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Sex Matters: Effects of Sex
and Mating in the Presence and
Absence of a Protective Microbe
Anke Kloock*†, Lena Peters† and Charlotte Rafaluk-Mohr†

Department of Zoology, University of Oxford, Oxford, United Kingdom

In most animals, female investment in offspring production is greater than for males.
Lifetime reproductive success (LRS) is predicted to be optimized in females through
extended lifespans to maximize reproductive events by increased investment in immunity.
Males, however, maximize lifetime reproductive success by obtaining as many matings as
possible. In populations consisting of mainly hermaphrodites, optimization of reproductive
success may be primarily influenced by gamete and resource availability. Microbe-
mediated protection (MMP) is known to affect both immunity and reproduction, but
whether sex influences the response to MMP remains to be explored. Here, we
investigated the sex-specific differences in survival, behavior, and timing of offspring
production between feminized hermaphrodite (female) and male Caenorhabditis elegans
following pathogenic infection with Staphylococcus aureus with or without MMP by
Enterococcus faecalis. Overall, female survival decreased with increased mating. With
MMP, females increased investment into offspring production, while males displayed
higher behavioral activity. MMP was furthermore able to dampen costs that females
experience due to mating with males. These results demonstrate that strategies employed
under pathogen infection with and without MMP are sex dependent.

Keywords: defensive mutualism, sexual immune dimorphism, microbe-mediated protection, host–pathogen
interaction, heterogeneity, protection
INTRODUCTION

In dioecious organisms, females and males invest energy differently throughout their life: In most
sexually reproducing species, females and males pay different costs for mating (Rolff, 2002; Rolff
et al., 2005). While males invest more energy into mating [by displaying mate searching behavior
(Lipton et al., 2004) or outcompeting other males and their sperm (LaMunyon and Ward, 1995)],
females generally invest more energy into producing high-quality offspring (Bateman, 1948; Trivers,
1972; Clutton-Brock, 1988). Females try to maximize their reproductive lifespan, while males
maximize their sperm output, which is described as Bateman’s principle (Bateman, 1948; Trivers,
1972; Clutton-Brock, 1988). Due to these differences in energy investment into mating, the costs and
benefits of investment into immunity differ between sexes (Sheldon and Verhulst, 1996; McKean
and Nunney, 2001; Lindsey and Altizer, 2009). While males of different species have a reduced
survival and body size upon infection with pathogens (such as Panorpa vulgaris, Caenorhabditis
elegans, and Daphnia magna after infection with Micrococcus luteus, Bacillus thuringiensis, and
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Octosporea bayeri, respectively), females tend to invest more
heavily in immunity (Kurtz et al., 2000; Roth et al., 2008; Zuk,
2009; Masri et al., 2013). Female scorpion flies have increased
immune activity (Kurtz et al., 2000), and women survive
pandemics (Zuk, 2009), slavery, or famines better than men do
(Zarulli et al., 2018). Males, on the other hand, tend to invest
more heavily in behavioral traits such as mate-search behavior
(Hemptinne et al., 1996; Lipton et al., 2004) and pathogen
avoidance (Masri et al., 2013).

In species where the majority of individuals are self-fertilizing
hermaphrodites, the situation is more complex as mating is not
necessary to maximize fecundity (Brenner, 1974), although
similarly to females (Bateman, 1948), fecundity is likely to be
primarily dependent on energy availability if gametes are not
limited. In self-fertilizing hermaphrodites, such as C. elegans, for
whom mating is not necessary for reproduction but males
remain in the population, hermaphrodites may be even more
“coy” and “choosy” than females in dioecious populations,
potentially causing more extreme differences in investment
strategies following pathogen infection.

We thus hypothesized that the benefit of a protective microbe
would differ among sexes. Protective microbes can be important
in host defense in the face of infection, a phenomenon referred to
as “defensive mutualism” (King, 2019), where microbes can
supplement the host’s immune system (Abt and Artis, 2013).
Defensive mutualisms have been observed across kingdoms
[reviewed in (Ford and King, 2016)]. The potential of
defensive mutualism to enhance survival as well as offspring
production has been observed repeatedly (Koehler et al., 2013;
King et al., 2016; Kloock et al., 2020). However, most of these
examples have only considered population-level effects, while
few studies have focused on individual behaviors and/or sex
differences between the hosts (McLean et al., 2018).

To test for differences in survival, behavior, and timing of
offspring production between the two host sexes with or without
microbe-mediated protection (MMP) during infection, we used
an established experimental system using Caenorhabditis elegans
as a host, Enterococcus faecalis as a protective microbe, and
pathogenic Staphylococcus aureus (Ford et al., 2016; King et al.,
2016; Rafaluk-Mohr et al., 2018). Once C. elegans worms are
exposed to E. faecalis and S. aureus, E. faecalis provides microbe-
mediated protection (MMP) by scavenging siderophores from
S. aureus (Ford et al., 2016). Here, we used a population of
C. elegans made up of males and feminized hermaphrodites,
which only carry eggs and cannot produce sperm, and thus are
referred to as females (Theologidis et al., 2014). To test for the
effect of mating on traits such as survival after pathogen infection
and over a lifetime, behavior upon different mating and
population structures, and the timing of offspring production,
we separated females and males and manipulated the time frame
that they could come into contact and mate to be either unmated,
short-term mated, or lifetime mated. To test the impact of MMP,
worms were exposed to one of three bacterial diets: food only,
pathogen without MMP, or pathogen with MMP. We
investigated the differences in survival, behavior, and timing of
offspring production for the two sexes under the different mating
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
and bacterial diet conditions. We predicted that feminized
hermaphrodites would benefit more from the provision of
MMP, as feminized hermaphrodites experience costs of the
provision of eggs and mating. We furthermore predicted that
males would benefit differently from the provision of MMP
either by differences in survival or mate searching activity. Our
predictions were met, when we observed, that females highly
benefit from MMP and show increased survival after pathogen
infection and differences in offspring timing, while males are
benefiting from MMP by displaying higher mate searching
behavior. MMP is able to dampen the costs that females pay
by being mated by males.
MATERIALS AND METHODS

Worm and Bacteria System
We used an obligate outcrossing worm population [line EEVD00
from Henrique Teotonio (Theologidis et al., 2014)] where worms
carry the fog-2(q71) mutation, preventing hermaphrodites from
producing sperm (Theologidis et al., 2014). Worms were kept on
Nematode Growth Medium (NGM) (Brenner, 1974), and fed
with nonpathogenic Salmonella enterica, hereafter referred to as
food (Diaz et al., 2015; Desai et al., 2019; Kloock et al., 2020). For
pathogenic infection, the Gram-positive Staphylococcus aureus
strain MSSA476 (Holden et al., 2004) was used. The strain
OG1RF of Enterococcus faecalis (Garsin et al., 2001) was used
as a protective microbe against S. aureus infection (Ford et al.,
2016; King et al., 2016; Rafaluk-Mohr et al., 2018). E. faecalis
positively affects host survival, even in the absence of the
pathogen S. aureus (Kloock et al., 2020).
Pathogenic Infection and Long-Term
Survival Analysis
All assays were carried out blind. All results shown for food and
pathogenic infection with or without MMP have been generated
from different setups for each bacterial diet. Results thus cannot
be compared between different diets but only within.

Worms were sterilized and synchronized via bleaching
(Stiernagle, 2006). Simultaneously, the bacteria were grown in
overnight cultures: either E. faecalis overnight in 25 ml of Todd-
Hewitt Broth (THB) or food in 25 ml of Lysogeny broth (LB),
both at 30°C in a shaking incubator. NGM plates (6 cm) were
inoculated with either 400 µl of food or 200 µl of food mixed with
200 µl of E. faecalis. A total of 600 L1 worms were added to each
NGM plate and kept at 20°C for 42 h. Simultaneously, a liquid
culture of S. aureus was grown in THB from a frozen stock, while
food was grown in LB. Both cultures were incubated under
shaking conditions at 30°C overnight. The following day, 20 µl of
S. aureus overnight culture was pipetted onto 3 cm on Tryptone
Soy Broth agar (TSB) plates and incubated at 30°C overnight.
Simultaneously, 6cm NGM plates were inoculated with 150µl
food. These plates were used to split worms into groups of only
females, only males, or 50:50 mixed for 6–8 h (time point when
October 2021 | Volume 11 | Article 713387
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the first eggs appeared on the plate) (Table S1). After the worms
had mated, 50 worms were placed onto the S. aureus lawn with a
platinum wire pick and left at 25°C for 24 h (Figure S1) in
groups of unmated, short-term mated, and lifetime mated
individuals of both sexes (Table S1).

Survival upon pathogenic infection was scored after 24 h.
Worms were considered dead if they did not respond to touch
with a platinum wire pick. After survival was scored, 10 worms
were transferred to 3cm NGM plates seeded with 150µl food and
placed at 25°C. Worms were transferred to new plates every 24 h
with a platinum wire until no further offspring production
occurred. Survival was scored every day until all worms were
dead. For the food-alone treatment, the long-term survival assay
followed a similar protocol except that the experimental
procedure was carried out at 20°C, as is standard for C. elegans
(Amrit et al., 2014).
Activity Analysis
Males and females were previously observed to show different
activities, may it be due to infection (Masri et al., 2013) or due to
higher mate searching behavior (Lipton et al., 2004). After 24 h
on the pathogen infection plates, worm behavioral activity was
determined via calculating the fraction of worms at the edge of
the plate. Worms were considered at the edge of the plate if they
could not be seen from above.
Avoidance Analysis
Avoidance behavior is known as a response to pathogen defense
(Pees et al., 2017). The proportion of missing worms was
calculated 24 h after pathogen infection and at each transfer in
the long-term survival analysis, as previously described (Pees
et al., 2017). To define the proportion of missing worms, the
number of initially exposed worms minus the counted alive and
counted dead worms was divided by the number of initially
exposed worms. For the long-term avoidance analysis, the
cumulative number of dead worms was used, while only the
last time point of each experiment was plotted (Figure S2).
Offspring Production
The presence or absence of viable offspring on a plate was noted
during pathogen infection and during long-term survival.
Unmated females might sometimes produce and lay
unfertilized eggs, which do not develop into viable larvae
(Singaravelu and Singson, 2011). Due to feasibility, the exact
numbers of viable offspring could not be assessed. Offspring
production was defined as a proportion of plates that had viable
offspring over the total amount of plates per treatment.
Statistical Analysis
Statistical analyses were carried out with RStudio (Version
1.1.463 for Mac) (RStudio Team, 2020). Figures were created
with the ggplot2 package (Version 2.1.0). All data, except for the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
long-term survival and offspring production data, were analyzed
with generalized linear models to test for an effect of sex, the
mating status, or an interaction between the two. If the
interaction had a significant effect, a Tukey multiple-
comparison tests (R package multcomp) (Hothorn et al., 2008)
was performed (Table S1). The long-term survival data were
analyzed with Kaplan–Meier log rank test with FDR correction
for multiple testing (Therneau and Grambsch, 2002; Therneau,
2020). The offspring data were analyzed using a Wilcoxon rank
test (Mann and Whitney, 1947).
RESULTS AND DISCUSSION

Lifetime Mated Females Are Most Affected
by Pathogen Infection and Mating
During pathogen infection without (Figure 1A) and with MMP
(Figure 1B), males survived better than females (GLM, X2 =
172.383, df=1, p<0.001, and GLM, X2 = 34.383, df=1, p<0.001,
respectively), while over a lifetime, this pattern was only present
without MMP (Figures 1C–E; without MMP: p<0.001, Kaplan–
Meier survival estimates (KMSE); on food: p=0.62 (KMSE), with
MMP: p=0.32, (KMSE)). Females were dramatically affected by
the mating status, during pathogen infection without and with
MMP (p<0.001, GLM, X2 = 108.757, df=2, p<0.001 (Figure 1A),
GLM, X2 = 27.152, df=2, p<0.001 (Figure 1B), respectively) and
also over a lifetime independent of the bacterial diet
(Figures 1C–E), where lifetime mated females survived worse
than their unmated or short-term mated counterparts (on food,
without MMP and with MMP both comparisons p<0.001).
Males were not affected by mating neither during pathogen
infection nor over a lifetime (all p>0.05).

Females suffer worse the longer they have been mated with
males, while males survive pathogen infection better than
females independent of MMP (Figures 1A, B). This pattern
holds during pathogen infection (Figures 1A, B) and over a
lifetime (Figures 1C–E). The extreme differences we see here
may be partially explained by the fact that the females used in our
experiments evolved at least in their recent evolutionary history
as hermaphrodites that would only occasionally outcross with
males and thus are adapted to a far lower frequency of mating
(Theologidis et al., 2014). The potential of MMP to enhance
survival (King et al., 2016; Martinez et al., 2016; Kloock et al.,
2020) as well as offspring production (Koehler et al., 2013) has
been shown repeatedly. We expand on this work by investigating
whether MMP can mitigate the costs that individuals pay for
mating with males. So far, these effects have mainly been
considered at the population level. However, the role of MMP
might have different effects on individual behaviors of different
sexes in different life stages (McLean et al., 2018).

A potential explanation for the observed phenotype could be
mechanical gut integrity, which can be different between males
and females as observed in Drosophila (Regan et al., 2016). The
pathogen used here, S. aureus, is known to accumulate in the
worms’ gut and to kill worms by distention of the intestinal
October 2021 | Volume 11 | Article 713387
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lumen (Sifri et al., 2003). If gut integrity would thus be more
easily damaged in C. elegans females, but not in males (personal
observation, Figure S3), this could serve as a potential
explanation as to why females are more harshly affected by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
pathogenic infection with S. aureus. The potentially disrupted
gut integrity by S. aureus infection could further be weakened by
mechanical penetration by males, which can shorten
hermaphrodites’ lifespan (Gems and Riddle, 1996). Whether
A B

D

E

C

FIGURE 1 | Survival of different sexes and mating treatments after 24-h pathogen infection (A, B) and lifelong (C–E). (A) Without MMP, females suffer more
from mating than males do, while males survive better overall. (B) With MMP, females are suffering more from mating, while males survive better overall.
(C) When only ever being exposed to food (in white), lifetime mated females survive worse than any other females, while only lifetime mated males survive worse
than short-term mated males. (D) After pathogen infection (in purple) without MMP, lifetime mated females survive worse than short-term mated females, which
survive worse than unmated females. Male survival was not affected by mating, while males live overall longer than females do. (E) After pathogen infection with
MMP (in green), lifetime mated females survive worse than short-term mated females, while males are not affected by mating. (A, B) Boxplots display four
biological replicates and three or four technical replicates with 50 worms on each plate. (C–E) Each curve represents the Kaplan–Meier survival estimate for
three or four technical replicates and four or five biological replicates with 20 (C) or 10 worms (D, E) on each plate. Vertical lines indicate when worms were
transferred to a new bacterial diet.
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this hypothesis holds true remains to be tested. Although it is
possible that due to different gut structures the absolute numbers
of protective and pathogenic microbes might differ, we do know
that both sexes benefit from protection and due to proliferation
in the gut and colonization levels in both sexes are high (Figure
S5). Although females carry significantly higher protective
microbe loads than males (LM, Sum Sq = 24.552, Df=1,
F-value=17.6003, p<0.001), females are 30% larger than males
(Riddle et al., 1997), which is proportional to the differences seen
in bacterial loads (Figure S5). We thus would expect levels of
protection to be similar.

In the absence of hermaphrodites, C. elegans males show
highly reduced lifespan (Gems and Riddle, 1996; Shi et al., 2017).
The presence of only the male pheromones was sufficient to
shorten hermaphrodite (Maures et al., 2014) and male lifespan
(Shi et al., 2017). We can, however, only observe this effect for the
food-alone treatment (Figure 1C) when lifetime mated males
survive significantly longer than unmated or short-term mated
males (Figure 1C and Table S2). This life-shortening effect of
single-housed males could not be observed after pathogen
infection with or without MMP (Figures 1D, E). Both the
infection with S. aureus and mating reduce the amount of
lipids in the worm (Shi et al., 2017; Dasgupta et al., 2020).
Possibly the lack of male lifespan reduction in single sex plates
after pathogen infection could be linked to this lipid reduction,
even though further studies are needed to determine this effect.

The act of mating is costly and life shorting (Gems and Riddle,
1996), independent of offspring production, as here short-term
mated females that also produce costly offspring do not have lower
survival than unmated females over a lifetime (Figures 1C–E)
(Maures et al., 2014; Shi andMurphy, 2014). In C. elegans, the life-
shortening effect is not solely due to offspring production, as even
without physical contact or successful mating, hermaphrodites
showed reduced lifespan (Maures et al., 2014). During mating,
males transfer seminal fluids alongside sperm, which reduces
female life in C. elegans and other species and can leave females
immune-suppressed post mating (Rolff and Siva-Jothy, 2003).
Furthermore, the presence of MMP is able to dampen the costs
that females have to pay by being mated with males. Our results
reflect a wealth of findings in other species that has shown mating
to be costly, such as in Drosophila (Fowler and Partridge, 1989) or
birds (Liker and Székely, 2005).

Male and Female Behavior Is Linked to the
Presence of the Other Sex
Females and males respond differently to infection and also
display different behavior in the face of infection. Without MMP,
those plates with both sexes display higher activity than those
plates with unmated or short-termmated individuals (GLM, X2 =
197.14, df=5, p<0.001, Figure 2B), while with MMP, unmated
individuals showed significantly decreased activity in
comparison to unmated or short-term mated individuals
(GLM, X2 = 47.812.14, df=2, p<0.001, Figure 2C). As this
increased activity for lifetime mating worms can be a hint to
increased avoidance behavior, which is itself a mechanism to
respond to pathogenic infection (Pees et al., 2017), we also
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
assessed the proportion of missing worms during pathogen
infection (Figures 2D, E) and over a lifetime (Figures 2F–H).
Males went missing with a higher proportion than females
during pathogen infection independent of MMP (without
MMP: GLM, X2 = 6.4367, df=1, p=0.04002 and with MMP:
GLM, X2 = 37.903, df=1, p<0.001) and over a lifetime on food
alone (GLM, X2 = 195.959, df=1, p<0.001) and with MMP (GLM,
X2 = 160.466, df=1, p=0.002), while the difference between the
sexes was not significant after pathogen infection without MMP
(GLM, X2 = 2.6875, df=1, p=0.10).

The activity level was mainly determined by the mating status,
while the proportion of missing worms was predominantly
determined by sex (Figure 2). Infected females might not be
able to move around as much as healthy females, as only healthy
females and males on food alone show effects of mating
(Figure 2). Furthermore, due to their evolutionary history as
hermaphrodites, females may have a decreased drive to look for
mates, as mate searching would be largely unnecessary in wild-
type populations of self-fertilizing hermaphrodites. The mating
status also affected the proportion of missing worms in opposite
directions in lifetime mated worms on food: females would be
missing with a higher proportion with males present while males
would stay with a higher proportion with females present. A
parsimonious explanation is that males exhibit higher mate
searching behavior, and this is increased when females are not
present (Lipton et al., 2004). The proportion of missing worms
observed here does not appear to be a consequence of pathogen
avoidance behavior (Pees et al., 2017), as this behavior is not
observed for pathogen infection without MMP but might instead
be dependent on the population structure on the plate.

MMP Enables Females to Invest in
Offspring Production During
Pathogenic Infection
Pre-mated females and non-pre-mated females did not start to
produce offspring at the same time (Figure 3). Without MMP,
pre-mated females did not start to produce offspring during
pathogen infection, while pre-mated females did (Wilcoxon rank
test (WRT), W=57.5, p=0.004, Figure 3A). In the presence of
MMP, all females start producing offspring at the same time
(WRT, W=18, p=1, Figure 3B), independent of their pre-mating
status. This pattern could indicate that if females have not yet
been mated prior to pathogen infection without MMP, they do
not pursue offspring production during infection. They might
potentially put reproduction on hold during less favorable
conditions and resume reproduction once conditions are more
favorable. This can be observed, when over a lifetime, pre-mated
and not pre-mated females do not differ in the length of offspring
production on each bacterial diet (Figure S4). This is in contrast
to previous findings that show fecundity compensation in
response to S. aureus infection in C. elegans (Pike et al., 2019).
This is likely because we only scored for the presence/absence of
offspring at a set time point and thus would not be able to detect
any change of timing or amount in offspring production, as was
described for fecundity compensation in this system of C. elegans
and S. aureus (Pike et al., 2019).
October 2021 | Volume 11 | Article 713387
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CONCLUSION

In conclusion, female survival decreases with increasing mating
with males, while male survival was unaffected by mating after
pathogen infection. The two sexes benefit from MMP differently.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
With MMP, females invest more energy into egg production,
while males invest more into mate searching behavior. These
results are likely to be enhanced in the results we see here as
females were artificially feminized, having evolved as
hermaphrodites. Furthermore, MMP is able to dampen the
A B

D E

F G H

C

FIGURE 2 | Female and male behavior is linked to the presence of the other sex. (A) Picture of three pathogenic plates with different activity levels from low to high.
(B) Without MMP after pathogen infection, plates with lifetime mated worms of both sexes had a higher proportion of worms at the edge of the plate. (C) With MMP
after pathogen infection, plates with lifetime mated worms of both sexes have a higher proportion of worms at the edge of the plate. Proportion of missing worms of
different sexes and mating treatments either during pathogen infection (D, E) and over lifetime (F–H, only the last time point is plotted). (D) During pathogen infection
without MMP, a higher proportion of males are missing than of females. (E) During pathogen infection with MMP, more males went missing than females. (F)
Proportion of missing worms on food over lifetime. Females showed lower proportion of missing worms than males. (G) Proportion of missing worms without MMP
over lifetime with no differences detected. (H) Proportion of missing worms with MMP over lifetime, where males have a higher proportion of missing worms than
females do. (B–H) Boxplots represent the mean ± the standard error of the mean of four or five biological replicates and three or four technical replicates with 50
(B–E), 20 (F), or 10 worms (G, H) on each plate. (F–H) Changes in the proportion of missing worms over time can be found in Figure S2.
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costs that females pay by being mated by males. This study
highlights that in spite of consistent population level responses to
defensive mutualists, individual variation depends heavily on
diet, sex, mating status, and interaction of these factors. Even
though defensive mutualists provide benefits to the host, for
females, mating comes at a high cost.
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FIGURE 3 | Differences in timing of offspring production during pathogen infection without (A) and with (B) MMP (A). During pathogen infection but without MMP,
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females are producing offspring. Boxplots represent three or four technical replicates with 25 females and 25 males on each plate.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fcimb.2021.
713387/full#supplementary-material

Supplementary Figure 1 | Experimental procedure. Starved worms were
transferred to new NGM plates seeded with food 2.5 days before bleaching to allow
for egg laying. Worms were then bleached as described previously (Stiernagle,
2006) and left in M9 buffer overnight to allow for larvae to hatch. Simultaneously, the
bacteria on which worms were raised to L4 stage were grown in overnight cultures:
Either E. faecalis overnight in 25ml of Todd-Hewitt Broth (THB), or food in 25ml of
Lysogeny broth (LB), both at 30 °C in a shaking incubator. Subsequently, 6cm
plates with NGM medium were inoculated with either 400µl of food or 200µl of food
mixed with 200µl of E. faecalis. Plates with freshly inoculated bacteria were dried at
room temperature before approximately 600 L1 worms were added to each NGM
plate and transferred to 20°C for 42h. At the same time, a liquid culture of S. aureus
was grown in THB from frozen stock, while food was grown in LB. Both cultures
were incubated under shaking conditions at 30°C overnight. The following day, 20µl
of the S. aureus overnight culture was pipetted onto 3cm on Tryptone Soy Broth
agar (TSB) plates. Simultaneously, 6cm NGM plates were inoculated with 150µl
food. These plates were used to split worms into groups of only females, only males
or 50:50 mixed for 6-8h (time point when the first eggs appeared on the plate) as
outlined in Table S1. For S. aureus infection, 50 worms were picked on pathogen
exposure plates and left at 25°C for 24h. Survival was scored after 24h with all alive
and dead worms present on the plates counted. Worms were considered dead if
they do not respond to touch with a platinum wire pick. After survival was scored,
10 worms were transferred to 3cm NGM plates seeded with 150µl food and placed
at 25°C. Worms were then picked to new plates every 24h until no offspring was
produced anymore, to allow for more accurate tracking of individuals. Survival was
scored every day until all worms were dead. The lifelong survival assay on food
alone was performed as described above, with a few adjustments. The
experimental procedure was carried out at 20 °C, and worms were split only
females, only males or 50:50 mixed when worms were 46h old. The mixed
treatment only consisted of “Females only with Males only” and “50:50 Females with
50:50 Males”. Once eggs occurred on the plates, worms were transferred to 6cm
NGM plates inoculated with 150µl of food.

Supplementary Figure 2 | Livelong proportion of missing worms on food (A),
with microbe-mediated protection (B) and without of microbe-mediated protection
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
(C). (A) Females showed lower proportion of missing worms than males on food
alone (in white). (B) Proportion of missing worms after pathogen infection (in purple)
without MMP over lifetime with no differences detected. (C) Proportion of missing
worms with MMP (in green) over lifetime, where males have a higher proportion of
missing worms than females do. (A–C) Each point represents the mean ± the
standard error of the mean of four or five biological replicates and three or four
technical replicates with 20(A) or 10 worms (B, C) on each plate.

Supplementary Figure 3 | Females show hints of lost gut integrity, while male gut
integrity is still intact. Worms that were fed food, coloured with a blue food dye
(following a previously described protocol (Gelino et al., 2016). If gut integrity is still
fully intact, blue dye can only be seen in the intestine (as in the lower worm – a male),
while if the gut integrity is out of balance, the blue dye can be found in the whole
worm body cavity (as in the upper worm – a female).

Supplementary Figure 4 | Over a lifetime no difference between pre-mated and not
pre-mated females for the days of offspring production can be observed independent
on whether worms were raised on food (in orange), infected with the pathogen in the
absence (in purple) or presence (in green) of MMP. (A, B) Each point represents the
mean ± the standard error of the mean of three or four technical replicates.

Supplementary Figure 5 | With MMP, females are colonized by more E. faecalis
than their male counter parts. After 24h infection with S. aureus, worms were filter tip
washed as described before (Kloock et al., 2020) to remove all externally attached
bacteria. Consequently,wormswere crushedopen, and the gut contentwas platedon
E. faecalis selective medium (TSA + rifampicin), to only count E. faecalis colonies. The
difference between the two sexes is significant with a linear model (LM) (LM, Sum Sq =
24.552,Df=1,F-value=17.6003,p=4.99x10-5),whileneither thematingstatusnor an
interaction of the two show significant differences (both p>0.05).

Supplementary Table 1 | Mating Treatments: Three different mating treatments
(Unmated, Short-term mated and Lifetime mated) were set up for both sexes
(Female in Red and Male in Blue), which were either single sex plates for each sex
(Females only or Males only) or a 50:50 mixed population. Worms were left on these
mating plates for 6-8h, before three different mating treatments were set up
(unmated, short-term mated, and lifetime mated, the darker the colour the longer
the mating period) for each sex.

Supplementary Table 2 | Summary of all statistical results. The following
abbreviations were used: U, unmated; STM, short-termmated; LTM, Lifetimemated.
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