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Distribution of tetraether lipids 
in sulfide chimneys at the Deyin 
hydrothermal field, southern  
Mid-Atlantic Ridge: Implication  
to chimney growing stage
Huaiming Li1, Xiaoxia Lü2, Chunhui Tao1, Tianwei Han2, Pengju Hu2, Guoyin Zhang1, Zenghui 
Yu3, Chunming Dong4 & Zongze Shao4

This study presents analysis of four chimney samples in terms of glycerol dialkyl glycerol tetraether 
lipids (GDGTs), representing different growing stages of sulfide chimneys at the Deyin hydrothermal 
field, the southern mid-Atlantic ridge. The modified Bligh-Dyer method was used for lipid extraction 
and purification. GDGTs were analyzed with an Agilent 1200 series liquid chromatograph and 6460A 
triple quadrupole mass spectrometer. Our results showed that the intact polar GDGTs were more 
abundant than the core GDGTs in the 4 samples. The intact polar isoprenoidal GDGT-0 was the dominant 
composition (>70% of isoprenoidal GDGTs), indicating input of thermophilic Euryarchaeota. Most 
branched GDGTs were likely originated from the in situ thermophilic bacteria. However, the intact 
polar GDGTs in the sample at the late growing stage was similar to that in normal marine sediments, 
suggesting that the archaea mainly came from the planktonic Thaumarchaeota input. Our results 
suggested that the ratio of H-GDGTs to iGDGTs could be considered as a proxy to differentiated growing 
stages of a chimney. This study shed light on how to assess hydrothermal venting and sulfide chimneys 
in deep marine environments with a biomarker method in terms of different groups of GDGTs.

Hydrothermal sulfide chimneys growth may lead to variations in mineralogy and precipitation1. Relative abun-
dance of Cu and Zn in a chimney may indicate different growing stage: Zn-rich usually for the mature stage 
with relative low fluids temperature (<300 °C), and Cu-rich for the early stage with high fluids temperature 
(>~300 °C)1,2. Hydrothermal venting and sulfides chimney growing processes may lead to a reduced environ-
ment rich in compounds such as H2, CH4, H2S and metal ions. Correspondingly, the microbial communities in 
a hydrothermal venting field are found to be different from those harbors in normal marine environments3,4. 
Furthermore, different growing stages of a chimney result in different microbial communities. This provides a 
new insight to assess sulfide chimneys with a biomarker method.

Lipid biomarkers can provide crucial insights into the complex community structure of microorganisms and 
their metabolic status5–8. Glycerol dialkyl glycerol tetraether (GDGT) lipids (Fig. 1) are often used as biomarkers 
for archaea. In the last decades, the GDGTs in sedimentary environments have been used as a robust method 
to trace the paleo- marine and lacustrine environments and climate change9–12. Intact polar lipids (IPLs) refer 
to the lipids with polar head groups such as hexose and/or phosphate groups (Fig. 1)13,14, which are presumably 
transformed by cleavage of the head group into recalcitrant core lipids15–17. Usually, the intact IPLs are used to 
trace the living microbial organisms14. Recently, the glycol-IPLs were found more stable than what we presumed 
before, and the degradation kinetics of glycol-IPLs remains to be constrained, while the phospho-IPLs degraded 
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rapidly with the death of the source organism18,19. Previous studies suggest that the phospho-IPLs are more appli-
cable than the glyco-IPLs to trace the living source organisms19. The core GDGTs (C GDGTs) were detected in 
some active or inactive sulfate chimney samples20,21. Interestingly, the H-shaped GDGTs (H-GDGTs) were found 
to be rich in hydrothermal field and hot springs21–23. H-GDGTs have been proposed as indicators of thermo-
philes20,21,24–26 although they were also detected in some marine and lacustrine sediments27,28.

In this paper, we analyzed the lipids distribution in sulfide chimneys to distinguish the origins of lipids, and 
further discussed the lipid compositions at different growing stages of sulfide chimneys at the Deyin hydrother-
mal field (DHF). The DHF, with the depth of 2700 m, is located at the central ridge valley of the segment between 
Cardno and St. Helena Transform Faults, southern Mid-Atlantic Ridge (SMAR) (Fig. 2). Chimney samples were 
collected with a TV-Grab instrumented in the Chinese Dayang Cruise 26 (CDC26) for determining intact and 
core lipids. Those samples were immediately frozen at −80 °C after collection. The mineralogical characteristics 
of the samples were described in detail by Wang et al.29. In this study, four chimney samples (CS01, CS02, CS03, 
and CS04) were selected for analysis of intact and core lipids. The CS01 contains mainly pyrite and sphalerite 
suggesting low-temperature fluids mixing with the sea water at the early stage of a chimney growth. The CS02 
is rich in pyrite and chalcopyrite, suggesting high-temperature with concentrated spray fluids mixing with sea 
water at the maturity stage of chimney growth. Another possibility is that the sample might be collected from the 
inner part of a chimney channel. The CS03 contains mainly pyrite, indicating the maturity stage of the chimney 
growth with a relatively low temperature. The CS04 has mainly amorphous oxides, usually shown in a long-term 
oxidizing environment in seawater at the extinct stage of a chimney.

Figure 1.  Structures of core and intact polar GDGTs.
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Results
Distributions of core lipids.  Almost all the C GDGTs could be detected in the four samples, but the concen-
trations varied. The concentration of C GDGTs was the highest in the CS04, followed by the samples from CS01, 
CS02 and CS03 (Supp. Table 1). Among all the detected C GDGTs, the iGDGTs and H-GDGTs were the predom-
inant compositions except in the CS04, and the relative abundance of bGDGTs was the lowest (Fig. 3a). The frac-
tional distribution of individual composition showed different in the four samples. The fractional distributions 
of normal iGDGTs and H-GDGTs were similar in the samples from CS02 and CS03, where the H-GDGT-0 was 
the predominant composition, followed by iGDGT-0 (Fig. 3b). In the CS01, the iGDGT-0 was the predominant 
composition followed by H-GDGTs. However, the crenarchaeol (iGDGT-5) and regio-isomer crenarchaeol could 
not be detected (Fig. 3b). The concentrations of H-GDGTs compositions were lower in the CS04 than in other 
samples. The distribution of iGDGTs was similar to those in a normal marine environment with relatively higher 
abundances of iGDGT-0 and iGDGT-5 (Fig. 3b). The predominant compositions of bGDGTs were bGDGT-I, 
bGDGT-II and bGDGT-III in the three samples, CS01, CS02 and CS03, while bGDGT-IIb was the predominant 
composition in the CS04 (Fig. 3c).

Distribution of IPLs.  Concentrations of the intact polar GDGTs (IPLs) were lower than those of C GDGTs. 
Concentration of the IPLs was the highest in the CS01, and followed by the samples from CS04, CS03 and CS02 
(Supp. Table 1). The intact polar iGDGTs were the predominant compositions at all the samples. Intact polar 
bGDGTs were not detected from the CS01 while the intact polar H-GDGTs were identified from the CS02 
(Fig. 4a). The intact polar iGDGT-0 was the predominant composition in the CS02, the CS03 and the CS04, while 
the intact polar iGDGT-1 and iGDGT-0 were the predominant compositions in the CS03. Interestingly, the intact 
polar crenarchaeol was detected in the CS01 and the CS03 (Fig. 4b). The components of the intact polar bGDGTs 
in the CS04 were mainly bGDGT-III, bGDGT-IIIb, bGDGT-IIIc, bGDGT-II and bGDGT-IIb, which were dif-
ferent from those in CS02 and the CS03 samples that bGDGTs were predominantly of bGDGT-I, bGDGT-II and 
bGDGT-III (Fig. 4c, Supp. Table 1).

Discussion
Origin of GDGTs.  Isoprenoid GDGTs.  The acyclic GDGT-0 is a common archaeal membrane lipid which 
may originate from methanogens30,31, mesophilic Group I Crenarchaeota32 and thermophilic Crenarchaeota 
and Euryarchaeota33. On the contrary, the crenarchaeol was thought to be mainly from ammonium-oxidizing 
Thaumarchaeota32,34,35. GDGT1-3 in most environments originates from Crenarchaeota, Thaumarchaeota and 
some Euryarchaeota30,36–38. In an environment with anaerobic oxidation of methane, especially where GDGTs 1-2 
are dominant over the crenarchaeol, methanotrophic archaea of the ANME-1 phylogenetic cluster are considered 

Figure 2.  Sampling sites from SMAR (Created by the Generic Mapping Tools (GMT version 5.4.2), from http://
gmt.soest.hawaii.edu/).

http://gmt.soest.hawaii.edu/
http://gmt.soest.hawaii.edu/
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as an important source of the GDGTs-1-330,39–41. Recently, IPL distribution was found to be consistent with gene-
based surveys, suggesting that the IPLs may be a good indictor to trace the microbial communities5,8.

The relative abundances of the intact polar GDGTs in the four samples appeared significantly different. The 
abundance of GDGT-1-3 is the highest in the CS03, up to 65.2% of intact polar GDGTs. The GDGT-1 was the pre-
dominant composition. In the CS01, GDGT-0 was the dominant composition, up to 98.6% of the detected intact 
polar GDGTs. In the CS02, GDGT-0 was the dominant composition, followed by crenarchaeol and GDGT-1. In 
the CS04, the intact polar iGDGT-0 was the dominant composition, followed by the intact polar crenarchaeol, 
GDGT-1, 2, regio-isomer crenarchaeol and GDGT-3. Interestingly, the regio-isomer was detected only in the 
CS04. Different distribution of the intact polar GDGTs in the four samples suggested the different microbial 
sources. The 16S rRNA analysis suggests that the archaea are the dominant microbial groups in the CS01 and 
the CS03 and the bacteria were the dominant group in the CS02 (Shao et al., unpublished data). In the CS03, 

Figure 3.  Fractional distribution of C GDGTs.

Figure 4.  Fractional distribution of intact polar GDGTs.
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Euryarchaeota (17%) and Deltaproteobacteria (14%) were the dominant groups. In the CS01, the most abun-
dant groups were also affiliated to the phylum Euryarchaeota (54% of total sequence), including Archaeoglobus 
(23%), genus Methanocaldococcus (16%) and an unclassified genus (10%) within the order Thermococcales, 
as well as the phylum Aquificae, Epsilonproteobacteria and Crenarchaeota. In the CS02, the dominant groups 
were Alphaproteobacteria (12–23%) and Nitrospirae (12%) (Shao et al., unpublished data). Therefore, the intact 
polar GDGT-0-3 in the CS01 and the CS03 mainly originated from Euryarchaeota, especially in the CS01 where 
Euryarchaeota were the dominant microbial groups. The highest GDGT-1-3 in the CS03 might be due to the 
higher temperature in the dominant vent. On the contrary, bacteria were the predominant microbial groups in 
the CS02, and the composition of intact polar GDGTs was consisted with the results in an inactive silica-barite 
chimney from Loki’s Castle low-temperature venting field at the Arctic Mid-Ocean Ridge42 where the GDGTs 
were deduced from thermophilic Crenarchaeota42, which suggested that the GDGTs in the CS02 may be produced 
from thermophilic Crenarchaeota regardless of the hydrothermal venting temperature or the hydrothermal activ-
ity active or not. The special distribution of intact polar GDGT-1-3 might be a proxy to trace the dominant vent. 
The distribution of the intact polar GDGTs in the CS04 was similar to those in a normal oceanic environment, 
suggesting that the planktonic Thaumarchaeota may be the predominant composition of the microbial commu-
nities as well as the thermophilic Euryarchaeota.

H-shaped GDGTs (H-GDGTs).  H-shaped GDGTs were found to originate from the Euryarchaeota, including 
Methanothermus fervidus24, Pyrococcushorikoshii25, Thermococcales26, Methanobactertherium mautotrophicus43, 
and Aciduliprofundum boonei27, in hot springs and hydrothermal venting environments26,44,45. The H-GDGTs 
were generally considered to originate from thermophilic archaea21,42 though they could be detected in marine 
and lacustrine sediments with a low concentration (<6%)27,28. In the four samples, most intact polar H-GDGTs 
could not be detected due to the low organic carbon content. Concentrations of core H-GDGTs were as high as 
those of C GDGTs except in CS04 where H-GDGTs only occupied 10% of C-GDGTs (Supp. Table 1). Our results 
suggested that the H-GDGTs mainly were originated from the thermophilic archaea and the low proportion of 
H-GDGTs in CS04 might be due to dilution of the planktonic archaea.

Branched GDGTs.  Branched GDGTs commonly existed in soils, peats, lacustrine sediments and marine sed-
iments46–50 and were considered to originate from terrigenous Acidobacteria. However, in situ production in 
aquatic and sedimentary environments could not be excluded51–54. The bGDGTs were high in CS02, CS03 and 
CS04, and low in CS01 (Figs 3 and 4), consistent with the 16S rRNA result (Shao et al., unpublished data), which 
suggested the in situ hydrothermal bacteria contribution to bGDGTs. This finding is consistent with the results in 
Lost City hydrothermal field21.

Microbial communities at the different growing stage of a sulfide chimney.  The iGDGTs com-
positions were different in the four samples corresponding to different stages of a sulfide chimney growth. At the 
early stage, the fluid temperature was low due to the thoroughly mixing of hydrothermal fluids with seawater. At 
the maturity stage, the chimney was formed completely and the venting fluids could not mix well with the sea-
water thoroughly, which led to the fluid temperature high. The iGDGTs in CS01 sample at the early stage of the 
chimney growing were mainly composited by GDGT-0 and H-GDGTs with richer H-GDGTs (Fig. 3b, Table 1). 
CS02 and CS03 samples, at the maturity stage of the chimney growth where H-GDGTs were more abundant 
than iGDGTs, especially in CS02. Interestingly, the distribution of iGDGTs in CS04 was similar to that in normal 
marine sediment that GDGT-0 and GDGT-5 were the predominant composition of iGDGTs. This could be due 
to the fact that the archaea in water column deposited on the sulfide after the collapse of the chimney. Our result 
concluded that the iGDGTs composition could be as an indicator to the growing stage of a sulfide chimney.

Implications for GDGTs-based proxies.  The TEX86 proxy was proposed to trace the sea surface tempera-
ture on the assumption that iGDGTs primarily originated from archaea lived in the water column55. Temperatures 
derived from the TEX86 at the four sites are 17.2 °C (CS02), 31.3 °C (CS01), 11.5 °C (CS03) and 31.2 °C (CS04) 
respectively. The mineralogical analysis showed that the sulfides were rich in Fe-Cu in the CS02, Fe-Zn in the 
CS01, and Fe in the CS03. Marcasite, a mineral in a low-temperature and high acidic condition56, was found 
only in CS01 sample. Temperature of the hydrothermal fluid in the CS01 was estimated to be lower than 350 °C. 
Temperatures of the hydrothermal fluid in the CS02 and the CS03 were estimated to be higher than 350 °C56. This 
suggests that the temperature obtained by TEX86 proxies represents archaea living temperature but not the tem-
perature of the hydrothermal venting fluids.

Occurrence of the H-GDGTs was proposed to be related to hydrothermal activity or hot springs. In hot 
springs from Yellowstone National Park, relative abundance of the H-GDGTs to the total iGDGTs was high in 
an acidic environment57 and was considered as another proxy for acidic environments. The relative abundance 
of H-GDGTs to total iGDGTs was high in the SMAR hydrothermal field except the hydrothermal oxide (CS04) 
(Table 1). This suggests that the abundance of H-GDGTs to total iGDGTs (>40%) might be as a proxy of hydro-
thermal activity. In addition, the relative abundance of H-GDGTs to iGDGTs in the four sites decreased according 
to the order of CS02, CS01, CS03 and CS04 where the temperature of hydrothermal fluids obtained from the 

Sample sites CS02 CS01 CS03 CS04

H-GDGTs/(H-GDGTs + iGDGTs) 50.1 45.2 46.7 9.3

Table 1.  The relative abundance of H-GDGTs to total isoprenoidal GDGTs (in %).
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mineral analysis decreased in sequence (Table 1)29, indicating that it could be used to trace the temperature of 
hydrothermal fluid at different growing stage of a chimney (Fig. 5). Interestingly, we found that the concentrations 
of GDGTs (including normal GDGTs and H-GDGTs) were higher in the CS01 and the CS04 than in the CS02 
and the CS03 (Supp. Table 1), suggesting that archaea were more abundant in hydrothermal venting fields with a 
low temperature.

Conclusions
Three groups of C GDGTs and intact polar GDGTs were identified in the four samples from the hydrother-
mal field in the southern Mid-Atlantic Ridge (SMAR). Our analysis showed that isoprenoid GDGTs (includ-
ing H-GDGTs) were the predominant compositions in both the C GDGTs and the intact polar GDGTs. The 
intact polar iGDGT-0 was the dominant composition in the CS01, the CS02 and the CS03 due to the ther-
mophilic Euryarchaeota input. Crenarchaeol was detected in the CS02 and CS03 because of the thermophilic 
Thaumarchaeota input. The difference in the GDGTs distribution pattern was likely due to the different microbial 
communities at the four sites. The distribution of intact polar GDGTs in the CS04 different from those in other 
three samples was similar to that in normal ocean sediments, indicating planktonic Thaumarchaeota input. Our 
results indicated that most bGDGTs originated from the in situ thermophilic bacteria. The relative abundance 
of H-shaped GDGTs to isoprenoidal GDGTs was high (>45%) in the hydrothermal field, which suggested the 
value of H-GDGTs/iGDGTs could be used to infer the temperature of hydrothermal fluid and also as an index to 
different growing stage of a chimney.

Methods
Lipid extraction and purification.  Aliquots of samples were extracted using a modified Bligh-Dyer 
method58,59: firstly with a mixture of K2HPO4 (50 mmol/l, pH 7.4): MeOH: DCM = 4: 10:5 ultrasonically for 
15 min 4 times, and then with the DCM ultrasonically 2 times. All the extracted liquids were combined into a 
separate funnel, rinsed with distilled ionic water after the DCM. The DCM phases containing the extracted lipids 
were collected into a round-bottomed flask and carefully evaporated to dry under a nitrogen stream below 40 °C. 
The total lipid extract (TLE) was further fractionated in a vial silica gel column using a slightly modified version 
of the separation procedure developed by Oba et al.60 and Tierney et al.12. TLEs were eluted to provide the portion 
containing the core GDGTs(C GDGTs) with hexane: EtOAc (3: 1) and the portion containing the IPL compounds 
with MeOH. The portion for analyzing the C GDGTs was further dried with N2 gas and stored at −20 °C until 

Figure 5.  The correlation of lipids composition with chimney growing stage.



www.nature.com/scientificreports/

7ScIentIfIc ReporTS |  (2018) 8:8060  | DOI:10.1038/s41598-018-26166-1

analysis. The portion for analyzing the IPLs compounds was subjected to the acid-catalyzed hydrolysis to cleave 
polar head groups by adding 20 mL of 5% HCl in MeOH and refluxing heating for 2.5 h. The solution was cooled 
to room temperature and adjusted the pH value to 5 with addition of 1 mol/l KOH in MeOH, and then added 
bi-distilled water to a volumetric ratio of H2O to MeOH at 1:1. The mixture was washed six times with the DCM, 
and then dried with N2 gas, and then stored at −20 °C for analysis.

HPLC/MS analysis.  Aliquot of the prepared samples were dissolved in 300 μl hexane: isopropanol (99:1), 
with C46 glycerol trialkyl glycerol tetraether (GTGT) added as internal standard. GDGTs were analyzed using 
an Agilent 1200 series liquid chromatograph and 6460A triple quadrupole mass spectrometer equipped with 
an autosampler and ChemStation manager software. An aliquot of sample (10–30 µl) was injected and separa-
tion was achieved with an Alltech Prevail Cyano column (150 mm × 2.1 mm, 3 µm; Grace, Deerfield, IL, USA). 
The elution gradient followed Schouten et al.61 with some modifications. GDGTs were eluted isocratically in the 
first 5 min with A/B 9:1, where A = hexane and B = hexane: isopropanol (9:1). The following linear gradient was 
then used: 90/10 A/B to 82/18 A/B from 5 to 45 min, followed by 100% B (10 min) to wash the column and then 
90/10 A/B to equilibrate it. GDGTs were detected using selected ion monitoring (SIM), targeting m/z 1302, 1300, 
1298, 1296, 1292, 1050, 1048, 1046, 1036, 1034, 1032, 1022, 1020, 1018, 653, and 744. Relative abundances were 
determined by peak area integration of [M+H+ in the extracted ion chromatogram. The relative abundance of an 
individual GDGT is defined as percentage of total iGDGTs or bGDGTs.
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