalian genomes [1,2]. Sequences of

transposed elements comprise at least 45% of the human and

37% of the mouse genomes (Lander et al., 2001; Waterston et al.,

2002). A large fraction of the TEs were inserted into transcribed

regions, mostly within intronic sequences [3]. These intronic

insertions contributed to the enlargement of intron size within

mammalian genomes (Lander et al., 2001; Waterston et al., 2002).

Sironi et al. identified constraints on insertion of TEs within

introns [4] and showed that gene function and expression

influence insertion and fixation of distinct transposon families in

mammalian introns [5].

Exonization is the creation of a new exon as a result of

mutations in intronic sequences [6], whereas intronization is the

creation of a new intron. TEs have enriched the human

transcriptome by exonizations [7] and intronizations [3]. In

human, most of the exons that originated from TEs are from the

primate-specific transposon called Alu. Alu elements are the most

abundant repetitive elements in the human genome; there are

upwards of 1.1 million copies, accounting for more than 10% of

the human genome [1,8]. Alu elements are derived from the 7SL

RNA [9]. The major burst of Alu retroposition took place 50–60

million years ago and has since dropped to a frequency of one new

retroposition for every 20–125 births [10,11]. Alu-mediated

mutagenesis, mostly through nucleotide insertions, has been

estimated to be involved in close to 1% of Mendelian genetic

disorders [12]. The occurrence of single nucleotide polymorphisms

(SNPs) in and around Alu sequences has been discussed [8,13].

Makalowski and coworkers were the first to describe Alu

elements within mature mRNA in human [14]. It is now clear that

transposed elements are found within a large number of mature

mRNAs [15]. The new exons generated from Alu elements are

usually alternatively spliced; these exons comprise ,5% of

alternatively spliced exons in the human transcriptome [16].

Exonized TEs that are alternatively spliced are not unique to

human as most of the exonized TEs in the mouse genome are also

alternatively spliced [3]. The molecular mechanism leading to Alu

exonization has been well characterized. A typical Alu is around

300 nt and contains two similar monomer segments joined by an

A-rich linker and a poly(A) tail-like region. Alus insert into introns

of primate genes by retrotransposition, usually in the antisense

orientation. Eighty-five percent of exonizations have occurred

from the right arm in the antisense orientation [3,16]. The poly(A)

tract of this arm in the antisense orientation creates a strong

polypyrimidine tract (PPT). Downstream from this PPT a 39 splice

site is selected and further downstream from that site (approx-

imately 120 nt) a 59 splice site is recognized [17]. Without the left

arm, exonization of the right arm shifts from alternative to

constitutive splicing. This results in elimination of the evolutionary
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conserved isoform and may thus be selected against [18]. Only one

or two mutations are required within intronic Alus that reside in

antisense orientation relative to the coding sequences to yield a

consensus 39 splice site [19] or 59 splice site [20]. The role of

splicing regulatory sequences on the exonization process has also

been studied [21,22,23]. The 39 splice site of exonized Alus are

very similar to those of the 39 splice sites of mammalian

interspersed repeat (MIR) exons [24].

Recent studies indicate that the pattern of splicing of exonized

TEs differs among human tissues [25,26,27]. Additionally, there

are variations in splicing patterns within individuals in the human

population [28,29,30]. Certain SNPs correlate with heritable

changes in alternative splicing but do not cause disease, thus

indicating a link between genetic variation and mode of splicing

[29,31,32]. Another study identified SNPs correlated with obesity

that cause variation within alternative splicing patterns [28].

The exonization process is subject to many evolutionary

constraints: New exons are generally alternatively spliced [7]

and the inclusion rate is relatively low [16,19,33]. This implies that

novelties added to established genes (within established coding

sequences, CDSs) are under lower purifying selection if they do

not interfere with the original coding sequence, compared to those

events that change the original CDS. Also, exonization usually

occurs in untranslated regions (UTRs) [3] or within duplicated

genes [34], further supporting the idea that purifying selections are

more intense on exonization events that occur within CDSs. Thus,

alternative splicing of Alu exons enriches the human transcriptome

with new mRNAs without eliminating the original, functionally

important transcripts, which are generated via exon skipping [35].

Here we set to find additional characteristics of TE exonization

events within human and mouse. We looked at the location of the

exonizations within genes and the SNP densities, and evaluated

SNPs that change canonical splice sites. We found that exoniza-

tions occur preferentially in the beginning of protein coding

sequences. Moreover, we show that exonizations can be

population specific. Our findings reveal a possible contribution

of TE exonizations to population divergence within human and

mouse.

Results

The locations of TE exonizations within coding
sequences

Non-symmetrical, conserved, alternatively spliced exons are

more often located at the beginning of the CDS than elsewhere in

transcripts [36,37,38]. We analyzed the Transpogene database of

exons that originated from TEs [39] to determine whether there is

a bias in their location within mRNA. We normalized the CDS

length between 0 and 1 (see Materials and Methods) and

compared, in increments of 0.1, the extent of TE exonization at

different locations in human and mouse (Figure 1). We found that

exonized TE sequences are biased to reside in the first half of the

CDS sequence compared to alternatively spliced cassette exons

that did not originate from TE exonizations. Most exonizations in

both human and mouse are found between position 0.1 and

position 0.4 within the CDS, with a median location of 0.336 in

human and 0.369 in mouse. No statistically significant differences

were observed between the human and mouse populations or

within different TEs families. Alternatively spliced cassette exons

that did not originate from TEs are found at a median location of

0.513 and 0.507 in human and mouse, respectively. Statistically

significant differences were observed between alternative cassette

exons and TE exons (Wilcoxon Rank Sum test, p = 1.2244e–027

and p = 1.2322e–006 for human and mouse, respectively). These

results imply that most TE exonizations tend to occur within the

first introns of genes. In human non-TE alternatively spliced

exons, 1353 out of 17,642 are the second exon, whereas in TE-

derived exons 233 out of 927 are found in the first intron and if

spiced become the second exon; this difference is statistically

significant (Fisher’s exact test, p,10242). The first intron is

substantially longer, with respect to the other introns, in most

human and mouse genes and shows higher rate of TE insertion

[39]. The longer introns presumably provide a good environment

for exonization [40]. Effects of TE exonization within the first

intron are usually neutral with respect to the protein sequence, but

can affect signal sequences [41].

In order to analyze whether the location bias results from

potential involvement of purifying selection, we separated our data

to three groups: exonizations that contain an in-frame stop codon

(599 exons), exonizations that are non-symmetrical and do not

contain an in-frame stop codon (216 exons), and symmetrical

exons that do not contain stop codons (137 exons). The median

locations within the normalized CDS of these three groups are

0.3062, 0.3795, and 0.4199, respectively. The Wilcoxon Rank

Sum test showed that there is a statistically significant difference

between the first and the third group (p = 0.0428) but not between

the second group and the third group or the first group and the

second (p = 0.2555 and p = 0.3641, respectively). This observation

strengthens the hypothesis that the 59 position bias of TE

exonization has a connection with the NMD machinery. We

previously showed that non-symmetrical exons (not related to TEs)

that are alternatively spliced in both human and mouse (and thus

likely to be functional events) tend to be located near the 59 end of

the CDS, whereas conserved symmetrical alternative exons are

located throughout the CDS [37]. The current results show a

statistically significant difference in location between symmetrical

exons and those with in-frame stop codons. We hypothesize that

TE-driven alternative exons are under purifying selection to be

locate at the beginning of the CDS, presumably to enhance

identification of the TE-containing mRNA by the nonsense-

mediated decay (NMD) system [42].

SNP density within intronic and exonized TEs
Identifying features shaping the architecture of sequence

variations is important for understanding genome evolution and

mapping of disease loci. A positive correlation was shown

previously between Alu elements and SNPs density [13]. Analysis

of the positive association between schizophrenia and a cluster of

SNPs and haplotypes in the seventh intron of the b2 subunit of the

type A c-aminobutyric acid receptor revealed that the Alu-Y near

the 59 end of exon 8 contains as many 11 SNPs [43].

Here we set out to evaluate and compare SNP densities in all

TE families from human and mouse. All positions of exons and

introns of all genes as annotated in the Golden Path database and

the positions of intergenic regions along with the number of SNPs

in these regions were obtained and divided by the total length of

the particular region. The dataset contained 39,288 human genes.

For the human analysis of the SNPs, we evaluated 382,892 exons

with 446,357 SNPs, 347,948 introns with 8,428,718 SNPs, and

8,899 intergenic regions with 10,395,717 SNPs. We also used

31863 mouse genes. For the mouse analysis we evaluated 301506

exons with 273700 SNPs, 270782 introns with 500541 SNPs, 8602

intergenic regions with 661474 SNPs.

Multiplying the resulting SNP densities by 100 yielded the SNP

frequency per 100 bp. The average SNP density in the human

genome is 0.43 in exons, 0.4 in introns, and 0.41 in intergenic

regions. The similar densities of SNPs in exons, introns, and

intergenic sequences were somewhat unexpected, as one might

Transposable Elements Fixation
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expect strong evolutionary pressure against substitutions in protein

coding regions. This might be caused by a bias of the SNP data

from dbSNP itself as EST data is the basis for many SNPs. In the

mouse genome, the average frequency of SNPs is 0.31, 0.33, and

0.28 in exons, introns, and intergenic regions, respectively. These

SNP densities are consistent with the number of SNPs observed in

the baseline windows presented in Figure 2 for human TEs and in

Figure 3 for mouse TEs. These results are in agreement with the

SNP densities previously obtained from exons, introns, and

intergenic regions in human and mouse genomic sequences [13].

As shown in Figure 2, the SNP density in primate-specific Alu

elements is 0.53, which is higher than the baseline level. The

density in Alu elements is the highest level observed among the

different families of TEs. Alu elements are GC rich with 24 or

more CpG dinucleotides per element. These dinucleotides are

prone to mutation as a result of deamination of 5-methylcytosine.

Only half of the SNPs in young Alu elements were found at CpG

dinucleotides, however [8,20,44]. Also, analysis of the GC-rich Alu

body separately from the AT rich Alu tail showed that both parts

are enriched in SNPs [13]. Therefore, the GC content cannot be

the sole determinant of this enrichment. For the L1 elements, the

SNP density is similar to the baseline frequency, whereas the

frequency is lower than baseline for the other families of TEs. A

correlation of the age of the different Alu families with the SNP

density shown by Ng et al. [13] suggests that the lower SNP

density for L1 and the other TE elements might be related to their

Figure 1. Bias toward exonization at the 59 end of the CDS. TE-derived exons (left panels) and alternatively spliced cassette exons that did not
originated from TEs (right panels) are shown in normalized locations along the CDS in increments of 0.1 (exon locations were normalized between 0 and 1,
see Materials and Methods) for (A) human and (B) mouse. The x-axis is the normalized CDS location and the y-axis is the number of alternative exons.
doi:10.1371/journal.pone.0010907.g001
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earlier integration into the human genome. However, we cannot

rule out the option that there is not a simple correlation between

the age of the TE and the number of SNPs. The primate-specific

Alu element and the rodent-specific B1 element originated from

the same 7SL RNA gene and share a high level of sequence

identity. Nevertheless, the high SNP density detected in Alu

elements was not observed in murine B1 elements (Figure 3).

We then examined the SNP density in exonized TEs (Table 1).

The SNP density in exonized TEs from all TE families in the

human genome is lower than the overall SNP density of all TEs,

Figure 2. Density of SNPs within all transposed elements in the human genome. The average SNP frequency in the TE-body and the flanking
sequences is shown in a sliding window of 50 bp. All frequencies are normalized to a frequency per 100 bp. The center of the TE is located at position 0.
doi:10.1371/journal.pone.0010907.g002

Figure 3. Density of SNPs within all transposed elements in the mouse genome. The average SNP frequency in the TE and the flanking sequence
is shown in a sliding window of 50 bp. All frequencies are normalized to a frequency per 100 bp. The center of the TE is located at position 0.
doi:10.1371/journal.pone.0010907.g003
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but the difference is not significant (Mann-Whitney test, p = 0.382,

two-tailed). An exception was observed in the CR1 (LINE-3)

elements; exonized CR1 elements have a higher than average SNP

density. However, only four CR1 elements were exonized so the

sample size is very small. In mouse, for all transposed element

families, the density of SNPs in exonized TEs was significantly

higher than the overall density in all TEs (Mann-Whitney test,

p = 0.004, two-tailed). In mouse, exonization seems to occur

preferentially in areas with higher SNP density.

SNPs in the splice sites of exonized TEs may cause
variation in the exonization process

In order to investigate the possibility that exonization of TEs

creates transcriptomic diversity within the human population, we

searched for SNPs that eliminate or create canonical splice site in a

TE. Specifically, we looked either for changes in the invariant AG

dinucleotide at the 39 splice site or the canonical GT or GC at the

59 splice site. Although there are other positions that might alter

recognition by the splicing machinery, only the four positions must

be fully conserved to ensure selection by the spliceosome. To

enhance the fraction of bona fide exonization events we searched

for exonized TEs that are supported by at least two ESTs. Our

analysis revealed 10 SNPs in canonical splice sites of TE-derived

exons in the human genome (Table 2); these SNPs eliminate

change a canonical splice site into a non-canonical one (the

ancestral nucleotides are also shown in Table 2). Of the ten, five

are in the acceptor and five in the donor splice sites. Seven of the

SNPs occur in splice sites of exonized Alu elements, two in splice

Table 1. Densities of SNPs in exonized TEs and all TEs in the human and in the mouse genomes.

Human Mouse

TE family SNP density exonized SNP density all TE family SNP density exonized SNP density all

Alu 0.45 0.53 B1 0.29 0.12

L1 0.37 0.42 B2 0.27 0.12

L2 0.33 0.34 B4 0.16 0.14

MIR 0.28 0.33 L1 0.15 0.10

CR1 0.51 0.33 L2 0.21 0.16

LTR 0.31 0.37 MIR 0.30 0.17

DNA 0.23 0.35 LTR 0.25 0.11

DNA 0.0 0.14

doi:10.1371/journal.pone.0010907.t001

Table 2. SNPs in splice sites of exonized TEs in the human genome.

Gene id Chr./strand Start–end TE family SNP info1 Position
Sequence in other
species

RCSD1 chr1/+ 164341465–607 Alu rs1890128 (A/G) 1st pos. donor Chimp–G
Rhesus-G

FAM35A chr10/+ 88900743–863 Alu rs3129523 (A/T) 2nd pos. donor Chimp–T
Rhesus-A

TSFM chr12/+ 56463664–702 Alu rs2014886 (A/G) 2nd pos. donor Chimp–G
Rhesus-G

ETFA chr15/2 74389327–460 Alu rs2469213 (C/T) 1st pos. acc. Chimp–C
Rhesus-C

DPP9 chr19/2 4670214–336 Alu rs3059236 (-/TTTA) 2nd pos. acc. new insertion no
chimp/rhesus info.

ZNF544 chr19/+ 63440426–512 Alu rs12979599 (A/G) 1st pos. acc. Chimp–G
Rhesus–no Alu
insertion

LOC63929 chr22/+ 39581181–297 Alu rs5758111 (A/G) 2nd pos. acc. Chimp–A
Rhesus-A

ACTG2 chr2/+ 74041405–549 L2 rs1721244 (A/G) 1st pos. donor Chimp–G
Rhesus-G

CANT1 chr17/2 74505824–963 L2 rs2377301 (C/T) 1st pos. acc. Chimp–C
Rhesus–C
Mouse-C

AK129982 chr8/+ 12346635–774 LTR rs1988623 (A/G) 1st pos. donor Chimp–T
Rhesus–no Alu
insertion

1SNPs with population specific data are in bold.
doi:10.1371/journal.pone.0010907.t002
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sites of exonized L2 elements, and one in the splice site of an

exonized LTR element. To ensure that we identified the sequence

without the SNP correctly, we examined the sequences of the

orthologous TEs in chimp (Table 2). Additional support for the

role of SNPs in TE population-specific exonization is given by the

ssSNPTarget database (http://sssnptarget.org/) [45], the SNPs

rs2377301 and rs5758111 have EST evidence for exon skipping

due the SNP modification. In the mouse genome, three splice sites

of exonized TEs contain SNPs (Table 3). SNPs were found in the

splice sites of an exonized B1 element, an exonized B2 element,

and an exonized LTR element; all are within 59 splice sites.

We searched the NCBI Database of Single Nucleotide

Polymorphisms for population frequency data. Data were only

available for two of the 10 SNPs observed in the human genome

(Table 4). One of them, SNP rs1721244, is located at chr2 position

73983403 and is the first nucleotide of the 59 splice site. The allele

with G has a canonical splice site (GT) but the other allele has a

non-canonical splice site (AT). Both splice sites occur at a

frequency of more than 0.3 (Table 4); thus, this SNP, and

associated splice variation, is common in the human population.

In this analysis, we selected only cases in which SNPs clearly

changed the sequence directly at the splice site. We did not take

into account SNPs within other splice signals or within exonic or

intronic splicing enhancers/silencers that might modulate the

selection level of the exon. Thus, the effect of SNPs on splicing

might be greater than observed here.

We have also built a dataset of TEs with non-canonical splice

sites that appear to be active based on evidence of exonization

from ESTs or cDNAs. We searched the SNP database for SNPs

that might change the non-canonical splice sites into canonical

ones. In the human genome, we found 45 SNPs that changed a

non-canonical splice site into a canonical site (a GT/GC

dinucleotide in the 59 splice site and an AG dinucleotide in the

39 splice site; see supplementary data Table S1). Only three such

SNPs were identified in the mouse genome. As a result of these

SNPS, these exons are flanked by canonical acceptor and donor

splice sites, explaining their identification by the splicing

machinery and their presence in the ESTs database.

Population frequency data were available for 11 of the 45 SNPs

(see supplementary data Table S2). One interesting case is SNP

rs231518 in an L1 element. There are six ESTs and cDNAs with

the 59 splice site sequence AT, but the SNP rs231518 has a

canonical 59 splice site GT. The two alleles have an intriguing

evolutionary history. There is a G at the 59 splice site in chimp and

orangutan and an A in rhesus. The sequences of chimp,

orangutan, and rhesus were extracted from published sequences

and the multi-species alignment of the SNP location was

downloaded from UCSC genome browser [46]. We cannot

exclude the possibility that A/G polymorphisms also exist within

chimp, orangutan, and rhesus based on available data. The SNP

rs231518 with the canonical dinucleotide 59 splice site GT is the

most frequent allele in all human populations (G allele frequency

of 0.792 in the CEU population, 1 in the HCB and JPT

population and 0.937 in the YRI population, see supplementary

data Table S2).

TE exons that depend on editing for their exonization
How new exons are created and established is an intriguing

issue. Recently, Lev-Maor et al. [47] demonstrated that exoniza-

tion of an Alu exon in the NARF gene depends on an RNA editing

mechanism. In this case, editing from AA to AI activated the 39

splice site; inosine is recognized as G by the splicing machinery

[48]. We searched for additional cases in which the 39 splice site of

the exonized Alus is AA or the 59 splice site is AT, such that RNA

editing to AG or GT, respectively, would produce a canonical

splice site. We did not find any evidence for editing in 59 splice

sites of Alu-derived exons. However, we found six cases of Alu

exonization in which the 39 splice site contains an AA at the

genomic level and EST sequences support exonization (Table 5).

Two of these cases were found in ESTs generated from brain

tissues and another two were from immune system tissues, tissues

that have high levels of RNA editing [49,50,51,52]. Two other

cases were found in cancerous tissues and in kidney. The most

convincing evidence of exonization of an Alu element resulting

from RNA editing is found within a non-coding brain-specific

gene NR_024561. This exonization is supported by a validated

Refseq sequence and three additional cDNA and ESTs (all from

brain tissues). Moreover, transcripts containing this exon have

three additional A-to-I editing sites within the Alu-derived exon.

Several potential editing sites are usually observed within a region

that contains two Alu elements located in opposite orientation due

to the formation of a long double-stranded RNA structure

between the elements [52]. Interestingly, the nearest Alu to that

exonized in the NR_024561 gene is in the downstream intron

(Figure 4). There is an Alu within the upstream intron but it is

more than .2000 nucleotides away and is therefore unlikely to

hybridize with the Alu exon [49,50,51,52]. NR_024561 appears to

be a non-coding gene and is expressed exclusively in the brain. A

BLAST search against the database of known non-coding RNAs

NONCODE [53,54] revealed 85% identity (E value = 4e252) of

the NR_024562 isoform to the MESTIT1 non-coding RNA [55].

This isoform also had 86% identity (E-value = 6e–48) to the brain-

specific non-coding KLHL1 antisense RNA [56]; this RNA is

involved in the spinocerebellar ataxia type 8 (SCA8) neurodegen-

erative disorder [57,58].

Discussion

TE-derived exons are most often located near the 59 end
of the CDS

Cassette exons that are non-symmetrical and conserved in both

human and mouse are more often located in the 59 region of the

coding sequence than in other regions [37]. Inclusion of non-

symmetrical exons is likely to cause a frame shift in the coding

sequence, introducing a premature stop codon and activating

nonsense mediation decay or producing an unstable protein

Table 3. SNPs in splice sites of exonized TEs in the mouse genome.

Gene id Chr./strand Start–end TE family SNP info Position

Csrp2bp chr2/+ 143828541–730 B2 rs29540199 (C/T) 2nd pos. donor

Zfp644 chr5/2 105752526–733 B1 rs33626312 (C/T) 1st pos. donor

Rbm6 chr9/2 107929610–717 LTR rs33287617 (C/T) 2nd pos. donor

doi:10.1371/journal.pone.0010907.t003

Transposable Elements Fixation
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[36,38,59]. Most TE-derived exons are non-symmetrical [3,16]

and are usually exonized from the first introns of a coding gene.

We previously suggested that the majority of the TE-derived exons

are non-symmetrical because they are still young in evolutionary

terms and thus have not yet undergone purifying selection, which

eliminates deleterious exonizations. Given a sufficient period of

time, some of the currently non-symmetrical exons that are only

mildly deleterious will eventually become symmetrical (through

small deletions/insertions) and thus will add coding capacity into

already established genes. Examples of functional TE-exonizations

are exon 8 of ADAR2 gene [60] and exon 8 of NARF gene [47].

Nonsense codons in the 39 halves of genes may less efficiently

activate the RNA degradation machinery than those found near

the start of a transcript [42,61]; it may also be that longer peptides

are more likely to be deleterious than shorter ones [36,37,38]. The

first intron is usually longer than the others and thus following

exonization the two flanking introns are still relatively long.

Alternatively spliced exons are generally flanked by longer introns

than are constitutively spliced exons [62]. It is also possible that the

bias observed may be due to the fact that TEs are more often

found near the start of genes than in other regions. These results

suggest that the first intron with its longer size function of a ‘‘buffer

zone’’ to the emergence of new potentially deleterious exons.

SNP densities vary depending on TE families
Alu elements were inserted into the human genome after the

insertion of other families, such as MIRs, DNA transposed

elements, and LTRs [64]. Alu elements show higher level of

exonization than all other TE families [3]. Here we show that Alu

elements tend to accumulate more SNPs than other TE families.

The higher mutation rate in Alu elements is not correlated with

their CpG enrichment [13,63]. There appears to be a correlation

between the age of TE transposition and the mutation rate. A

small fraction of L1 elements are still active in the human genome

[64] and on average L1 elements contain a higher density of

mutations than other analyzed families (L2, MIR, DNA, LTR).

The average SNP density in TEs in the mouse genome is lower

than the SNP density in the surrounding sequences. The SNP

density in TEs in the human genome is at least 2-fold higher than

that in mouse TEs. Artificial selection and inbreeding accompa-

Table 4. Population frequency data for the human SNPs which occurred in the splice sites of the exonized TEs.

Genotype detail Alleles

SNP id Population1 A/A A/G G/G A G

rs1721244 (A/G, donor 1st position) CEU 0.27 0.57 0.17 0.55 0.45

HCB 0.31 0.5 0.19 0.56 0.44

JPT 0.1 0.46 0.44 0.33 0.67

YRI 0.21 0.56 0.23 0.49 0.51

C/C C/T T/T C T

rs2377301 (C/T), acceptor 1st positon) CEU 0.76 0.21 0.03 0.875 0.15

HCB 0.44 0.45 0.11 0.67 0.33

JPT 0.71 0.22 0.07 0.82 0.18

YRI 0.8 0.2 0.0 0.9 0.1

1CEU–European, HCB–Asian, JPT–Asian, YRI–Sub-Saharan African.
doi:10.1371/journal.pone.0010907.t004

Table 5. Alu exons edited at 39ss.

# Alu type Exon coordinates1 Gene
ESTs/cDNA accessions
confirming the editing

Location of the
closest intronic Alu

Other editing sites
within the exon

1 AluJb in sense chr1:52,768,028–52,768,145 ZCCHC11-zinc finger, CCHC
domain containing 11 isoform

BU178489–retinoblastoma Upstream AluJb in
antisense

No other editing sites

2 AluJb in antisense chr5:61,653,166–61,653,305 KIF2A–Homo sapiens kinesin
heavy chain member 2A

AA834569-germinal center
b cell tissue

Downstream AluSx in
sense

One another editing
site within the exon

3 AluJo in sense chr6:24,489,146-24,489,281 DCDC2-doublecortin domain
containing 2

BP332729-renal proximal
tubule

Upstream AluSx in
antisense

One another editing
site within the exon

4 AluSx in sense -chr16:36,579-36,721 POLR3K-DNA directed RNA
polymerase III polypeptide K

CR994793–t-lymphocytes Upstream AluSg in
antisense

No other editing sites

5 AluJo in sense chr17:37,652,211-37,652,327 STAT5B-Homo sapiens signal
transducer and activator of
transcription 5B

DA223574–brain Downstream AluSg in
antisense

Two more editing sites
within the exon

6 AluJo in sense chr19:40,262,281-40,262,395 LOC100128675 -Homo sapiens
hypothetical LOC100128675
non-coding RNA

NR_024561
AK124779
DA216531
DA216526–all from the brain

Downstream AluJb in
antisense

Three more editing
sites within the exon

1Based on version hg18 of the human genome.
doi:10.1371/journal.pone.0010907.t005
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Figure 4. Exonization of Alu element in NR_024561 dependent on RNA editing. Editing was inferred from alignment of cDNAs to human
genomic DNA. (A) Schematic illustration of exons 2 to 4 of the non-coding gene NR_024561. Exons are depicted as blue boxes. The Alu-exon, derived
from AluJo (marked AEx; shown by purple box), is in an antisense orientation and is shown in the middle. The intronic, sense-orientation Alu sequence
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nying the generation of laboratory mouse strains presumably

serves to reduce genomic differences between individual mice.

Therefore SNP data from mouse probably do not reflect real

population dynamics.

Alu exonization is coupled to the RNA editing
mechanism

In our analysis, we found evidence for exonization of an Alu

element that probably requires RNA editing. The NR_024561

gene is expressed exclusively in the brain. The exonized Alu

element is from AluJo subfamily and it was inserted into this gene

about 25 million years ago [65]. The 59 splice site dinucleotide GT

is conserved in rhesus and gorilla but not in orangutan. The 39

splice site dinucleotide AA and the editing sites E1 and E3 are

conserved in rhesus, orangutan, and gorilla (Figure 4C). The

editing site E2 is not conserved in rhesus but is found in orangutan

and gorilla. The conservation of these editing sites implies a

possible function for this Alu exonization in this non-coding, brain-

specific gene.

In summary, exonization of regions of transposed elements is

thought to be an important contributor to mammalian evolution

and speciation. We found that exonization of transposed elements

is biased towards the beginning of the coding sequence in both

human and mouse genes. Analysis of SNPs revealed population-

specific exonization events, implying that exonizations may

enhance divergence. These results shed light on TE fixation and

the exonization process within human and mouse genes.

Materials and Methods

Dataset of TE exonizations within human and mouse
protein coding genes

The dataset of human and mouse transposed element exoniza-

tion was obtained from the TranspoGene database [39]. Based on

UCSC genome browser annotations [66] of the human genome

version hg17 and mouse genome version mm6. Sequences of TE

exonizations within human and mouse protein coding genes were

selected.

Normalization of exon location
Exon location was determined by using the knownGene table

downloaded from the UCSC genome browser. In this table, all

genes are listed along with their CDS start and end coordinates.

To normalize the exon location within the CDS, we calculated the

location for the start point of the exon in the CDS without

exceeding the boundaries of the CDS (N = CDS length 2 exon

length + 1). The normalized location was the quotient of the actual

location of the exon start point within the CDS divided by N.

Cassette exon dataset
In order to create a dataset of cassette exons that had not

originated from TE exonization, we downloaded the altSplice

table from the UCSC genome browser [46,67]. We analyzed only

the cassette exons dataset. We used GALAXY [68] and

RepeatMasker in order to extract the sequences and exclude

cassette exons that originated from TEs [69,70,71,72].

SNP density in the TE families
SNP locations (original from dbSNP, http://www.ncbi.nlm.nih.

gov/projects/SNP/) were obtained from the UCSC Genome

Browser Database [66] (versions hg17, May 2004 for human and

mm6, March 2005 for mouse). For every family of TEs the

average SNP density in the TE-body was determined. For

comparison purposes, the SNP density in sequences surrounding

the TEs was extracted in 50-bp non-overlapping windows from

either end of the TE up to a distance of 3 kb. This yielded 120

windows which we call baselines. The positions of all TEs in the

genome and locations of SNPs within each TE were determined

using the SNP data set from UCSC Genome Browser Database.

The same was done for the surrounding 50-bp non-overlapping

windows (up to distance of 3 kb) for determination of the baseline

density of SNPs. The SNP densities were averaged over all TEs

and normalized to SNP frequency per 100 bp by dividing the

average number of SNPs within the TE by the average length of

the TEs divided by 100. Averaging the SNP frequencies in all 50-

bp windows flanking the TE yielded the baseline SNP frequency,

similar to the calculation described in [13]. The number of SNPs

in each of the 50-bp windows was multiplied by 2 to obtain the

frequency per 100 bp. The SNP density in exonized TEs was then

determined. Exons originating from exonizations of TEs that were

flanked by canonical splice sites and that had at least two ESTs

confirming their exonization were used. The average SNP density

in the exonized TEs was determined for the human and mouse.

All SNP densities are the SNPs per 100 bp.

SNPs in the splice sites of the exonized TEs
Annotations of SNPs were obtained from the UCSC Genome

Browser Database [66] (versions hg17, May 2004 for human and

mm6, March 2006 for mouse). A search for SNPs in splice site

dinucleotides of exonized TEs was conducted. Any changes from

GT or GC dinucleotides in the first two positions of the intron

(59SS) and AG dinucleotides in the last two positions of the intron

(39SS) by SNPs were considered; these mutations change a

canonical splice site into a non-canonical one thus eliminating the

selection of this exon by the splicing machinery. We also

considered situations in which SNPs changed a non-canonical

splice site into a canonical one if at least one transcript confirmed

the existence as exon.

Population frequency data was obtained from the NCBI

Database of Single Nucleotide Polymorphisms (dbSNP Build ID:

125) [73]. This data was only available for a small number of SNPs

in dbSNP. Many researchers do not provide genotype or

frequency data in their submissions. dbSNP Build ID 125 had

approximately 27 million SNPs and only 3.5 million of these had

frequency data associated with them.

Dataset of Alu exonization resulting from editing of the
39 splice site

The dataset of Alu exonizations was searched for Alu elements

with the non-canonical AA 39 splice sites or the AT non-canonical

59 splice site. These Alus were filtered according to the following

criteria: (1) no SNPs were detected within these slice sites, (2) at

least one A to G transition was detected between the DNA

(AluS) is 731 base-pairs downstream of the exonized Alu. Sense and antisense Alus are expected to form double-stranded RNA, thus allowing RNA
editing. RNA editing changes an AA dinucleotide into a functional AG 39 splice site (lower panel). RNA editing also occurs in three positions in the Alu-
derived exon (E1, E2, and E3). (B) Predicted folding of the sense and antisense Alu sequences (upper and lower lines, respectively). Adenosines that
undergo editing are marked by red. Splice sites utilized for Alu exonization are marked as 59ss and 39ss on the alignment. (C) Alignment of this region
from four species: human, gorilla, orangutan, and rhesus. The 59 splice site, 39 splice site, and the three editing positions are marked in yellow.
doi:10.1371/journal.pone.0010907.g004
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sequence and the mRNA, and (3) another Alu sequence in reverse

orientation is located within a distance of 2000 bp.

Supporting Information

Table S1 SNPs in non-canonical splice sites of exonized

transposed elements in the human genome as well as in the

mouse genome resulting in a canonical splice site. Given are the

gene id, the chromosome and strand on which the SNP is located,

the start and end of the exon which derived from the transposed

element, the transposed element’s family, the SNP id and the

alleles of the SNP and the position at which the SNP is located

(always seen from the exon, that is, 1st position of acceptor

indicates the base which is located nearest to the splice site).

Found at: doi:10.1371/journal.pone.0010907.s001 (0.05 MB

DOC)

Table S2 Population frequency data for the SNPs which

changed a non-canonical splice site into a canonical one while

the other splice site was already canonical. Given is the SNP id

along with the alleles and the position where this SNP occurred as

well as the frequency data. Here, the homozygosity for the first

allele, the heterozygosity, the homozygosity for the second allele,

the Hardy-Weinberg proportions as well as the frequencies for

each of the alleles are given. CEPH-European, HISP-Hispanic,

AD-African American, CEU-European, HCB-Asian, JPT-Asian,

YRI-Sub-Saharan African, HWP-Hardy-Weinberg proportions.

Found at: doi:10.1371/journal.pone.0010907.s002 (0.10 MB

DOC)
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