
J Food Biochem. 2022;00:e14259.	 wileyonlinelibrary.com/journal/jfbc	 	 | 1 of 15
https://doi.org/10.1111/jfbc.14259

© 2022 Wiley Periodicals LLC.

Received:	11	March	2022  | Revised:	30	April	2022  | Accepted:	10	May	2022
DOI: 10.1111/jfbc.14259  

R E V I E W

A comprehensive review on modulation of SIRT1 signaling 
pathways in the immune system of COVID- 19 patients by 
phytotherapeutic melatonin and epigallocatechin- 3- gallate

Vineeta Chattree  |   Kamana Singh |   Kanishk Singh |   Aayush Goel |   
Amritaparna Maity |   Asif Lone

Department of Biochemistry, Deshbandhu 
College, Delhi University, New Delhi, India

Correspondence
Vineeta Chattree, Department of 
Biochemistry, Deshbandhu College, Delhi 
University, Kalkaji, New Delhi 110019, 
India.
Email: vkashyap@db.du.ac.in

Abstract
SARS-	CoV-	2	infection	has	now	become	the	world's	most	significant	health	hazard,	with	
the	World	Health	Organization	declaring	a	pandemic	on	March	11,	2020.	COVID-	19	
enters	the	 lungs	through	angiotensin-	converting	enzyme	2	 (ACE2)	receptors,	alters	
various signaling pathways, and causes immune cells to overproduce cytokines, re-
sulting	in	mucosal	inflammation,	lung	damage,	and	multiple	organ	failure	in	COVID-	19	
patients.	Although	several	antiviral	medications	have	been	effective	in	managing	the	
virus, they have not been effective in lowering the inflammation and symptoms of 
the	illness.	Several	studies	have	found	that	epigallocatechin-	3-	gallate	and	melatonin	
upregulate	sirtuins	proteins,	which	leads	to	downregulation	of	pro-	inflammatory	gene	
transcription	and	NF-	κB, protecting organisms from oxidative stress in autoimmune, 
respiratory,	and	cardiovascular	illnesses.	As	a	result,	the	purpose	of	this	research	is	to	
understand more about the molecular pathways through which these phytochemicals 
affect	COVID-	19	patients'	impaired	immune	systems,	perhaps	reducing	hyperinflam-
mation and symptom severity.

Practical applications
Polyphenols are natural secondary metabolites that are found to be present in 
plants.	EGCG	a	polyphenol	belonging	to	the	flavonoid	family	in	tea	has	potent	anti-	
inflammatory and antioxidative properties that helps to counter the inflammation 
and oxidative stress associated with many neurodegenerative diseases. Melatonin, 
another strong antioxidant in plants, has been shown to possess antiviral function and 
alleviate oxidative stress in many inflammatory diseases. In this review, we propose 
an	alternative	therapy	for	COVID-	19	patients	by	supplementing	their	diet	with	these	
nutraceuticals that perhaps by modulating sirtuin signaling pathways counteract cy-
tokine storm and oxidative stress, the root causes of severe inflammation and symp-
toms in these patients.
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1  |  INTRODUC TION

The	new	Coronavirus	2019	(COVID-	19)	illness	caused	by	the	Severe	
Acute	Respiratory	Syndrome-	Coronavirus-	2	(SARS-	CoV-	2)	was	dis-
covered	 in	December	 2019	 in	 the	 Chinese	 city	 of	Wuhan.	 SARS-	
CoV-	2,	an	enveloped	single-	stranded	positive	ribonucleic	acid	virus	
shows	82%	similarity	in	its	genome	sequence	with	SARS-	CoV-	1	(Lu	
et al., 2020)	 and	 52%	 similarity	 in	 its	 genome	 sequence	with	 the	
Middle	 East	 Respiratory	 Syndrome	 Coronavirus	 (MERS-	CoV)	 (Lu	
et al., 2020).

Coronavirus symptoms range from mild to severe, including 
fever, cough, cold, sore throat, headache, chest discomfort, short-
ness of breath, and viral pneumonia. Patients showing moderate 
to	 severe	 COVID-	19	 symptoms	 suffer	 from	 septic	 shock,	 acute	
respiratory	 distress	 syndrome	 (ARDS),	 and	multiple	 organ	 failures	
(Harapan	et	 al.,	2020).	 These	patients'	 bodies	 are	unable	 to	elimi-
nate the virus, and their immune systems are dysregulated, resulting 
in the uncontrolled secretion of cytokines that lead to uncontrolled 
systemic	inflammation	(Ragab	et	al.,	2020).	Oxidative	stress	further	
enhances	the	severity	of	symptoms	caused	by	SARS-	Cov2	infection	
by	activating	NF-	κB, which leads to an increase in the transcription 
of genes that drive cytokine synthesis, further enhancing the inflam-
matory	process	(Forcados	et	al.,	2021).

Polyphenols	 are	 plant	 secondary	 metabolites	 (Pandey	 &	
Rizvi,	2009)	that	are	found	naturally	in	dietary	plants	and	can	help	
reduce inflammation in many degenerative and neurodegenerative 
diseases.	 Epigallocatechin-	3-	gallate	 (EGCG)	 is	 the	 most	 abundant	
polyphenolic catechin found in Camellia sinensis	(L.)	Kuntz	(tea	plant),	
and	its	anti-	inflammatory,	antiviral,	and	antioxidative	properties	are	
well	documented	(Hu	et	al.,	2018; Khan et al., 2006; Zaveri, 2006).	
According	to	some	reports,	EGCG	has	antiviral	activity	at	micromo-
lar concentrations sufficient to inhibit the infection of viruses like 
herpes	 simplex	 virus,	 influenza	A	virus,	 and	dengue	virus	 (Calland	
et al., 2012; Ge et al., 2018; Sodagari et al., 2016),	suggesting	that	
this phytochemical could be used along with antiviral drugs to treat 
COVID-	19	disease.

Another	 natural	 compound	 Melatonin	 (N-	acetyl-	5-	
methoxytryptamine),	a	potent	scavenger	for	free	radicals	(Poeggeler	
et al., 2006),	first	identified	as	a	neurohormone	secreted	by	the	pineal	
gland in the human body was later discovered to be present in many 
nonvertebrates	 and	 plant	 species	 (Hardeland	 &	 Poeggeler,	 2003).	
Melatonin	 (MT)	 has	 been	 demonstrated	 to	 have	 neuroprotective,	
antioxidant,	 antiapoptotic,	 and	 anti-	inflammatory	 properties	 in	
many cellular and animal models in addition to its function in sleep 
and	circadian	rhythms	(R.	Zhang	et	al.,	2020).	Several	studies	report	
Melatonin's	beneficial	role	in	severe	cases	of	viral	lung	infections,	such	
as	ARDS	and	COVID-	19,	where	it	serves	as	a	great	antioxidative	and	
anti-	inflammatory	 agent	 (Bahrampour	 Juybari	 et	 al.,	2020).	 Sirtuins	
are protein that plays an important role in essential physiological 
processes, including inflammation, stress, mitochondrial biogenesis, 
insulin	secretion,	and	aging	(Kitada	et	al.,	2019;	Poulose	&	Raju,	2015).

This paper gives us an overview of deregulated signaling path-
ways involved in the development of oxidative stress and cytokine 

storms	leading	to	severe	symptoms	in	COVID-	19	patients	and	pro-
vides a safe alternative option for the treatment of the disease. 
This review gives us a concise sketch of signal transduction path-
ways underlying the SIRT1 activation by MT and EGCG that enables 
the prediction that these nutraceuticals may have on reducing the 
inflammation and respiratory difficulties associated with severe 
Coronavirus infection.

2  |  PATHOBIOLOGY OF SARS-  COV- 2 
INFEC TION

2.1  |  Dysregulated intracellular signaling pathways

The	 pathogenesis	 of	 SARS-	CoV-	2	 infection	 involves	 the	 entry	 of	
this virus into the host cell through the binding of its spike pro-
tein	 (S-	protein)	 with	 the	 ACE-	2	 receptor	 present	 on	 the	 cell	 sur-
face of multiple cells such as lungs, heart, kidney, liver, testis, and 
intestine. Cellular proteases like transmembrane protease, serine2 
(TMPRSS2),	 and	another	protein	clathrin	 facilitate	virus	entry	 into	
the	upper	respiratory	tract	by	endocytosis	(Li	et	al.,	2020).	Upon	en-
tering the host cell, the virus replicates rapidly inside the nucleus 
leading	to	viremia.	The	host's	innate	immune	system	tries	to	elimi-
nate the coronavirus with the help of cytokines and chemokines re-
leased by macrophages, neutrophils, and dendritic cells in the lung 
epithelial cells, which are later followed by activation of the adap-
tive	immune	response	(Mehta	et	al.,	2020).	At	this	initial	stage,	the	
patient	can	be	cured	easily	and	can	be	asymptomatic.	SARS-	CoV-	2	
infection activates many downstream signaling pathways such as 
interleukin-	6/Janus	kinase/signal	transducers	and	activators	of	tran-
scription	(IL-	6/JAK/STAT)	signaling	pathway	(Magro,	2020; C. Zhang 
et al., 2020),	 interferon	 (IFN)	 cell	 signaling	 pathway	 (Prokunina-	
Olsson et al., 2020),	 tumor	necrosis	 factor-	α–	nuclear	 factor-	kappa	
(TNF-	α–	NF-	κB)	 pathway	 (Feldmann	 et	 al.,	2020),	 toll-	like	 receptor	
(TLR)	 pathway	 (Angelopoulou	 et	 al.,	 2020),	 T-	cell	 receptor	 (TCR)	
pathway	(de	Biasi	et	al.,	2020; C. Zhang et al., 2020),	and	JAK–	STAT	
pathway	(Luo	et	al.,	2020).	But	in	the	later	stages,	when	the	body's	
adaptive immune system fails to control the virus, the dysregula-
tion	 of	 these	 signaling	 pathways	 leads	 to	 overproduction	 of	 pro-	
inflammatory	cytokines	(IL-	1β,	IL-	2R,	IL-	6,	IL-	7,	IL-	8,	IL-	17,	and	TNF-	α)	
and	chemokines	(CCL2,	CCL3,	CCL5,	CCL7,	and	CXCL-	10)	that	lead	
to	lung	injury,	acute	respiratory	distress	syndrome	(ARDS),	and	fail-
ure	of	multiple	organs	(Figure 1; Mehta et al., 2020).

Some reports suggest the role of inhibitors like Baricitinib in the 
impairment	of	JAK–	STAT	pathway	mediated	IFN	and	TNF	signaling	
to	mitigate	SARS-	CoV-	2	 infection	 (Favalli	et	al.,	2020).	 In	 the	case	
of	 patients	with	 severe	 COVID-	19	 infection	 presence	 of	 impaired	
IFN-	I	signatures	was	observed	compared	to	patients	with	milder	in-
fection	 (Hadjadj	et	al.,	2020).	Since	NF-	κB is a master regulator of 
inducing	the	expression	of	various	pro-	inflammatory	cytokines	and	
chemokine	genes,	deregulated	NF-	κB activation could be one of the 
main factors behind the etiology of several inflammatory diseases 
including	COVID-	19.	Recently,	its	role	is	implicated	in	the	regulation	
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of	inflammasomes	too.	Therefore,	mechanisms	that	underlie	the	NF-	
κB signaling could prove instrumental in controlling the immune re-
sponses to prevent autoimmunity and inflammatory diseases.

Several downstream signaling pathways, including the extracel-
lular	signal-	regulated	kinase	(ERK)-	activator	protein	(AP-	1)	pathway,	
p65,	 and	 p38	 mitogen-	activated	 protein	 kinase	 (MAPK)	 pathway,	
with	 Jun	NH2-	terminal	 kinase,	 activates	 various	 transcription	 fac-
tors	downstream	that	further	induce	the	expression	of	several	pro-	
inflammatory	cytokine	genes	(Huang	et	al.,	2020).	These	cytokines	
then bind to their respective cytokine receptors and interact with 
JAK	 1/2	 and	 STAT	 3/6	 proteins	 Apoptosis	 is	 regulated	 by	MAPK	
pathways,	and	there	 is	crosstalk	between	the	p38	MAPK	pathway	
and other pathways that might cause cell death. To induce chronic 
infection	with	SARS-	CoV2	(Battagello	et	al.,	2020),	the	PI3	kinase/
Akt	pathway	must	be	activated.

Further, based on several research studies, dysfunction of the 
renin–	angiotensin–	aldosterone	 system	 (RAAS)	 pathway	 caused	 by	
the	downregulation	of	ACE-	2	receptors	is	associated	with	regulation	

of	inflammation	in	COVID-	19	patients	(Kuba	et	al.,	2005).	Generally,	
ACE-	2	leads	to	the	conversion	of	angiotensin	(Ang)	I	and	angioten-
sin	 II	 into	biologically	active	peptides	Ang	1–	9	and	Ang	1–	7	 in	 the	
RAAS	pathway	(Hanff	et	al.,	2020; Figure 1).	Coronavirus	infection	
downregulates	the	 levels	of	ACE2	levels	that	 lead	to	 increased	ac-
cumulation	 of	 toxic	 levels	 of	 Ang	 II	 that	 amplifies	 the	 production	
of	 pro-	inflammatory	 cytokines.	 Further,	 angiotensin	 II	 stimulates	
angiotensin	II	type	1	receptor	(AT1R)	but	 inactivates	angiotensin	II	
type	 2	 receptor	 (AT2R).	 Thus,	 the	 reduction	 of	 AT2R/AT1R	 levels	
concomitant with the cytokine storm severely damage the lungs and 
induce	ARDS	(Donoghue	et	al.,	2000)	(Figure 1).	High	levels	of	an-
giotensin II promote oxidative stress and depletion of oxygen levels 
in these patients by increasing the generation of superoxide ions. 
Furthermore, these reactive oxygen species lead to the oxidation 
of	cysteine	residues	present	in	the	spike	protein	of	the	SARS-	CoV-	2	
virus, forming disulfide that boosts the affinity of the Coronavirus to 
bind	to	its	receptor	leading	to	the	development	of	COVID-	19	disease	
(Ghasemitarei	et	al.,	2022;	Hati	&	Bhattacharyya,	2020).

F I G U R E  1 Modulation	of	signaling	pathways	by	SARS-	CoV-	2	virus.	Coronavirus	disease	occurs	upon	entry	of	the	virus	through	the	
airway	and	mouth	and	affects	the	lung	initially	because	of	the	presence	of	the	ACE2	receptors	on	the	surface	of	type	II	alveolar	cells	
that	bind	to	the	spike	protein.	The	virus	multiplies	rapidly	within	the	host	cell	and	infects	other	cells	by	the	interaction	of	TLR	to	PAMPs	
present	on	the	surface	of	microbial	cells.	This	triggers	the	activation	NF-	κB pathway which is responsible for transcriptional induction of 
pro-	inflammatory	cytokines	through	the	JAK/STAT	signaling	pathway.	It	also	activates	TLR	and	TCR	pathways	in	different	innate	immune	
cells.	High	levels	of	cytokines	lead	to	mitochondrial	malfunction.	The	deregulated	NF-	κB pathway in these patients can cause extensive 
pulmonary	endothelial	cell	injury	and	tissue	damage	that	is	central	to	the	pathogenesis	of	ARDS.	Also,	when	the	virus	binds	to	the	ACE2	
receptor	on	the	host	cell	membrane,	it	causes	downregulation	of	MAS	and	the	ACE2	receptor	in	a	COVID-	19	patient.	The	failure	of	
the	ACE2/Ang-	(1–	7)/MAS	pathway	increases	inflammation	and	contributes	to	tissue	dysfunction,	thrombosis,	and	fibrosis	(Donoghue	
et al., 2000; Kuriakose et al., 2021).
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Cardiac	cells	also	express	ACE-	2	and	so	this	virus	could	damage	
these	cells	resulting	in	myocardial	infarction	(Crackower	et	al.,	2002).	
Some	reports	show	high	levels	of	D-	dimers	and	thrombosis	leading	
to	cardiac	arrhythmias	in	these	patients,	which	results	in	multi-	organ	
damage	and	eventually	leads	to	death	(Bansal	et	al.,	2021).

Coronavirus can also infect the lung epithelial cells by binding 
through	the	Toll-	Like	receptors	 (like	TLR3,	TLR4,	TLR7,	and	TLR-	8)	
on the surface of plasmacytoid dendritic cells, so blocking of these 
receptors	 especially	 TLR4	 by	 certain	 immunomodulators	 offers	
another	 promising	 target	 to	 prevent	 acute	 lung	 injury	 (ALI)	 (Sun	
et al., 2020).	These	receptors	are	further	activated	in	immune	cells	
by the presence of elevated levels of ROS or in injured or apoptotic 
cells	stimulated	by	damage-	associated	molecular	pattern	molecules	
(DAMPs)	(Figure 1)	and	will	result	in	the	generation	of	severe	inflam-
mation	in	COVID-	19	patients	(Land,	2015).

Coronavirus is expected to induce severe lung disease by trig-
gering	 pyroptosis	 (Yang,	 2020; Figure 1)	 and	 by	 activation	 of	 in-
flammasomes'	 Nod-	like	 receptor,	 family	 pyrin	 domain	 containing	
3	 (NLRP3)	 (Shi	 et	 al.,	 2019)	 that	 leads	 to	 the	 production	 of	 pro-	
inflammatory	cytokines	like	IL-	1β	and	IL-	18.	Therefore,	in	the	lungs,	
NLRP3s	 protective	 and	 harmful	 effects	 are	 likely	 to	 be	 balanced.	
It has also been discovered that oxidative stress triggered due to 
overproduction of free radical species further stimulates the gener-
ation	of	 inflammatory	cytokines	 in	COVID-	19	patients.	TNF-	α and 
IL-	6	 limit	mitochondrial	oxidative	phosphorylation	and,	as	a	 result,	
ATP	 generation	 while	 inducing	 ROS	 production	 in	 the	 cell	 (Saleh	
et al., 2020;	Schofield	&	Schafer,	2021).	Increased	inflammatory/ox-
idative stress also can lead to ferroptosis, platelet destruction, and 
eventually organ damage in these patients.

3  |  IMMUNOMODUL ATORY ROLE OF 
EGCG

3.1  |  Antiviral property of EGCG

Green tea offers a variety of health benefits to mankind as it helps 
in the prevention and treatment of numerous infectious viral dis-
eases. It has been one of the popular beverages consumed by peo-
ple all over the world. It contains many polyphenols such as EGCG 
and Theaflavin that belong to the flavonoid family. One cup of tea 
has	 around	 100–	300 mg	 of	 EGCG	 which	 accounts	 for	 more	 than	
80%	 of	 the	 catechin	 in	 them	 (Hu	 et	 al.,	2018; Khan et al., 2006; 
Zaveri, 2006).	 The	 absorption	 of	 EGCG	 is	 relatively	 high,	 with	 a	
maximal	plasma	concentration	of	more	than	1 g/ml	(Zaveri,	2006).	At	
micromolar concentrations, EGCG has been demonstrated to sup-
press infections caused by various viruses such as porcine reproduc-
tive	and	respiratory	Syndrome	Virus	(PRRSV),	Dengue	virus,	HIV-	1,	
and	 hepatitis	 C	 virus	 (HCV)	 (Calland	 et	 al.,	2012; Ge et al., 2018; 
Raekiansyah et al., 2018; Sodagari et al., 2016).	When	taken	orally,	
EGCG, on the other hand, is unstable and has a low bioavailability. 
It	 is	 quickly	oxidized	before	 it	 reaches	 its	destination.	As	 a	 result,	
several scientists have proposed structural modifications of EGCG, 

such	as	ester	derivatives	(Zhong	&	Shahidi,	2011),	to	improve	its	bio-
availability. Combining EGCG with other antiviral medications can 
further boost its bioavailability. Some studies propose encapsulat-
ing	 EGCG	with	 nanoparticles	 to	 improve	 its	 effectiveness	 (Munin	
&	Edwards-	Lévy,	2011).	 These	polyphenols	 (EGCG	and	 theaflavin)	
further	inhibit	the	activity	of	SARS-	CoV-	2	3CL	protease	protein	that	
is	majorly	responsible	for	the	release	of	nonstructural	proteins	(nsps)	
from polyproteins that are required for the maintenance of the viral 
life	cycle	(Du	et	al.,	2021;	Jang	et	al.,	2020).	According	to	a	recent	
report,	the	impact	of	EGCG	on	SARS-	CoV-	2	3CL	Protease	enzyme	
was	found	to	be	more	profound	compared	with	SARS	3CL	protease	
which	was	 in	corroboration	with	the	 lower	half-	maximal	 inhibitory	
concentration	(IC50)	dose	of	EGCG	(0.847–	16.5	μM)	used	for	SARS-	
CoV-	2	3CL	protease	with	respect	to	a	higher	IC50	dose	of	EGCG	(25–	
100 μM)	for	SARS	3CL	protease.	 In	addition,	EGCG	IC50 values for 
human	 coronaviruses	 (HCoV-	OC43	 and	 HCoV-	229E)	 were	 higher	
than the IC50	for	SARS-	CoV-	2	(Jang	et	al.,	2021),	suggesting	the	ben-
eficial	role	of	EGCG	in	preventing	SARS-	CoV-	2	infection.

3.2  |  Antioxidant role of EGCG

EGCG exhibits its antioxidant capability in two ways as follows: one 
by directly affecting ROS production and the other by boosting the 
body's	defense	mechanism	(Frei	et	al.,	2003; Shi et al., 2000).	The	
potent free radicals scavenging activity of EGCG is due to the D 
ring in its galloyl group. Tea polyphenols prevent oxidative damage 
of	DNA	in	cell	cultures	by	lowering	the	expression	of	cytochromes	
P450	(Feng	et	al.,	2002; Shibutani et al., 1991).	This	finding	is	sup-
ported	by	the	lower	amount	of	oxidative	stress-	induced	DNA	marker	
8-	oxoguanine.	As	a	result,	tea	polyphenols	may	be	able	to	treat	oxi-
dative	stress-	related	illnesses	by	boosting	antioxidant	capacity	and	
therefore	reducing	oxidative	damage	(Palmer	et	al.,	1987;	Ropero	&	
Esteller, 2007).	There	are	also	some	indirect	methods	in	which	tea	
polyphenols might protect against illness caused by oxidative stress. 
EGCG will function as a messenger molecule for downstream sign-
aling pathways by creating reduced levels of ROS, particularly hy-
drogen	peroxide	(Engel,	2006).	EGCG,	on	the	other	hand,	enhances	
several other intracellular second messengers, such as Ca2+,	cAMP,	
and	 cGMP,	 by	 interacting	with	 a	 particular	 receptor	 67LR	 (67 kDa	
laminin	 receptors)	 (Umeda	 et	 al.,	 2008).	 These	 messengers,	 par-
ticularly cGMP, can further downstream induce the activation of 
PI3K/Akt/endothelial	 nitric	 oxide	 synthase	 (Akt/eNOS)	 (Palmer	
et al., 1987)	 signaling	 pathway.	 This	 reduces	 oxidative	 stress	 and	
heals	the	illnesses	associated	with	it	(Figure 2).

Several	 investigations	have	shown	the	anti-	inflammatory	prop-
erties	 of	 EGCG.	 Apart	 from	 lowering	 the	 STAT-	1	 activity,	 EGCG	
can	also	 inhibit	STAT3	activity	which	 is	activated	by	 IL-	6	cytokine	
thereby	 influencing	many	cellular	processes	 (Figure 2).	High	 levels	
of	 IL-	6	 cytokine	 produced	 during	 the	 inflammatory	 reactions	 in	
COVID-	19	patients	are	one	of	 the	key	factors	determining	the	se-
verity	 of	 the	 disease.	 So,	 drugs	 like	 tocilizumab	 that	 could	 inhibit	
IL-	6	 signaling	 can	 limit	 the	 development	 of	 the	 disease	 (C.	 Zhang	
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et al., 2020).	 EGCG	 also	 seems	 to	 be	 a	 promising	 bioactive	 sub-
stance	derived	from	plants	for	the	treatment	of	COVID-	19	disease	
as	it	inhibits	IL6-	JAK/STAT3	pathway.	Further,	EGCG	can	also	block	
the	 activation	 of	 the	 transcription	 factor	 NF-	κB	 (Shi	 et	 al.,	 2019; 
Sun et al., 2020),	which	 plays	 a	 central	 role	 in	many	 immunologic	
processes	 associated	 with	 inflammatory	 diseases	 (Hayakawa	
et al., 2019; Ohishi et al., 2016; Reygaert, 2018).	NF-	κB regulates 

the	 production	 of	 various	 pro-	inflammatory	 cytokines	 that	 are	
increased	 in	 the	 cytokines	 storm	 syndrome	 in	 COVID-	19	 (Khan	
et al., 2006; Reygaert, 2018; Zaveri, 2006).	The	capacity	of	EGCG	to	
induce	Nrf2	nuclear	translocation	and	HO-	1	activity	results	in	anti-	
inflammatory	effects,	particularly	on	neuronal	cells,	arthritis	(Singh	
et al., 2010),	and	atherosclerosis.	In	animal	models,	EGCG	activation	
of	Nrf2	at	nontoxic	doses	has	been	documented	(Dong	et	al.,	2016; 

F I G U R E  2 EGCG	inhibits	oxidative	stress,	apoptosis,	and	inflammation	by	boosting	antioxidants	and	mitochondrial	biogenesis	via.	
SIRT1	activation.	SIRT1	suppresses	the	transcription	of	several	cytokine	genes	by	directly	regulating	the	NF-	κB pathway. The SIRT1 
activator	EGCG	inhibits	the	production	of	the	inflammatory	cytokine	IL-	1	by	inhibiting	the	NLRP3	inflammasome	signaling	pathway.	The	
severe	COVID-	19	infection	leads	to	enhanced	macrophage	activity,	that	release	high	levels	of	pro-	inflammatory	cytokines	resulting	in	
cytokine storm. The EGCG suppresses the hyperinflammation and ROS production by upregulating SIRT1 to inhibit the production of 
these	hyperinflammatory	macrophages,	inhibit	the	p38	MAPK	pathway,	and	increase	the	levels	of	antioxidant	enzymes	SOD	and	CAT	by	
deacetylating PGC1α	and	FOXO1	in	the	FOXO1-	induced	signaling	cascade.	EGCG-	mediated	SIRT1	activity	can	suppress	the	activation	
of	the	p53	protein	that	regulates	pro-	apoptotic	proteins	BAX	and	PUMA	which	are	induced	during	DNA	damage	by	ROS.	3CLpro,	3C-	like	
protease;	ACE2	Receptor,	angiotensin-	converting	enzyme-	2;	BAX,	Bcl-	2-	associated	X	protein;	CAT,	catalase;	COX-	2,	cyclooxygenase	2;	ERK,	
extracellular	signal-	regulated	kinase;	FOXO,	Forkhead	box	transcription	factors;	JNK,	Jun	N-	terminal	kinase;	IL-	1β,	interleukin	1	beta;	IL-	6,	
interleukin	6;	iNOS,	inducible	nitric	oxide	synthase;	MAPK,	mitogen-	activated	protein	kinase;	MMP-	9,	matrix	metallopeptidase	9;	NF-	kB,	
nuclear	factor-	kappa-	light-	chain-	enhancer	of	activated	B	cells;	NLRP3	inflammasome,	NLR	family	pyrin	domain	containing	3	inflammasome;	
Nrf2,	nuclear	factor	erythroid	2-	related	factor	2;	PGC-	1α,	peroxisome	proliferator-	activated	receptor-	gamma	coactivator	1	alpha;	PUMA,	
p53	up-	regulated	modulator	of	apoptosis;	ROS,	reactive	oxygen	species;	SARS-	CoV-	2	Virus,	severe	acute	respiratory	syndrome	coronavirus	
2;	SIRT1,	sirtuin	1;	SOD,	superoxide	dismutase;	TLR4,	toll-	like	receptor	4;	TNF-	α,	tumor	necrosis	factor-	alpha.
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Na et al., 2008; Sun et al., 2017;	Yang	et	al.,	2018).	 Infection	with	
the respiratory syncytial virus reduces antioxidants, and 14 detox-
ification	enzymes,	 including	superoxide	dismutase	 (SOD),	catalase,	
glutathione	peroxidase	(GPX),	and	glutathione	S-	transferase	(GST),	
inhibit Nrf2 expression in the lungs of mice. The infection severely 
lowers	these	enzymes	in	the	airways	of	children	with	severe	bron-
chiolitis. The degree of clinical illness in infected babies is connected 
to	the	decline	in	these	enzymes	(Hosakote	et	al.,	2011).	Similarly,	the	
severity	of	the	disease	is	connected	to	reduced	SOD3	expression	in	
the	lungs	of	older	COVID-	19	patients	(Laforge	et	al.,	2020).

As	 previously	 indicated,	 EGCG	 at	 a	 nontoxic	 daily	 dose	 (less	
than	30 mg/kg i.p.	or	300 mg/kg	i.g.)	in	mice	can	ameliorate	hypoxia-	
induced oxidative stress, s cytokine storm, and diabetes comorbidity 
while	also	lowering	Glucose	Regulated	Protein	78	(GRP78)	expres-
sion/activity, ER stress, thrombosis, sepsis, and lung fibrosis. These 
measures	might	benefit	in	the	prevention	or	treatment	of	COVID-	19	
and	associated	disorders	if	they	could	be	duplicated	in	people.	As	a	
consequence,	 EGCG	might	 be	 utilized	 to	 treat	COVID-	19	 patients	
with	hyperinflammation	(Zhang	et	al.,	2021).

3.3  |  Anti- inflammatory role of EGCG

According	to	Singh	et	al.,	EGCG	can	reduce	inflammatory	responses	
in	Rheumatoid	Arthritis	by	 inhibiting	numerous	stages	 in	the	JAK/
STAT	pathway	and	the	MAP	Kinase	signaling	pathway,	in	addition	to	
anti-	ROS	action	(Singh	et	al.,	2010).	 In	another	study,	EGCG	inhib-
ited inflammation, sebum production, and growth of P. acne	in	Acne	
vulgaris,	 a	 skin	disorder	 by	 activating	AMPK	and	 inhibiting	 insulin	
receptor	substrate-	1/PI3K/Akt,	NF-	κB,	and	AP1	signaling	pathway	
(Yoon	et	al.,	2013).	A	dose	of	10	μmol/L	of	EGCG	was	observed	to	
be	protective	for	the	primary	culture	of	hepatocytes	in	vitro	(Kucera	
et al., 2015).	 Because	 these	 green	 tea	 catechins	 including	 EGCG	
have several targets and work in a pleiotropic manner, these may 
be	utilized	to	improve	the	quality	of	life	of	patients	with	inflamma-
tory	 illnesses	 such	 as	 COVID-	19	 (Hayakawa	 et	 al.,	 2019; Kucera 
et al., 2015).

4  |  IMMUNOMODUL ATORY ROLE OF 
MEL ATONIN

4.1  |  Antiviral role of melatonin

Many viruses, particularly those that generate a cytokine storm, re-
duce melatonin production, which has a bad effect on the health and 
immunity	of	the	host	(Anderson	&	Reiter,	2020).	The	viral	infections	
addressed in this review demonstrate the evasion of the host de-
fense system by targeting the production and function of melatonin 
by	depleting	tryptophan	 (a	melatonin	precursor)	and	 inhibiting	the	
gene	 expression	 of	 enzymes	 synthesizing	 melatonin.	 Thus,	 many	
viral	 illnesses	 become	 more	 severe	 because	 of	 these	 melatonin-	
depleting effects.

According	 to	 recent	 research,	 SIRT1	 inhibits	 the	 translocation	
of	High	Mobility	Group	Box	1	 (HMGB1)	 from	the	nucleus	 that	 in-
hibits	Dengue	virus	(DENV)	replication	via	eliciting	interferon	(IFN)-	
stimulated	genes	(ISGs)	(Morchang	et	al.,	2021; Zainal et al., 2017).	
MT	reduced	DENV	production	 in	the	early	stages	of	 the	virus'	 re-
production	 according	 to	 our	 findings.	 Melatonin's	 antiviral	 action	
is thought to be due to the elicitation of ISGs, which activates the 
SIRT1 pathway.

Antiviral	 properties	 of	 MT	 have	 been	 utilized	 to	 treat	 lower	
respiratory tract illness caused by a respiratory syncytial virus 
(RSV),	 where	 bronchial	 epithelial	 cells	 are	 damaged	 by	 infiltra-
tion of immune cells overproducing cytokines and ROS leading to 
hyperinflammation.

RSV	 activates	 the	 TLR3,	 which	 activates	 NF-	κB, and leads to 
increased	 production	 of	 pro-	inflammatory	 cytokines.	When	 RSV-	
infected	 macrophages	 were	 given	 melatonin,	 TLR3-	mediated	
downstream gene expression was shown to be reduced. Further, 
melatonin	supplementation	in	RSV-	infected	mice	reduced	the	sever-
ity of damage to lung cells which was supported by increased levels 
of	glutathione	production	and	antioxidant	enzymes	 (SOD)	and	de-
creased	production	of	ROS	and	RNS	(Boga	et	al.,	2012).

Similarly,	the	 influenza	A	virus	 is	another	virus	that	affects	the	
respiratory tract and causes significant tissue damage. In all these 
illnesses, lymphocytes, neutrophils, and macrophages infiltrate the 
lung	 parenchyma,	 causing	 pro-	inflammatory	 and	 nonspecific	 ox-
idative	 stress-	related	damage	 (Boga	et	 al.,	2012).	Melatonin	 treat-
ment significantly reduced the number of CD8+ T cells responsible 
for	producing	TNF-	α	in	Influenza	A-	infected	mice	in	the	spleen	and	
lungs,	 which	 might	 help	 to	 minimize	 the	 degree	 of	 lung	 damage	
(Huang	et	al.,	2010).

Melatonin,	through	 inhibiting	calmodulin,	prevents	ACE-	2	from	
interacting with the spike protein of Coronavirus and prevents 
its	 entry	 into	 the	 host	 cell.	 Melatonin	 inhibits	 the	 chymotrypsin-	
like protease, which aids in the cleavage of viral polyproteins 
(Cardinali,	 2020).	 Melatonin	 was	 observed	 to	 influence	 the	 RAS	
pathway	by	promoting	the	activity	of	angiotensin	1–	7	and	inhibiting	
the activation of angiotensin II in treating various metabolic disor-
ders	 (Campos	 et	 al.,	 2013).	 In	 the	 case	 of	 patients	 suffering	 from	
severe	Coronavirus	infection,	MT	inhibits	the	NLRP3	inflammasome,	
which	inhibits	pyroptosis	and,	as	a	result,	has	an	anti-	inflammatory	
impact	(Yang,	2020)	(Figure 3).	Extensive	clinical	research	has	thus	
demonstrated that melatonin has preventative and clinical benefits 
for numerous diseases, including cancer, neurological disorders, and 
viral diseases like Coronaviruses.

4.2  |  Immunoregulatory role of melatonin

Melatonin ameliorates both innate and adaptive immune responses 
by regulating the proliferation and maturation of immune cells like 
B and T lymphocytes, agranulocytes, and granulocytes in the bone 
marrow. It is a neurohormone secreted from the pineal gland which 
affects	many	organs	of	the	body	(Liu	et	al.,	2020; Miller et al., 2006; 
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F I G U R E  3 Melatonin	inhibits	oxidative	stress,	apoptosis,	and	inflammation	by	boosting	antioxidants	via	activation	of	SIRT1.	Melatonin	
inhibits	early	virus	replication	or	3CLpro	which	aids	in	fighting	against	viral	infection.	Melatonin	exerts	its	anti-	inflammatory	properties	by	
stimulating	sirtuin	proteins,	inhibiting	activation	of	TLR4,	and	reducing	the	levels	of	pro-	inflammatory	cytokines	from	hyperinflammatory	
macrophages	through	downregulation	of	NF-	kB	signaling.	SIRT1	in	association	with	melatonin	scavenges	the	production	of	ROS	and	RNS	by	
increasing antioxidants and thereby reduces the damage produced by oxidative stress. Melatonin leads to the downregulation of inducible 
nitric	oxide	synthase	and	cyclooxygenase-	2	which	further	decreases	inflammation	via.	the	NF-	kB	signaling	pathway.	Sirtuins,	an	Nrf2	
promoter,	in	the	presence	of	melatonin	inhibit	the	inflammasome	NLRP3	activity,	inhibiting	pyroptosis	and	preventing	airway	inflammation.	
SIRT1	activates	interferon-	stimulated	genes	(ISG),	which	activates	nuclear	HMGB1,	resulting	in	the	generation	of	the	antiviral	effect	of	
melatonin.	3CLpro,	3C-	like	protease;	ACE2	Receptor,	angiotensin-	converting	enzyme-	2;	ALI,	acute	lung	injury;	ARDS,	acute	respiratory	
distress	syndrome;	IL-	1R,	interleukin-	1	receptor;	IL-	1β,	interleukin	1	beta;	IL-	6,	interleukin	6;	ISG,	interferon-	stimulated	genes;	MAPK	
pathway,	mitogen-	activated	protein	kinase;	NF-	kB,	nuclear	factor-	kappa-	light-	chain-	enhancer	of	activated	B	cells;	NLRP3	Inflammasome,	
NLR	family	pyrin	domain	containing	3	inflammasome;	Nrf2,	nuclear	factor	erythroid	2-	related	factor	2;	Nuclear	HMGB1,	nuclear	high	
mobility	group	box	protein	1;	Pro	IL-	1β,	pro	interleukin	1	beta;	RNS,	reactive	nitrogen	species;	ROS,	reactive	oxygen	species;	SARS-	CoV-	2	
Virus,	severe	acute	respiratory	syndrome	coronavirus	2;	SIRT1,	sirtuin	1;	TLR4,	toll-	like	receptor	4;	TNFR,	tumor	necrosis	factor	receptor;	
TNF-	α,	tumor	necrosis	factor-	alpha;	Type	1	IFN,	type	I	interferons.
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Rogers et al., 2018).	 It	 is	 also	 involved	 the	 defense	mechanism	of	
plants and protects them against oxidative damage and many biotic 
and abiotic stresses. Melatonin therapy may enhance antigen pres-
entation of macrophages and microglia of rat brain by upregulating 
their	class	I	and	class	II	MHC	receptors,	complement	receptor	3	anti-
gens,	and	cluster	of	differentiation	4	(CD4)	antigens.

Melatonin decreases inflammation by inhibiting activation of 
TLR4	 and	 NF-	κB,	 downregulating	 the	 synthesis	 of	 enzymes	 like	
iNOS	and	COX-	2,	which	result	 in	 lower	 levels	of	pro-	inflammatory	
cytokines	(Figure 3).	MT	increase	the	level	of	anti-	inflammatory	IL-	10	
cytokine and lowers cytokine production from hyperinflammatory 
glycolytic macrophages by transforming them into macrophages that 
are	anti-	inflammatory	and	that	perform	oxidative	phosphorylation.	
This	 holds	 true	 in	COVID-	19	 patients	where	melatonin	 stimulates	
the protein sirtuin 1, which suppresses the formation of hyperin-
flammatory	 (Martin	Gimenez	 et	 al.,	2020;	Niu	&	 Li,	2020;	Öztürk	
et al., 2020).	On	the	other	hand,	some	research	suggests	that	mel-
atonin may have an inhibiting impact on immune responses. More 
comprehensive experiments are needed, according to conflicting 
research, to fully comprehend the molecular pathways modulated 
by	MT	in	the	immune	system	(Niu	&	Li,	2020).

4.3  |  Antioxidant role of melatonin in countering 
oxidative stress and inflammation

Melatonin is a potent antioxidant and a free radical scavenger 
(Reiter	et	al.,	1997).	It	can	bind	up	to	ten	free	radicals	per	molecule	
in comparison to traditional antioxidant molecules like vitamins C 
and	E	which	can	only	bind	one	(Tan	et	al.,	2007).	MT	can	easily	pass	
through membranes of various cells and mechanical barriers like the 
blood– brain barrier or the placental membrane because of its am-
phiphilic	 nature	 and	high	bioavailability	 (Reppert	 et	 al.,	 1979).	MT	
enhances mitochondrial function by increasing complex I and IV ac-
tivity	and	suppressing	electron	leakage	(Juybari	et	al.,	2019).

MT has been shown in several studies to have the ability to re-
duce inflammation in vivo and in vitro by regulating various pathways 
(Xu	 et	 al.,	 2007).	 Supplementation	 of	melatonin	 in	 foodstuff	may	
boost	 the	production	of	 the	 anti-	inflammatory	 cytokine	 IL-	1R	 and	
the	negative	acute-	phase	protein	(APP)	fibrinogen	(Yu	et	al.,	2017).	
Melatonin	has	been	shown	 to	have	an	anti-	inflammatory	effect	 in	
a	 variety	 of	 high-		 and	 medium-	grade	 inflammatory	 diseases.	 MT	
was	 shown	 to	 decrease	 LPS-	induced	 TNF-	α in human blood cells 
(Silva	 et	 al.,	2004).	MT	 inhibited	 the	 production	 of	 IL-	6	 from	 IL-	2	
stimulated human lymphocytes and monocytes in vitro. MT has an 
anti-	inflammatory	 impact	 on	 the	NLRP3	 inflammasome	 (Figure 3).	
In	 recent	 research,	Zhang	et	al.	 (2016)	 showed	that	melatonin	 is	a	
strong	inhibitor	of	the	Inflammasome	NLRP3	in	an	ALI	mouse	model	
triggered	by	LPS.	Melatonin's	positive	impact	decreases	the	flow	of	
neutrophils and macrophages into the lungs and improves pulmo-
nary	damage	(Zhang	et	al.,	2016).

Recently, several studies suggested that sirtuin is associated with 
diverse actions of melatonin. The idea that melatonin exerts indirect 

effects on RORα via the circadian system has recently gained trac-
tion. SIRT1 increases the amplitude of the rhythm by increasing 
transcription of the core oscillator genes Bmal1 and Clock through 
deacetylation	of	PGC-	1α, making it easier for RORα to bind to RORE 
sequences	(Chang	&	Guarente,	2013).

5  |  IMMUNOMODUL ATORY ROLES OF 
SIRTUINS

5.1  |  Modulation of inflammation by SIRT1 proteins

Sirtuins are proteins belonging to the class III histone deacetylase 
(HDACs)	family	that	are	ubiquitously	found	in	all	forms	of	life	includ-
ing humans. It was called after the Saccharomyces cerevisiae gene 
silent	information	regulation-	2	and	was	known	to	be	involved	in	the	
regulation of multiple processes like premature aging, inflammation, 
DNA	damage,	or	any	kind	of	genomic	instability.	A	total	of	seven	sir-
tuins	(SIRT1–	SIRT7)	are	present	in	humans	(Frye,	2000).	Among	the	
seven	sirtuins,	silent	information	regulation-	1	(SIRT1)	has	prominent	
anti-	inflammatory,	antiapoptotic,	and	antiaging	effects	(Nakagawa	&	
Guarente, 2011)	in	several	chronic	diseases.

SIRT1	deacetylates	histone	proteins	at	specific	residues	(like	H3	
and	H4)	and	nonhistone	proteins	 like	 tumor	suppressor	p53,	 fork-
head	box	protein	O	(FOXO)	transcription	factors,	NF-	κB,	PARP,	per-
oxisome	proliferator-	activated	receptor-	gamma	coactivator	1-	alpha	
(PGC-	1α),	 and	 hypoxia-	inducible	 factor	 (HIF)-	1α	 (Brunet,	 2004; 
Jeong	et	al.,	2007;	Lim	et	al.,	2010).

SIRT1	can	lead	to	reduced	inflammation	in	COVID-	19	patients	by	
directly modulating the immune response in macrophages and sup-
pressing	the	activity	of	NF-	κB	by	deacetylating	Lys310	of	the	RelA/
p65	subunit	 (Rajendrasozhan	et	al.,	2008;	Yeung	et	al.,	2004).	The	
p53	signaling	pathway	was	shown	to	be	upregulated	in	SARS-	CoV-	2-	
infected	people's	peripheral	blood	mononuclear	cells,	suggesting	a	
role	for	cell	death	in	COVID-	19	pathogenesis.	However,	in	COVID-	19	
patients	with	 severe	and	 intermediate	 illnesses,	 the	 role	of	p53	 in	
lymphocyte	homeostasis	 is	unknown.	According	to	a	recent	study,	
reduced expression of the deacetylase SIRT1 led to lower transcrip-
tion	 levels	of	p53,	compromising	B	and	T	cell	signaling	hemostasis	
and leading to B and T cell death, one of the main explanations for 
the	severe	symptoms	of	COVID-	19	illness	(Bordoni	et	al.,	2021).

SIRT1	 through	 modulation	 of	 NF-	κB activation reduces poly 
(ADP-	ribose)	 polymerase-	1	 (PARP-	1)	 activity	 (Beneke,	 2012; 
Rajamohan et al., 2009).	 Studies	 have	 shown	 that	 knocking	 down	
the	SIRT1	in	macrophages	of	mice	increases	LPS-	stimulated	TNF-	α 
(Yoshizaki	et	al.,	2010).	SIRT1	deacetylates	c-	Fos	and	inhibits	activa-
tor	protein-	1	(AP-	1)	and	leads	to	the	downregulation	of	COX-	2	gene	
expression	in	macrophages	(Zhang	et	al.,	2010).	The	COX-	2	enzyme	
is expressed by cells involved in inflammation and helps the cells in 
the conversion of arachidonic acid into prostaglandins and other 
eicosanoids	(Sellers	et	al.,	2010).

SIRT1	 influence	 the	 RAAS	 pathway	 by	 reducing	 the	 expres-
sion	levels	of	AGTR1	in	aged	transgenic	mice	overexpressing	SIRT1	
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compared	with	control	mice	 (Diaz-	Ruiz	et	 al.,	2015).	 SIRT1,	 there-
fore,	 reduces	 hypoxia	 by	 deacetylating	 hypoxia-	inducible	 factor	
(HIF)-	1α	at	residue	LYS674	(Lim	et	al.,	2010).

5.2  |  SIRT1 controls the biogenesis of mitochondria

SIRT1-	stimulated	 deacetylation	 of	 PGC-	1α acts as a chief regula-
tor	of	mitochondrial	metabolism	and	biogenesis	(Amat	et	al.,	2009; 
Guo et al., 2014).	SIRT1promotes	translocation	of	PGC-	1α to the nu-
cleus where it leads to coactivation of Nrf1/Nrf2 and mitochondrial 
transcription	 factor	A	 (TFAM)	 to	 regulate	 the	expression	of	genes	
responsible for encoding proteins involved in transcription and repli-
cation	of	mitochondrial	DNA	and	the	multienzyme	complexes	of	the	
mitochondrial respiratory chain.

5.3  |  SIRT1 modulation of oxidative stress

SIRT1 has been exhibited to control ROS levels by modulating the 
mitochondrial	 electron	 transport	 chain.	 Inhibition	 of	 NF-	κB tran-
scriptional activation by and reduction of expression of gp91phox 
and	p22phox	encoding	for	NADPH	oxidase	subunits	by	SIRT1,	there-
fore prevents the production of reactive oxygen and nitrogen radi-
cals	 by	phagocytes	 (Anrather	 et	 al.,	2006; Manea et al., 2007;	Xie	
et al., 1994).	NFE2L2,	also	referred	to	as	Nrf2	in	literature	is	known	to	
bind	to	the	antioxidant	response	element	(ARE)	sequences	in	promot-
ers of the antioxidant genes and plays a crucial role in the activation 
of	cellular	 antioxidant	defense.	Melatonin	 signals	SIRT1-	dependent	
transcriptional	activation	of	Nrf2	to	exert	anti-	oxidative	effects	have	
been reported in the developing rat brain and BV2 cells, and SIRT1 in-
hibitor remarkably decreased the SIRT1 and Nrf2 expression in BV2 
cells	(Shah	et	al.,	2017).	SIRT1	was	also	demonstrated	to	add	to	the	
activation	of	the	Nrf2/ARE	antioxidant	pathway	and	hamper	the	ap-
optosis	of	type	II	alveolar	epithelial	cells	(Ding	et	al.,	2016).

5.4  |  SIRT1 protein working in tandem with MT in 
COVID- 19 patients

According	to	new	retrospective	research,	COVID-	19	infection	may	
be much less prevalent in people who take supplementary melatonin 
(36–	72 mg/day	given	in	four	divided	doses).	 It	was	observed	that	a	
daily dose of MT led to decreased mortality rate, avoids ventilation 
problems, and decreased the duration of hospital stay of these pa-
tients. This effect might be explained by the fact that MT can up-
regulate type 1 interferon production by Coronavirus and activate 
polyubiquitination	 of	 the	 mitochondrial	 antiviral	 signaling	 (MAVS)	
protein	 through	 activation	 of	 SIRT1.	 In	 COVID-	19	 patients	where	
there is oxidative stress due to uncontrolled production of cytokines 
and reactive oxygen species by the infected immune cells, SIRT1 
helps to mount an effective antiviral response mediated by upregu-
lating	genes	transcribing	the	Type	I	IFN	(IFNβ)	and	by	preventing	the	

release	of	high	mobility	group	box	1	(HMGB1)	(Bonaldi,	2003)	from	
the nucleus by avoiding its acetylation. SIRT1 was reported to up-
regulate	NFE2L2	protein	that	can	inhibit	the	activation	of	the	NLRP3	
inflammasome,	reducing	the	pro-	inflammatory	cytokine	secretion	of	
IL1	and	IL18	and	inhibiting	the	NF-	κB activity, which is downstream 
of	the	MAVS	protein,	responsible	for	inducing	the	IFNβ through in-
terferon	 regulatory	 factor	 3	 (IRF3)	 (Dinicolantonio	 et	 al.,	2021;	 Li	
et al., 2020).	If	these	theories	are	accurate,	a	nutraceutical	regimen	
containing	 sirtuin	 activator	melatonin	may	 be	 useful	 in	COVID-	19	
treatment that helps to alleviate severe inflammatory reactions in 
these	 patients	 by	 regulating	 the	MAVS/IRF3/IFNβ,	 NF-	κB, NRF2, 
HMGB1/ISG signaling pathways and boosting an antiviral effect.

5.5  |  Association of SIRT1 protein with polyphenol 
EGCG in viral diseases

According	to	several	studies,	supplementation	of	EGCG	in	diet	may	
protect against complex neurodegenerative, cardiovascular, inflam-
matory, and cancer disorders by increasing SIRT1 deacetylase ac-
tivity,	 (Niu	et	al.,	2013).	SIRT1	 inhibits	the	transcription	activity	of	
activator	protein-	1	(AP-	1),	resulting	in	the	downregulation	of	COX-	2	
gene	expression,	according	to	recent	research	(Zhang	et	al.,	2010).	
EGCG was shown to decrease hepatic cholesterol synthesis by 
binding	to	the	sterol	regulatory	element-	binding	protein	(SREBP)-	2	
and	 by	 upregulating	 SIRT1,	 FOXO1	 expression,	 SOD	 activity,	 and	
total	 antioxidant	 activity	 (TAOC)	 and	 decreasing	malondialdehyde	
(MDA)	content	(Li	&	Wu,	2018).	It	was	also	shown	to	possess	anti-	
inflammatory effects and enhanced disposal of glucose in adipo-
cyte	cells	by	phosphorylating	AMPK	in	the	presence	of	SIRT1	(Xiao	
et al., 2014).	EGCG	stimulates	SIRT1	protein	which	induced	Akt	and	
inhibits	the	NF-	κB	by	phosphorylation	of	 its	p65	subunit.	Another	
study reported the influence of the antioxidant property of EGCG on 
decreasing	age-	associated	inflammation	and	liver	injury	by	regulat-
ing	 the	FOXO3a/SIRT1	signaling	pathway	through	downregulation	
of	the	expression	of	NF-	κB	activity	(Niu	et	al.,	2013).

As	a	 result,	 targeting	 the	SIRT1	signaling	pathways	might	be	a	
viable treatment strategy for a variety of viral illnesses. The highest 
promising	SIRT1-	binding	capability	was	found	in	EGCG,	hence,	it	can	
be	hypothesized	to	be	a	propitious	pathway	to	treat	viral	diseases	
like COVID 19.

5.6  |  Clinical studies of EGCG in humans with 
moderate and severe SARS- CoV- 2 infection

Tea	has	been	linked	to	the	prevention	and	treatment	of	COVID-	19	
in	 three	 recent	 trials	 (Chowdhury	 &	 Barooah,	 2020;	 Menegazzi	
et al., 2020; Mhatre et al., 2021).	 Early	 stages	 of	 viral	 infection,	
including attachment, entry, and membrane fusion, are inhib-
ited	 by	 epigallocatechin-	3-	gallate	 (EGCG)	 (Hoffmann	 et	 al.,	 2020; 
Kaihatsu et al., 2018; Mhatre et al., 2021; Steinmann et al., 2013; 
Xu	et	al.,	2017).	The	majority	of	 these	studies	were	carried	out	 in	
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vitro in circumstances that may differ significantly from those found 
in people, therefore the findings should be regarded with caution.

In	human	HepG2	cells,	 the	Nrf2-	activator	PB125®	suppresses	
both	ACE2	and	TMPRSS2	production	(McCord	et	al.,	2020).	In	renal	
proximal tubule cells, genetic deletion of Nrf2 or pharmacological 
suppression	of	Nrf2	upregulates	ACE2	expression,	whereas	 its	ac-
tivator,	oltipraz,	downregulates	ACE2	expression	(Zhao	et	al.,	2018).	
Genes	connected	to	Nrf2-	dependent	antioxidant	response	are	con-
siderably	 reduced	 in	 COVID-	19	 patients'	 lung	 biopsies,	 and	 Nrf2	
inducers	 (4-	octyl-	itaconate	 and	 dimethyl	 fumarate)	 reduce	 SARS-	
CoV-	2	replication	and	inflammatory	response	(Cuadrado	et	al.,	2020; 
Olagnier et al., 2020).	These	 findings	 suggest	 that	activating	Nrf2	
might	 help	 prevent	 SARS-	CoV-	2	 infection	 and	 reduce	COVID-	19n	
severity	(Zhang	et	al.,	2021).

In	an	LPS-	induced	mouse	model	of	ALI,	EGCG	(15 mg/kg,	i.p.)	ad-
ministered	1	hr	before	and	3	hr	after	LPS	instillation	lowers	ALI,	neu-
trophil infiltration, and the rise in the M1/M2 macrophage subtype 
ratio	(Almatroodi	et	al.,	2020).	If	similar	effects	can	be	demonstrated	
in humans, EGCG might be useful in avoiding the cytokine storm and 
ARDS	induced	by	SARS-	CoV-	2.	In	one	study,	the	initial	salivary	con-
centrations	of	EGCG	were	10–	50 μM, with elimination t1/2 values of 
10–	20 min,	after	drinking	200 ml	of	warm	tea	(containing	1200 mg	of	
green	tea	extracts)	and	rinsing	the	mouth	violently	10	times	(Yang	
et al., 1999).	Saliva	samples	(taken	similarly)	initially	contained	120–	
300 μM	EGCG	after	participants	kept	96 mg	EGCG	in	60 ml	in	their	
mouth	for	2 min	and	then	fell	to	25–	65 μM	after	30 min.

These data suggest that after drinking or gargling tea, the levels of 
EGCG and other catechins in the oral/nasal/pharyngeal cavity may be 
high	enough	to	protect	against	viral	infection.	It	was	observed	in	Japan	
that gargling a tea catechin solution on a daily basis lowered the inci-
dence	of	influenza	infection	in	the	elderly	(Yamada	et	al.,	2006).	These	
exciting findings should be reproduced with a larger number of people 
and used to further antiviral studies in humans.

In	another	study	by	Bettuzzi	et	al.,	10	SARS-	COV-	2	patients	with	
positive	swabs	were	treated	at	home	for	15 days	with	two	sessions	of	
inhalation	and	three	capsules	each	day	(total	catechins:	840 mg;	total	
EGCG:	 595 mg).	 All	 patients	 recovered	 fully	 and	 had	 no	 symptoms	
after	a	median	of	9 days,	with	a	range	of	7–	15 days.	Seven	patients	had	
a	negative	SARS	CoV-	2	nasopharyngeal	swab	test	after	a	median	of	
9 days	and	a	range	of	6–	13 days	(Bettuzzi	et	al.,	2021).	At	the	end	of	
the	therapy,	 the	following	 inflammatory	markers	viz.	ɑ-	1	antitrypsin,	
C-	reactive	protein,	and	eosinophils	were	significantly	lowered	in	all	pa-
tients,	whereas	7	out	of	10	also	showed	decreased	levels	of	IL-	6	and	
erythrocyte	sedimentation	rate.	A	bigger	number	of	people	must	be	
engaged in a research study to establish if green tea polyphenols might 
assist	COVID-	19	patients	to	recover	faster	and	prevent	a	fatality.

6  |  CONCLUSION

The	Coronavirus	disease-	19	pandemic	is	currently	the	world's	most	
significant health concern. There is currently no single effective 
drug	for	the	treatment	of	COVID-	19	infection,	but	the	inclusion	of	

a variety of nutraceuticals derived from medicinal plants could pro-
vide	a	promising	adjunct	therapy	for	COVID-	19	disease.	Identifying	
the conditions in which SIRT1 or other sirtuins mediate or operate in 
tandem with Melatonin and/or with EGCG, therefore supporting or 
enhancing	melatonin's	and/or	EGCG	activities,	will	be	a	critical	effort	
in	near	future.	As	evidenced	by	data	from	various	viral	illnesses	with	
the enhanced cytokine release and inflammation, this relates to their 
common	effects	on	TCR,	TLR4,	NF-	κB, and inflammasomes as well 
as several newly found or investigated pathways.

In	 this	 review,	 we	 propose	 how	 SIRT1-	dependent	 and	
-	independent	pathways	could	work	along	with	MT	and	EGCG	in	pre-
venting the entry and growth of Coronavirus 2 inside the host cell 
and	modulate	underlying	signaling	pathways	specially	NF-	κB protein 
to alleviate the inflammation, oxidative stress, and lung injury in pa-
tients	with	severe	COVID-	19	infection.	To	support	our	hypothesis,	
more	 clinical	 trials	need	 to	be	 set	up	 to	 standardize	 the	dose	and	
time of administration of this phytotherapeutics.

We	propose	that	the	NF-	κB signaling pathway is one of the com-
mon pathways involved in the pathogenesis of the disease known to 
be suppressed by SIRT1 activators EGCG and MT in patients with se-
vere	SARS-	CoV2	infection.	Thus,	the	inclusion	of	these	phytochem-
icals as dietary supplements may help in combating Coronavirus 
2 infection in the host by strengthening their immune system. 
However, the crosstalk between these phytochemicals, SIRT1 and 
NF-	κB, and their mechanism of action should be further validated 
through clinical studies and that may prove beneficial for the pre-
vention	and	recovery	of	COVID-	19	patients.
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