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Abstract

The coexistence of different types of poultry operations such as free range and backyard

flocks, large commercial indoor farms and live bird markets, as well as the presence of

many areas where wild and domestic birds co-exist, make California susceptible to avian

influenza outbreaks. The 2014–2015 highly pathogenic Avian Influenza (HPAI) outbreaks

affecting California and other states in the United States have underscored the need for

solutions to protect the US poultry industry against this devastating disease. We applied dis-

ease distribution models to predict where Avian influenza is likely to occur and the risk for

HPAI outbreaks is highest. We used observations on the presence of Low Pathogenic Avian

influenza virus (LPAI) in waterfowl or water samples at 355 locations throughout the state

and environmental variables relevant to the disease epidemiology. We used two algorithms,

Random Forest and MaxEnt, and two data-sets Presence-Background and Presence-

Absence data. The models performed well (AUCc > 0.7 for testing data), particularly those

using Presence-Background data (AUCc > 0.85). Spatial predictions were similar between

algorithms, but there were large differences between the predictions with Presence-

Absence and Presence-Background data. Overall, predictors that contributed most to the

models included land cover, distance to coast, and broiler farm density. Models successfully

identified several counties as high-to-intermediate risk out of the 8 counties with observed

outbreaks during the 2014–2015 HPAI epizootics. This study provides further insights into

the spatial epidemiology of AI in California, and the high spatial resolution maps may be use-

ful to guide risk-based surveillance and outreach efforts.
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Received: August 28, 2017

Accepted: December 20, 2017

Published: January 31, 2018

Copyright: © 2018 Belkhiria et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: LPAI presence-

absence data was extracted from Influenza

Research Database https://www.fludb.org.

Bioclimatic variables were extracted from the

WorldClim database (http://www.worldclim.org/).

NDVI data was extracted from: https://modis-land.

gsfc.nasa.gov/vi.html. California Landcover data

was extracted from: http://frap.fire.ca.gov/data/

frapgisdata-land_cover. Important farmland

California were extracted from: http://maps.

conservation.ca.gov/ciff/ciff.html. Important Bird

and Biodiversity Areas data were extracted from:

https://doi.org/10.1371/journal.pone.0190824
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190824&domain=pdf&date_stamp=2018-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190824&domain=pdf&date_stamp=2018-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190824&domain=pdf&date_stamp=2018-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190824&domain=pdf&date_stamp=2018-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190824&domain=pdf&date_stamp=2018-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190824&domain=pdf&date_stamp=2018-01-31
https://doi.org/10.1371/journal.pone.0190824
https://doi.org/10.1371/journal.pone.0190824
http://creativecommons.org/licenses/by/4.0/
https://www.fludb.org
http://www.worldclim.org/
https://modis-land.gsfc.nasa.gov/vi.html
https://modis-land.gsfc.nasa.gov/vi.html
http://frap.fire.ca.gov/data/frapgisdata-land_cover
http://frap.fire.ca.gov/data/frapgisdata-land_cover
http://maps.conservation.ca.gov/ciff/ciff.html
http://maps.conservation.ca.gov/ciff/ciff.html


Introduction

The 2014–2015 Highly pathogenic Avian Influenza (HPAI) epizootics in the United States of

America (USA) were one of the largest HPAI outbreaks affecting poultry in the country’s his-

tory and one of the most economically and socially devastating [1]. The full chronology of the

epizootics remains unknown, but it appears that that they triggered by the introduction into

North America of an intercontinental clade (icA) 2.3.4.4 H5N8 by migrating waterfowl [2].

California’s poultry farms were among the first to be affected [3]. The state is a large poultry

producer and a leader in the free-ranging chicken industry in the USA [4]. California’s Central

Valley also attracts a very large number of overwintering waterfowl [5]. Three pathways for ini-

tial occurrence of HPAI outbreaks in poultry farms California have been suggested. The first is

via migratory waterfowl that harbor a variety of Avian Influenza Viruses (AIV) such as the

(icA) clade 2.3.4.4 H5N8 which could be directly introduced into poultry farms, as what likely

happened during the 2014–2015 outbreaks. Clade 2.3.4.4 H5N8 (icA) was detected in Stani-

slaus County in 14-week-old commercial broad-breasted white turkeys in January 2015 fol-

lowed by a second outbreak in February 2015 in 12-week-old chickens in Kings County [3]. A

second pathway is the appearance of new reassortant HPAI viruses (HPAIv). Reassortant

HPAIv are the result of the intermixing of the hemaglutinin gene from an HPAIv and/or a

neuraminidase gene of a North American (NA) Low Pathogenic Avian Influenza Virus

(LPAIv) in the same host [6]. The reassortant HPAIv H5N2 (NA) that spread throughout the

midwestern USA is a good example [7]. HPAIv H5N2 (NA) was not detected in Californian

poultry farms [8]; however, its introduction could have led to massive outbreaks as occurred

in the state of Iowa with the reassortant HPAIv H5N2 (NA) [1]. The third pathway suggested

is that LPAIv introduced into a poultry farm could have a series of mutations that lead to novel

HPAIv’s generating new outbreaks [9,10].

Immediately after the detection of the first HPAI outbreak (2014), the United States Depart-

ment of Agriculture (USDA) and the California Department of Food and Agriculture Depart-

ment (CDFA) responded by enhancing AI surveillance along bird migration routes (the

Pacific Flyway) [11]. The early detection of AI, targeting high risk areas for the three pathways

mentioned above, are key to prevent HPAI epizootics. Identifying high risk areas for HPAI

could assist in sampling and planning of education and outreach programs and help to create

a sensitive and cost-effective surveillance system.

A recent study used a disease distribution model (DDM) to determine suitable areas for AI

presence in the USA using Presence-Background data [12]. Disease distribution models’ main

outcomes are maps that identify the environmental similarity of a location to areas where the

disease has been observed. Sites "similar" to those where the disease (or pathogen) was

observed are generally expected to have a higher probability of AI occurrence than other loca-

tions [13–17]. We use the term ‘suitability’ to express the degree of environmental similarity of

a site to sites where the disease was observed. This study expands and refines this work [12] for

California. Our aim is to generate more precise maps of suitable areas for AIV in California

taking into account the three HPAI pathways described. LPAI data from both wild birds and

from water samples were used in models with multiple disease-specific environmental predic-

tors. To address two major sources of uncertainty in this type of modeling, we evaluated four

modeling approaches resulting from the combination of two algorithms -MaxEnt and Ran-

dom Forest- and two data sets -presence-background (P-B) and presence-absence (P-A).

Results emerging from this study could be helpful to prevent future HPAI outbreaks, as we

highlight not only specific factors playing a role in AIV dynamic in California but also areas

suitable for AIV presence and thus at higher risk for initial AI outbreaks in poultry farms as

well as “hot-spots” for waterfowl.

Detecting high risk areas for avian influenza outbreaks in California
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Methods

Data source

LPAI presence-absence (LPAI P-A) data consisted of water and wild bird samples. Wild bird

LPAI P-A samples for April 2007 to September 2016 were extracted from the Influenza

Research Database (FluDB) [18]. FluDB data contain information on bird AI samples, includ-

ing the sampling locations’ coordinates, species, AI-testing results, and viral subtypes. Samples

without location coordinates (2%) or AI test results were disregarded. Duplicate samples in a

same exact location were aggregated. A location was classified as LPAI positive if at least one

positive sample was collected there. Water P-A samples were collected in 2014 from artificial

water ponds across California in a previous study [19,20]. Water P-A samples contained both

the geographic locations of every sample and laboratory results confirming the presence or

absence of AIV, based on an RT-PCR targeting the matrix gene sequence of the AIV [19].

Raw data extracted from FluDB consisted of 19.217 samples. See the supplementary infor-

mation for details (S1 Table, S1 and S2 Figs). The final dataset combining both waterfowl and

water samples consisted of 351 unique sites for which we had presence or absence (Fig 1). Sam-

ples with identical locations were eliminated and geographic coordinates matching with at

least one positive case, were considered as positive locations. The highlighted area in Fig 1

presents an example of the raw data distribution before the adjustment. Out of the 351 sites,

182 (52%) were water sample sites and 169 (48%) were wild bird sample sites. A total of 110

samples (31%) were positive out of which 45 samples (41%) were from water samples and 65

(59%) were from wild birds.

We created a set of randomly selected background (sometimes referred to as ‘pseudo-

absence’) locations, excluding sites that had positive samples. A site was defined as a 500 × 500

m grid cell. To match the absence data, 241 background point locations were randomly drawn

(Fig 1).

We selected a set of environmental predictors that have been previously described as

important factors in understanding the presence/absence of AI [12,21–23]. These predictors

were also selected to fit the three HPAI occurrence pathways described in California. Predic-

tors were organized as raster data with a cell size of 500 × 500m and the Albers Equal-Area

coordinate reference system centered on California (“California Albers”) was used.

Bioclimatic variables were extracted from the WorldClim database [24]. Landscape vari-

ables used included elevation, Normalized Difference Vegetation Index (NDVI), land cover,

important farmland in California (IFC), and distances to both lakes and coastline. The average

NDVI over the study period was derived from reflectance measured by the Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite. The California land

cover data were obtained from the CALFIRE database [25]. The different categories of land

cover considered are provided in the S2 Table. Important farmland in California (IFC) is a

classification of the different farmland categories by the California Department of Conserva-

tion under the Farmland Mapping and Monitoring Program (FMMP) [26]. The different cate-

gories of farmland considered are provided in the S3 Table.

Bird related predictors consisted of poultry farm density (by type of production) system

and the Important Bird and Biodiversity Areas (IBA) as a proxy for the presence of migratory

birds. Poultry farm densities included as separate predictors were broiler, turkey, pullet, duck,

geese and backyard poultry. Methods used to create these rasters are explained elsewhere [12].

The IBA data [27] identifies 149 areas covering about 40,000 km2 in California that provide

essential habitat for breeding, wintering and shelter for migratory birds. Distance to open

water and coastline were computed using ArcGIS 10.3 [28], the inland water points from the

US. Geological Survey [29] and the coastline data from the Natural Earth database [30].

Detecting high risk areas for avian influenza outbreaks in California
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Analysis: Disease distribution models (DDM)

We used both the MaxEnt and RandomForest algorithms to model the AI data. The two algo-

rithms were chosen because they are commonly used in species distribution modeling, as both

Fig 1. Spatial distribution of presence and absence and background samples. The zoomed area presents an example of the raw samples’

distribution before data cleaning.

https://doi.org/10.1371/journal.pone.0190824.g001
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have been found to have high prediction accuracy [31] [32]. MaxEnt [33], which uses a maxi-

mum entropy classifier was run using the “dismo” package in the R software [34]. Random

Forest (RF) is an extension of Classification and Regression Trees (CART). Random Forest

consists of a combination of many trees (CART models), where each tree is generated with a

bootstrapped sample (i.e., a sample with replacement of the same size as the dataset) thus tak-

ing about 63% of the observations for each tree. Each split of the tree is determined using one

variable selected from a random subset of the potential variables. The final prediction is the

average prediction of all the trees [35,36]. Random Forest analyses were carried out using the

“RandomForest” package in R [37]. MaxEnt and RF were consecutively trained with Presence-

Absence and Presence-Background data to generate four different models: MaxEnt presence-

absence (MPA), MaxEnt presence-background (MPB), RF presence-absence (RFPA) and RF

presence-background (RFPB).

For each MaxEnt model, we determined the most important variables with both the Jack-

knife training gain and the percent contribution, both are measures of how much a variable

contributed to the model.

To obtain stable results with RF, we populated a forest with 1001 trees (ntree = 1001) sam-

pling 4 variables at random for each of the nodes in each tree. To select the most relevant vari-

ables to include in the final model we ranked the variables according to their importance. We

used Mean Decrease in Accuracy (MDA) for variable importance measure available in RF

since it’s considered a more reliable measure than the decrease in node impurity [38]. This

measure corresponds to the difference between the misclassification rate for the original and

the permuted out-of-bag samples (i.e., not included in the bootstrapped sample for a particular

tree), averaged over all the trees and divided by the standard deviation of the differences.

We eliminated highly correlated predictor variables using Spearman’s rank correlation.

Variables with a correlation of 0.6 or higher were considered highly correlated, and the vari-

able that seemed least relevant for AI prediction was removed.

Non-correlated predictors were first organized in three groups (bioclimatic, farm densities

and environmental factors). We ran initial selection models (MPA, MPB, RFPA and RFPB)

for each group. The top three contributing variables in each group were then included in initial

“full” models, respectfully, for MPA, MPB, RFPA and RFPB. Subsequently, variables that con-

tributed most to a model were retained and used for “final” models. The four final models

were evaluated and used for prediction. Model predictions were scaled from 0 to 1 by first sub-

tracting the minimum value, and then dividing by the maximum value.

Suitability scores from the four models were projected over the study space in the shape of

four risk maps. Since the Presence-Absence dataset was collected exclusively from waterfowl

habitats, risk maps from Presence-Absence models could be seen as contrasting a sub-domain

(wild bird habitat) from the entire study areas instead of presenting the true areas at risk for AI

outbreaks. To account for this, we created a corrected version of the Presence-Absence risk

maps (“MPAc” and “RFPAc”). MPAc and RFPAc risk maps represent the product of the prob-

abilities of the original MPA and RFPA with the probabilities from “sampling site” models.

The sampling site models with MaxEnt and RF contrast all sampling sites with background

randomly selected from the entire study area.

Model evaluation

We assessed the model fit (with testing data) and compared the predicted disease suitability

distributions to recent outbreaks [39]. We used 5-fold cross-validation to compute the area

under the receiver-operating characteristic curve (AUC) and the corrected AUC (AUCc).

AUC is a normalized measure of model fit that can be derived from Wilcoxon’s rank-

Detecting high risk areas for avian influenza outbreaks in California
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correlation statistic, with values that can range from 0 to 1. A model performs well when the

AUC is close to 1. Usually, AUC values of>0.9 indicate high accuracy, values between 0.7 to

0.9 indicate good accuracy, and values between 0.6 to 0.7 indicate low accuracy. A value of 0.5

would suggest that a prediction is no better than a random guess. Because of spatial autocorre-

lation, AUC is affected by the geographic distance between model training and testing sites

(spatial sorting bias). We corrected for this by using the calibrated AUC (AUCc) instead of the

regular AUC [40]. AUCc were also used to generate weighted mean risk maps for P-A models

(MPA and RFPA) and for the P-B models (MPB and RFPB). Weights for each model i (Wi)

were computed using AUCc of each model using Equation (1):

Wi ¼ ðAUCci � 0:5Þ
2

We used the USDA official notification data on 2014–2015 HPAI outbreaks to evaluate the

generated AI risk maps. To compare the spatial predictions of the different models, we com-

puted Spearman’s correlation coefficients between the predictions for the 500 × 500 m raster

cells in California (n = 3,301,320). Because HPAI outbreak locations are only available at the

county level, we estimated the mean AI risk per county for each DDM. Counties were then

classified by terciles as “Low Risk” “Moderate Risk” or “High Risk”. A HPAI outbreak was con-

sidered as "correctly detected" by either MaxEnt or RF if it was located in a “High Risk”

county.

Results

Overall, all models performed well (AUCc > 0.7 for testing data), particularly for models

trained with P-B data (AUCc > 0.85) (Table 1). The original spatial predictions generated

from MPA, RFPA and the “sampling site” models spatial predictions are presented in the S3

Fig. Spatial predictions generated by MaxEnt and RF were very similar for the P-B data

(rho = 0.81) but less so for the P-A data (rho = 0.65). There were large similarities between the

P-A and P-B model predictions irrespective of the used algorithm (Fig 2, Table 2). While P-B

models predicted more areas with extreme high or low values, P-A models, particularly MPA,

predicted a diffused medium/low values for large areas. Areas with high values for P-B also

had high values for P-A.

The most important contributing predictors for the MPB model were elevation (52% con-

tribution), land cover (30%), broiler farm density (14%) and distance to the coast (4.2%)

(Table 3). The AUCc of this MaxEnt model was 0.93. High risk areas (> 0.6) according to the

MPB model are mostly around the San Francisco Bay Area, the Central Valley and Southern

California (coastal and the Imperial and Coachella Valleys) (Fig 2). The MPB model classified

2 out of the 8 counties where HPAI outbreaks were reported as high risk, 5 as medium risk

and 1 as low risk (Fig 2).

The most important variables for the RFPB model were land cover (MDA = 98.2), mini-

mum temperature of coldest month (MDA = 57.5), precipitation seasonality (MDA = 32.0)

and broiler density (MDA = 30.8) (Table 3). The out-of-bag estimate of error rate was 11.9%.

The AUC of the selected model was of 0.95 and the AUCc was 0.78. The risk map again

Table 1. AUC and AUCc values for the four DDMs: Maxent Presence Bakground (MPB), Maxent Presence-

Absence (MPA), Random Forest Presence Background (RFPB) and Random Forest Presence-Absence (RFPA).

MPB MPA RFPB RFPA

AUC 0.95 0.86 0.95 0.74

AUCc 0.93 0.85 0.78 0.68

https://doi.org/10.1371/journal.pone.0190824.t001
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Fig 2. Risk maps generated from the four diseases distribution models and their means: Presence-background MaxEnt (MPB), presence-

background Random Forest (RFPB), weighted mean of both presence-background models based on AUCc (MeanPB), corrected presence-

absence MaxEnt (MPAc), corrected presence-absence Random Forest (RFPAc), weighted mean of both presence-absence models based on

AUCc (MeanPAc). The green dots represent the centroids of the 2014–2015 HPAI outbreaks. The color gradient of each pixel represents the AI

presence probability from clear red shading (low presence probability) to bright red shading (high presence probability). High resolution versions

of the maps are available in Disease BioPortal (http://bioportal.ucdavis.edu).

https://doi.org/10.1371/journal.pone.0190824.g002

Detecting high risk areas for avian influenza outbreaks in California

PLOS ONE | https://doi.org/10.1371/journal.pone.0190824 January 31, 2018 7 / 15

http://bioportal.ucdavis.edu
https://doi.org/10.1371/journal.pone.0190824.g002
https://doi.org/10.1371/journal.pone.0190824


pointed at the Bay Area, the Central Valley, parts of southern California, as well as the Central

Coast as highly suitable for AIV whereas the Eastern Sierra Valley region are at low risk for the

virus (Fig 2). The prediction map for the RFPB model identified 2 out of the 8 counties where

HPAI outbreaks were reported, 5 in intermediate risk counties and 1 in low risk counties

(Fig 2).

The most important contributing predictors for the MPA were distance to the coast (42.5%

contribution), backyard farm density (24.7%), land cover (18.2%) and precipitation of driest

quarter (14.7%) (Table 3). The AUC value of this MaxEnt model was 0.86 and the AUCc was

0.85. Both the San Francisco Bay Area and the Central Valley were at high risk for outbreaks.

Few other locations in Northern California, the Coastal Region and Southern California were

also designated as high risk (Fig 2). Overall, the MPA model identified 4 out of the 8 counties

where HPAI outbreaks were reported in 2014–2015 epizootics, 2 in intermediate risk counties

and 2 in low risk counties (Fig 2)

The five most important predictors in the RFPA model were broiler density (MDA = 41.3),

IBA (MDA = 29), distance to the coast (MDA = 26.7), minimum temperature of coldest

month (MDA = 24.2) and land cover (MDA = 20) (Table 3). The OOB estimate of error rate

was 30.7%. The AUC of the selected model was of 0.74 and the AUCc was 0.68. High risk areas

were located mostly in the San Francisco Bay Area, the Central Valley and the Coastal Region.

A few other high risk areas were observed in parts of Northern and Southern California (Fig

2). The RFPA model identified 4 out of the 8 HPAI outbreaks in high suitable counties, 3 in

intermediate suitable counties and 1 in low suitable counties (Fig 2).

Variable response curves, correlation matrices and Jackknifes graphs for the selected vari-

ables in each model are presented in the S4, S5 and S6 Figs.

Table 2. Spearman’s correlation coefficient between the spatial predictions of the for the four DDMs, Maxent Presence Background (MPB), Corrected Maxent Pres-

ence-Absence (MPAc), Random Forest Presence Background (RFPB), Corrected Random Forest Presence-Absence (RFPAc) and, the model averages for Presence-

Absence (WPAc) and Presence-Background (WPB) of Avian Influence occurrence in California, USA. Predictions were made for 500 × 500 m grid cells in California

(n = 3,301,320).

MPB MPAc RFPB RFPAc WPB

MPAc 0.85

RFPB 0.82 0.70

RFPAc 0.70 0.65 0.81

WPB 0.93 0.79 0.97 0.80

WPAc 0.83 0.85 0.84 0.95 0.87

https://doi.org/10.1371/journal.pone.0190824.t002

Table 3. Variable importance for the final models of the four DDMs: Maxent Presence Background (MPB), Maxent Presence-Absence (MPA), Random Forest Pres-

ence Background (RFPB) and Random Forest Presence-Absence (RFPA) of Avian Influence occurrence in California, USA. Variable importance was determined

with percent contribution for Maxent and mean decrease in accuracy for Random Forest.

Importance MPB MPA RFPB RFPA

1 Elevation (52%) Distance to the coast (42.5%) Land cover (98.2) Broiler farm density (41.3)

2 Land cover (29.6%) Backyard farms density (24.7%) Minimum temperature of coldest month

(57.5)

IBA (29)

3 Broiler farm density

(14.2%)

Land cover (18.2%) Precipitation Seasonality (32.0) Distance to the coast (26.7)

4 Distance to the coast

(42%)

Precipitation of the driest quarter

(14.7%)

Broiler farm density (30.8) Min temperature of coldest month

(24.2)

5 - - - Land cover (20)

https://doi.org/10.1371/journal.pone.0190824.t003
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Discussion

The use of 2 different algorithms (MaxEnt and Random Forest), both parameterized with P-B

and P-A data allowed to compare these different approaches, get a better understanding of AI

dynamics in California and generates state-wide risk maps for AI following the three HPAI

introduction pathways into poultry farms. All models (MPB, RFPB, MPA and RFPA) indicate

an overall high accuracy predicting AIV occurrence in California (AUCc > 0.7). The resulting

maps showed agreement in classifying specific areas as very suitable for AI particularly in

coastal and the inland valleys of southern California (particularly in Orange, Los Angeles, San

Diego, Imperial and Ventura counties), in and near the San Francisco Bay area and delta (Ala-

meda, Contra Costa, Napa, Santa Cruz, San Francisco, San Mateo, Solano, Sonoma and Sutter

counties), and adjacent areas in the Central Valley (Sacramento and San Joaquin counties).

We consider these areas as important targets for surveillance and the application of preventive

measures against HPAI.

Several predictors were present in many of the final models, highlighting their importance

for predicting AI risk in California following the three introduction pathway. More specifi-

cally, land cover, distance to the coast, and broiler farm density which largely contributed to all

DDMs (Table 3). Land cover, particularly the presence of wetlands and broad-leaf forests,

were the highest contributors to the models (S5 Fig). This confirms similar findings in a previ-

ous study in the Pacific Flyway [12]. Wetlands are very important to consider when looking at

AIV dynamics. Migratory birds often follow waterways and/or the coast, but for waterfowl the

presence of wetlands is also important. Wetlands provide the main habitat for (migrating)

waterfowl which could be carrying one or multiple AIV. They also offer the perfect conditions

for a longer viral presence in the enviornment [41]. Broiler farm density has been looked at as

potential predictor for HPAI occurrence, particularly in Asia [42], where farming conditions

are different from those in California. In Europe and Canada, where farming systems are more

similar to California, broiler farms are known to be at a lower risk than other types of poultry

farming [43]. The fact that broiler farms density plays an important role in the models could

be explained by two different scenarios: (i) migratory waterfowl potentially carrying AIV (LP

or HP) are attracted to areas dense with broiler farms possibly due to the presence of feed and/

or domestic fowls raised in open spaces; AIV could then be introduced into the farms via

direct/indirect contact and lead to AI outbreaks; (ii) oversampling in areas that are highly

dense for poultry farms (i.e. sampling bias) could lead to more positive cases causing models

to select broiler farm density as an important predictor even though it doesn’t not affect AI

transmission. While AI outbreaks in broiler farms as a result of contact between domestic

birds and waterfowl have been reported in North America and other areas [44,45], this sce-

nario is less likely to occur in California. The state is among the top broiler producers in the

country [46] and local authorities and producers are constantly reviewing biosecurity levels,

minimizing the contacts between waterfowl and domestic birds [47]. However, broiler farms

with low biosecurity or with open production systems may be at particular risk if risk mitiga-

tion strategies are not implemented.

Rainfall and minimum temperature also contributed in three of the four models (Table 3).

This is consistent with similar studies that found that annual rainfall and temperatures are

important to identify areas at high-risk areas for AIV outbreaks [48,49].

The algorithms’ spatial predictions largely agreed on the distribution of AIV risk in Califor-

nia with P-B data, less with P-A. Maxent and RF predictions both showed that the upper east

part of California is not highly suitable for LPAI presence (Modoc, Lassen, Shasta, Plumas and

Siskiyou county), although in the 2014–2015 HPAI epizootics cases were confirmed in wild

birds in Siskiyou county. Model failure to identify Siskiyou county could be due to multiple
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reasons—for example, our models are calibrated to detect primary outbreak occurrence and

thus could not detect secondary outbreaks or lateral spread. The main disagreement between

MaxEnt and RF predictions is on the status of southeastern California, specifically San Bernar-

dino, Riverside, Inyo and Imperial counties; the MaxEnt predictions for these areas were

higher than the RF predictions.

When compared, models trained with P-B and P-A each showed each several strengths and

weaknesses. P-B models had better AUCc (> 0.85) but models trained with P-A records were

better at correctly labeling counties where the 2014–2015 HPAI outbreaks took place as “high

risk” (4 out of 8 outbreaks: Kings, Merced, Stanislaus, Solano). P-A models predicted a much

larger area to be at “high risk” (particularly with MaxEnt). P-B models, however, easily

detected unsuitable areas such as the Sierra Nevada and Eastern California with little sampling

effort.

It is common practice in ecological and epidemiological studies to use background rather

than absence locations as these latter are rarely available [50], [51]. When using background

points, if the sample selection bias is not accounted for, the distribution model might reflect

more the sampling effort rather than the true presence distribution [52]. For this reason, P-A

distribution models are believed to be preferable as they are less affected by sample selection

bias. P-B models, however, could be more effective if sampling was directed towards areas

where AI outbreaks are occurring. The P-A models produced higher risk scores in areas with

very few sampling locations. Correcting the spatial predictions from the P-A models helped

remove sampling bias (S3 Fig). Sampling rasters also confirmed the disparities in terms sam-

pling efforts in California. However, it’s necessary to point that the generated P-A maps might

be incomplete since the spatial predictions are only based on characteristics from sampled

areas. Further sampling efforts particularly in new areas are necessary to get a full image of the

real AI risk.

Samples from waterfowl and the environment are routinely collected for AIV surveillance

making them a very useful dataset for suitability modeling. However, locations where environ-

mental negative samples were collected might not reflect the true risk for AI outbreaks but

rather echoes the site’s characteristics. For example, negative water samples may be associated

with areas less used by waterfowl or with abiotic factors that reduce the ability of AIV to sur-

vive (pH, temperature and/or salinity for example). Positive locations were defined as areas

where at least one positive bird was observed over the study period. Likewise, negative areas

were locations where all sampled birds were negative. Waterfowl are mobile and one could

think that positive birds could have been previously infected and stopped shedding virus by

the time it was sampled. This could occur even if a negative location might offer all the envi-

ronmental conditions supportive of AIV transmission, but positive birds were not sampled

during the study period. We also assumed that all predictors and factors were stationary over

time.

Accuracy of the models could be improved by using a truly state-wide sampling scheme

and collecting samples from all migratory birds that could harbor AIV, and also including pre-

dictors reflecting farm biosecurity levels and exact locations of poultry farms. Exact locations

of poultry farms, specifically backyard flocks could help improve predictions of future models.

It would also be of interest to take seasonality and temporal variations more explicitly into con-

sideration. For example, migratory birds are known to be important when modeling AI. Here

we used IBA as a proxy for migratory bird density, but including densities of migratory wild

birds by migratory seasons could give insights of locations and time periods that poses higher

risk for AI transmission. An alternative approach could be used in the future to model the frac-

tion of positive cases instead of eliminating samples with identical locations. It could also be of
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interest to analyze whether there are many false negatives due to small sample sizes at some

locations using the probability of detection approaches as described in previous studies [53].

Conclusion

During the 2014–2015 HPAI epizootics in the US, only two cases were detected in Californian

commercial poultry farms; however, California environmental conditions are favorable for

AIV presence, and thus future outbreaks (in poultry and waterfowl) are likely to occur. AI risk

maps generated could help decision makers and local stakeholders in preventing HPAI out-

breaks as they highlight areas at risk for initial viral introduction into poultry farms as well as

hot spots for waterfowl virus shedding. Risk maps are valuable for supporting the design of

risk-based surveillance, and also targeting education and outreach campaigns for producers

and poultry veterinarians, with an ultimate goal is to help prevent and rapidly control future

AI outbreaks to protect the California poultry industry.
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S1 Fig. Temporal sampling distribution of the FluDB raw dataset by month over the entire
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S2 Fig. Spatio-temporal sampling distribution per unique location of the FluDB raw data-

set. The X axis indicates the year of sampling. The Y axis represents the coordinates of every

single location sampled. The color gradient represents the percent of positive samples in that

specific location per year.

(TIF)

S3 Fig. Spatial predictions from the original presence-absence MaxEnt (MPA), presence-

absence Random Forest (RFPA), their respective sampling probabilities (M sampling, RF

sampling) and the corrected Spatial predictions for MaxEnt (MPAc) and Random Forest

(RFPAc). The color gradient of each pixel represents the presence probability from clear red

shading (low presence probability) to bright red shading (high presence probability).

(TIF)

S4 Fig. Spearman Correlation plots for the four models (MPA, RFPA, MPB, RFPB).

(TIF)

S5 Fig. Response curves for each of the four models (MPA, RFPA, MPB, RFPB).

(TIF)

S6 Fig. Jackknife of regularized training gain of the variables included in the two MaxEnt

models (MPA, MPB). The red bar represents the overall training gain with all the included
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variables. The blue bar represents the training gain when using each variable in isolation. The

clear blue bar is the training gain when the variable is excluded from the model.

(TIF)
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9. Veits J, Weber S, Stech O, Breithaupt A, Gräber M, Gohrbandt S, et al. Avian influenza virus hemagglu-

tinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proc Natl Acad Sci USA. National

Acad Sciences; 2012; 109: 2579–2584. https://doi.org/10.1073/pnas.1109397109 PMID: 22308331

10. United States Department of Agriculture. Avian Influenza Report, Technical report on Avian Influenza

(2015). https://www.usda.gov/topics/animals/one-health/avian-influenza. (Accessed July 2017).

11. Deliberto TJ, Swafford SR, Nolte DL, Pedersen K, Lutman MW, Schmit BB, et al. Surveillance for highly

pathogenic avian influenza in wild birds in the USA. Integr Zool. Blackwell Publishing Ltd; 2009; 4: 426–

439. https://doi.org/10.1111/j.1749-4877.2009.00180.x PMID: 21392315
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17. Alkhamis M, Hijmans RJ, Al-Enezi A, Martı́nez-López B, Perea AM. The Use of Spatial and Spatiotem-

poral Modeling for Surveillance of H5N1 Highly Pathogenic Avian Influenza in Poultry in the Middle

East. Avian Dis. The American Association of Avian Pathologists 953 College Station Road, Athens,

GA 30602–4875; 2016; 60: 146–155.

18. Squires RB, Noronha J, Hunt V, Garcı́a-Sastre A, Macken C, Baumgarth N, et al. Influenza research

database: an integrated bioinformatics resource for influenza research and surveillance. Influenza

Other Respir Viruses. Blackwell Publishing Ltd; 2012; 6: 404–416. https://doi.org/10.1111/j.1750-2659.

2011.00331.x PMID: 22260278

19. Htway ZM, Hernandez HE. Influenza a Viruses in Artificial Community Water Ponds: Potential for IAV

Surveillance. Journal of Natural Sciences. 2016.

20. Htway ZM. The Burden of Avian Influenza Viruses in Community Ponds in California. Walden Disserta-

tions and Doctoral Studies. 2014. http://scholarworks.waldenu.edu/cgi/viewcontent.cgi?article=

1088&context=dissertations

21. Gilbert M, Pfeiffer DU. Risk factor modelling of the spatio-temporal patterns of highly pathogenic avian

influenza (HPAIV) H5N1: a review. Spatial and Spatio-temporal Epidemiology. 2012; 3: 173–183.

https://doi.org/10.1016/j.sste.2012.01.002 PMID: 22749203

22. Artois J, Lai S, Feng L, Jiang H, Zhou H, Li X, et al. H7N9 and H5N1 avian influenza suitability models

for China: accounting for new poultry and live-poultry markets distribution data. Stoch Environ Res Risk

Assess. Springer Berlin Heidelberg; 2017; 31: 393–402. https://doi.org/10.1007/s00477-016-1362-z

PMID: 28298880

23. Martin V, Pfeiffer DU, Zhou X, Xiao X, Prosser DJ, Guo F, et al. Spatial distribution and risk factors of

highly pathogenic avian influenza (HPAI) H5N1 in China. Ferguson NM, editor. PLoS Pathog. 2011; 7:

e1001308. https://doi.org/10.1371/journal.ppat.1001308 PMID: 21408202

24. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate sur-

faces for global land areas. International Journal of Climatology. John Wiley & Sons, Ltd; 2005; 25:

1965–1978. https://doi.org/10.1002/joc.1276

25. Calfire-Frap. Calfire land-cover data: http://frap.fire.ca.gov/data/statewide/FGDC_metadata/fveg15_1.

xml. (Acessed: June 2017).

26. State of California DOC. California Important Farmland Finder. http://maps.conservation.ca.gov/ciff/ciff.

html. (Acessed: June 2017).

27. Audubon. Important Bird areas: http://www.audubon.org/important-bird-areas. (Acessed: June 2017).

Detecting high risk areas for avian influenza outbreaks in California

PLOS ONE | https://doi.org/10.1371/journal.pone.0190824 January 31, 2018 13 / 15

https://doi.org/10.1038/srep28980
http://www.ncbi.nlm.nih.gov/pubmed/27381241
https://doi.org/10.1073/pnas.1109397109
http://www.ncbi.nlm.nih.gov/pubmed/22308331
https://www.usda.gov/topics/animals/one-health/avian-influenza
https://doi.org/10.1111/j.1749-4877.2009.00180.x
http://www.ncbi.nlm.nih.gov/pubmed/21392315
https://doi.org/10.1038/srep33161
http://www.ncbi.nlm.nih.gov/pubmed/27624404
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1590/S0037-86822004000100003
https://doi.org/10.1111/ddi.12006
https://doi.org/10.1371/journal.pone.0101958
http://www.ncbi.nlm.nih.gov/pubmed/25029441
https://doi.org/10.1111/j.1750-2659.2011.00331.x
https://doi.org/10.1111/j.1750-2659.2011.00331.x
http://www.ncbi.nlm.nih.gov/pubmed/22260278
http://scholarworks.waldenu.edu/cgi/viewcontent.cgi?article=1088&context=dissertations
http://scholarworks.waldenu.edu/cgi/viewcontent.cgi?article=1088&context=dissertations
https://doi.org/10.1016/j.sste.2012.01.002
http://www.ncbi.nlm.nih.gov/pubmed/22749203
https://doi.org/10.1007/s00477-016-1362-z
http://www.ncbi.nlm.nih.gov/pubmed/28298880
https://doi.org/10.1371/journal.ppat.1001308
http://www.ncbi.nlm.nih.gov/pubmed/21408202
https://doi.org/10.1002/joc.1276
http://frap.fire.ca.gov/data/statewide/FGDC_metadata/fveg15_1.xml
http://frap.fire.ca.gov/data/statewide/FGDC_metadata/fveg15_1.xml
http://maps.conservation.ca.gov/ciff/ciff.html
http://maps.conservation.ca.gov/ciff/ciff.html
http://www.audubon.org/important-bird-areas
https://doi.org/10.1371/journal.pone.0190824


28. ESRI E. ArcGIS Desktop: Release 10.3 Redlands, CA: Environmental Systems Research Institute.

http://www.esri.com/ (Accessed July 2017). Redlands; 2009.

29. United States Geological Survey. The National Map Small Scale. https://nationalmap.gov/small_scale/.

(Acessed: July 2017) [Internet].

30. Natural Earth Database. http://www.naturalearthdata.com. (Accessed: July 2017).

31. Elith J, Graham CH. Do they? How do they? WHY do they differ? On finding reasons for differing perfor-

mances of species distribution models. Ecography. Blackwell Publishing Ltd; 2009; 32: 66–77. https://

doi.org/10.1111/j.1600-0587.2008.05505.x

32. Stevens KB, Gilbert M, Pfeiffer DU. Modeling habitat suitability for occurrence of highly pathogenic

avian influenza virus H5N1 in domestic poultry in Asia: A spatial multicriteria decision analysis

approach. Spatial and Spatio-temporal Epidemiology. 2013; 4: 1–14. https://doi.org/10.1016/j.sste.

2012.11.002 PMID: 23481249

33. Phillips SJ, Dudı́k M, Schapire RE. A maximum entropy approach to species distribution modeling.

New York, New York, USA: ACM Press; 2004. p. 83.

34. Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: Species distribution modeling. R package version

1.0–12. . . . Computing; 2015.

35. Breiman L. Random Forests. Machine Learning. Kluwer Academic Publishers; 2001; 45: 5–32. https://

doi.org/10.1023/A:1010933404324

36. Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, et al. Random Forests For Classifica-

tion In Ecology. Ecology. Ecological Society of America; 2007; 88: 2783–2792. https://doi.org/10.1890/

07-0539.1

37. Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002.

38. Genuer R, Poggi J-M, Tuleau-Malot C. Variable selection using random forests. Pattern Recognition

Letters. 2010; 31: 2225–2236. https://doi.org/10.1016/j.patrec.2010.03.014

39. Sánchez-Mercado AY, Ferrer-Paris JR, Franklin J. Mapping Species Distributions: Spatial Inference

and Prediction—ProQuest. Oryx. 2010.

40. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null

model. 2012. http://www.esajournals.org/doi/abs/10.1890/11-0826.1

41. Gilbert M, Xiao X, Pfeiffer DU, Epprecht M, Boles S, Czarnecki C, et al. Mapping H5N1 highly patho-

genic avian influenza risk in Southeast Asia. Proc Natl Acad Sci USA. 2008; 105: 4769–4774. https://

doi.org/10.1073/pnas.0710581105 PMID: 18362346

42. Paul M, Tavornpanich S, Abrial D, Gasqui P, Charras-Garrido M, Thanapongtharm W, et al. Anthropo-

genic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based

model. Vet Res. 2010; 41. https://doi.org/10.1051/vetres/2009076 PMID: 20003910

43. Bouwstra R, Gonzales JL, de Wit S, Stahl J, Fouchier RAM, Elbers ARW. Risk for Low Pathogenicity

Avian Influenza Virus on Poultry Farms, the Netherlands, 2007–2013. Emerging Infect Dis. 2017; 23:

1510–1516. https://doi.org/10.3201/eid2309.170276 PMID: 28820139

44. LEE Y-J, Kang H-M, LEE E-K, Song B-M, Jeong J, KWON Y-K, et al. Novel Reassortant Influenza A

(H5N8) Viruses, South Korea, 2014. Emerging Infect Dis. Centers for Disease Control and Prevention;

2014; 20: 1087–1089. https://doi.org/10.3201/eid2006.140233 PMID: 24856098

45. Pasick J, Berhane Y, Joseph T, Bowes V, Hisanaga T, Handel K, et al. Reassortant highly pathogenic

influenza A H5N2 virus containing gene segments related to Eurasian H5N8 in British Columbia, Can-

ada, 2014. Scientific Reports. Nature Publishing Group; 2015; 5: 9484. https://doi.org/10.1038/

srep09484 PMID: 25804829

46. Poultry Statistics from the California Poultry Federation. http://cpif.org/poultry-statistics. (Acessed: July

2017).

47. Greene JL. Update on the Highly-Pathogenic Avian Influenza Outbreak of 2014–2015. Congressional

Res Serv [Internet]. 2015.

48. Herrick KA, Huettmann F, Lindgren MA. A global model of avian influenza prediction in wild birds: the

importance of northern regions. Vet Res. 2013.

49. AlKhamis MA, Hijmans RJ, Al-Enezi A, Martı́nez-López B, Perez AM. The use of spatial and spatio-tem-
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