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Abstract
SARS-CoV-2 infection has now become the world's most significant health hazard, with 
the World Health Organization declaring a pandemic on March 11, 2020. COVID-19 
enters the lungs through angiotensin-converting enzyme 2 (ACE2) receptors, alters 
various signaling pathways, and causes immune cells to overproduce cytokines, re-
sulting in mucosal inflammation, lung damage, and multiple organ failure in COVID-19 
patients. Although several antiviral medications have been effective in managing the 
virus, they have not been effective in lowering the inflammation and symptoms of 
the illness. Several studies have found that epigallocatechin-3-gallate and melatonin 
upregulate sirtuins proteins, which leads to downregulation of pro-inflammatory gene 
transcription and NF-κB, protecting organisms from oxidative stress in autoimmune, 
respiratory, and cardiovascular illnesses. As a result, the purpose of this research is to 
understand more about the molecular pathways through which these phytochemicals 
affect COVID-19 patients' impaired immune systems, perhaps reducing hyperinflam-
mation and symptom severity.

Practical applications
Polyphenols are natural secondary metabolites that are found to be present in 
plants. EGCG a polyphenol belonging to the flavonoid family in tea has potent anti-
inflammatory and antioxidative properties that helps to counter the inflammation 
and oxidative stress associated with many neurodegenerative diseases. Melatonin, 
another strong antioxidant in plants, has been shown to possess antiviral function and 
alleviate oxidative stress in many inflammatory diseases. In this review, we propose 
an alternative therapy for COVID-19 patients by supplementing their diet with these 
nutraceuticals that perhaps by modulating sirtuin signaling pathways counteract cy-
tokine storm and oxidative stress, the root causes of severe inflammation and symp-
toms in these patients.
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1  |  INTRODUC TION

The new Coronavirus 2019 (COVID-19) illness caused by the Severe 
Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) was dis-
covered in December 2019 in the Chinese city of Wuhan. SARS-
CoV-2, an enveloped single-stranded positive ribonucleic acid virus 
shows 82% similarity in its genome sequence with SARS-CoV-1 (Lu 
et al.,  2020) and 52% similarity in its genome sequence with the 
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (Lu 
et al., 2020).

Coronavirus symptoms range from mild to severe, including 
fever, cough, cold, sore throat, headache, chest discomfort, short-
ness of breath, and viral pneumonia. Patients showing moderate 
to severe COVID-19 symptoms suffer from septic shock, acute 
respiratory distress syndrome (ARDS), and multiple organ failures 
(Harapan et al., 2020). These patients' bodies are unable to elimi-
nate the virus, and their immune systems are dysregulated, resulting 
in the uncontrolled secretion of cytokines that lead to uncontrolled 
systemic inflammation (Ragab et al., 2020). Oxidative stress further 
enhances the severity of symptoms caused by SARS-Cov2 infection 
by activating NF-κB, which leads to an increase in the transcription 
of genes that drive cytokine synthesis, further enhancing the inflam-
matory process (Forcados et al., 2021).

Polyphenols are plant secondary metabolites (Pandey & 
Rizvi, 2009) that are found naturally in dietary plants and can help 
reduce inflammation in many degenerative and neurodegenerative 
diseases. Epigallocatechin-3-gallate (EGCG) is the most abundant 
polyphenolic catechin found in Camellia sinensis (L.) Kuntz (tea plant), 
and its anti-inflammatory, antiviral, and antioxidative properties are 
well documented (Hu et al., 2018; Khan et al., 2006; Zaveri, 2006). 
According to some reports, EGCG has antiviral activity at micromo-
lar concentrations sufficient to inhibit the infection of viruses like 
herpes simplex virus, influenza A virus, and dengue virus (Calland 
et al., 2012; Ge et al., 2018; Sodagari et al., 2016), suggesting that 
this phytochemical could be used along with antiviral drugs to treat 
COVID-19 disease.

Another natural compound Melatonin (N-acetyl-5-
methoxytryptamine), a potent scavenger for free radicals (Poeggeler 
et al., 2006), first identified as a neurohormone secreted by the pineal 
gland in the human body was later discovered to be present in many 
nonvertebrates and plant species (Hardeland & Poeggeler,  2003). 
Melatonin (MT) has been demonstrated to have neuroprotective, 
antioxidant, antiapoptotic, and anti-inflammatory properties in 
many cellular and animal models in addition to its function in sleep 
and circadian rhythms (R. Zhang et al., 2020). Several studies report 
Melatonin's beneficial role in severe cases of viral lung infections, such 
as ARDS and COVID-19, where it serves as a great antioxidative and 
anti-inflammatory agent (Bahrampour Juybari et al., 2020). Sirtuins 
are protein that plays an important role in essential physiological 
processes, including inflammation, stress, mitochondrial biogenesis, 
insulin secretion, and aging (Kitada et al., 2019; Poulose & Raju, 2015).

This paper gives us an overview of deregulated signaling path-
ways involved in the development of oxidative stress and cytokine 

storms leading to severe symptoms in COVID-19 patients and pro-
vides a safe alternative option for the treatment of the disease. 
This review gives us a concise sketch of signal transduction path-
ways underlying the SIRT1 activation by MT and EGCG that enables 
the prediction that these nutraceuticals may have on reducing the 
inflammation and respiratory difficulties associated with severe 
Coronavirus infection.

2  |  PATHOBIOLOGY OF SARS- COV-2 
INFEC TION

2.1  |  Dysregulated intracellular signaling pathways

The pathogenesis of SARS-CoV-2 infection involves the entry of 
this virus into the host cell through the binding of its spike pro-
tein (S-protein) with the ACE-2 receptor present on the cell sur-
face of multiple cells such as lungs, heart, kidney, liver, testis, and 
intestine. Cellular proteases like transmembrane protease, serine2 
(TMPRSS2), and another protein clathrin facilitate virus entry into 
the upper respiratory tract by endocytosis (Li et al., 2020). Upon en-
tering the host cell, the virus replicates rapidly inside the nucleus 
leading to viremia. The host's innate immune system tries to elimi-
nate the coronavirus with the help of cytokines and chemokines re-
leased by macrophages, neutrophils, and dendritic cells in the lung 
epithelial cells, which are later followed by activation of the adap-
tive immune response (Mehta et al., 2020). At this initial stage, the 
patient can be cured easily and can be asymptomatic. SARS-CoV-2 
infection activates many downstream signaling pathways such as 
interleukin-6/Janus kinase/signal transducers and activators of tran-
scription (IL-6/JAK/STAT) signaling pathway (Magro, 2020; C. Zhang 
et al.,  2020), interferon (IFN) cell signaling pathway (Prokunina-
Olsson et al., 2020), tumor necrosis factor-α–nuclear factor-kappa 
(TNF-α–NF-κB) pathway (Feldmann et al., 2020), toll-like receptor 
(TLR) pathway (Angelopoulou et al.,  2020), T-cell receptor (TCR) 
pathway (de Biasi et al., 2020; C. Zhang et al., 2020), and JAK–STAT 
pathway (Luo et al., 2020). But in the later stages, when the body's 
adaptive immune system fails to control the virus, the dysregula-
tion of these signaling pathways leads to overproduction of pro-
inflammatory cytokines (IL-1β, IL-2R, IL-6, IL-7, IL-8, IL-17, and TNF-α) 
and chemokines (CCL2, CCL3, CCL5, CCL7, and CXCL-10) that lead 
to lung injury, acute respiratory distress syndrome (ARDS), and fail-
ure of multiple organs (Figure 1; Mehta et al., 2020).

Some reports suggest the role of inhibitors like Baricitinib in the 
impairment of JAK–STAT pathway mediated IFN and TNF signaling 
to mitigate SARS-CoV-2 infection (Favalli et al., 2020). In the case 
of patients with severe COVID-19 infection presence of impaired 
IFN-I signatures was observed compared to patients with milder in-
fection (Hadjadj et al., 2020). Since NF-κB is a master regulator of 
inducing the expression of various pro-inflammatory cytokines and 
chemokine genes, deregulated NF-κB activation could be one of the 
main factors behind the etiology of several inflammatory diseases 
including COVID-19. Recently, its role is implicated in the regulation 
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of inflammasomes too. Therefore, mechanisms that underlie the NF-
κB signaling could prove instrumental in controlling the immune re-
sponses to prevent autoimmunity and inflammatory diseases.

Several downstream signaling pathways, including the extracel-
lular signal-regulated kinase (ERK)-activator protein (AP-1) pathway, 
p65, and p38 mitogen-activated protein kinase (MAPK) pathway, 
with Jun NH2-terminal kinase, activates various transcription fac-
tors downstream that further induce the expression of several pro-
inflammatory cytokine genes (Huang et al., 2020). These cytokines 
then bind to their respective cytokine receptors and interact with 
JAK 1/2 and STAT 3/6 proteins Apoptosis is regulated by MAPK 
pathways, and there is crosstalk between the p38 MAPK pathway 
and other pathways that might cause cell death. To induce chronic 
infection with SARS-CoV2 (Battagello et al., 2020), the PI3 kinase/
Akt pathway must be activated.

Further, based on several research studies, dysfunction of the 
renin–angiotensin–aldosterone system (RAAS) pathway caused by 
the downregulation of ACE-2 receptors is associated with regulation 

of inflammation in COVID-19 patients (Kuba et al., 2005). Generally, 
ACE-2 leads to the conversion of angiotensin (Ang) I and angioten-
sin II into biologically active peptides Ang 1–9 and Ang 1–7 in the 
RAAS pathway (Hanff et al., 2020; Figure 1). Coronavirus infection 
downregulates the levels of ACE2 levels that lead to increased ac-
cumulation of toxic levels of Ang II that amplifies the production 
of pro-inflammatory cytokines. Further, angiotensin II stimulates 
angiotensin II type 1 receptor (AT1R) but inactivates angiotensin II 
type 2 receptor (AT2R). Thus, the reduction of AT2R/AT1R levels 
concomitant with the cytokine storm severely damage the lungs and 
induce ARDS (Donoghue et al., 2000) (Figure 1). High levels of an-
giotensin II promote oxidative stress and depletion of oxygen levels 
in these patients by increasing the generation of superoxide ions. 
Furthermore, these reactive oxygen species lead to the oxidation 
of cysteine residues present in the spike protein of the SARS-CoV-2 
virus, forming disulfide that boosts the affinity of the Coronavirus to 
bind to its receptor leading to the development of COVID-19 disease 
(Ghasemitarei et al., 2022; Hati & Bhattacharyya, 2020).

F I G U R E  1 Modulation of signaling pathways by SARS-CoV-2 virus. Coronavirus disease occurs upon entry of the virus through the 
airway and mouth and affects the lung initially because of the presence of the ACE2 receptors on the surface of type II alveolar cells 
that bind to the spike protein. The virus multiplies rapidly within the host cell and infects other cells by the interaction of TLR to PAMPs 
present on the surface of microbial cells. This triggers the activation NF-κB pathway which is responsible for transcriptional induction of 
pro-inflammatory cytokines through the JAK/STAT signaling pathway. It also activates TLR and TCR pathways in different innate immune 
cells. High levels of cytokines lead to mitochondrial malfunction. The deregulated NF-κB pathway in these patients can cause extensive 
pulmonary endothelial cell injury and tissue damage that is central to the pathogenesis of ARDS. Also, when the virus binds to the ACE2 
receptor on the host cell membrane, it causes downregulation of MAS and the ACE2 receptor in a COVID-19 patient. The failure of 
the ACE2/Ang-(1–7)/MAS pathway increases inflammation and contributes to tissue dysfunction, thrombosis, and fibrosis (Donoghue 
et al., 2000; Kuriakose et al., 2021).
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Cardiac cells also express ACE-2 and so this virus could damage 
these cells resulting in myocardial infarction (Crackower et al., 2002). 
Some reports show high levels of D-dimers and thrombosis leading 
to cardiac arrhythmias in these patients, which results in multi-organ 
damage and eventually leads to death (Bansal et al., 2021).

Coronavirus can also infect the lung epithelial cells by binding 
through the Toll-Like receptors (like TLR3, TLR4, TLR7, and TLR-8) 
on the surface of plasmacytoid dendritic cells, so blocking of these 
receptors especially TLR4 by certain immunomodulators offers 
another promising target to prevent acute lung injury (ALI) (Sun 
et al., 2020). These receptors are further activated in immune cells 
by the presence of elevated levels of ROS or in injured or apoptotic 
cells stimulated by damage-associated molecular pattern molecules 
(DAMPs) (Figure 1) and will result in the generation of severe inflam-
mation in COVID-19 patients (Land, 2015).

Coronavirus is expected to induce severe lung disease by trig-
gering pyroptosis (Yang,  2020; Figure  1) and by activation of in-
flammasomes' Nod-like receptor, family pyrin domain containing 
3 (NLRP3) (Shi et al.,  2019) that leads to the production of pro-
inflammatory cytokines like IL-1β and IL-18. Therefore, in the lungs, 
NLRP3s protective and harmful effects are likely to be balanced. 
It has also been discovered that oxidative stress triggered due to 
overproduction of free radical species further stimulates the gener-
ation of inflammatory cytokines in COVID-19 patients. TNF-α and 
IL-6 limit mitochondrial oxidative phosphorylation and, as a result, 
ATP generation while inducing ROS production in the cell (Saleh 
et al., 2020; Schofield & Schafer, 2021). Increased inflammatory/ox-
idative stress also can lead to ferroptosis, platelet destruction, and 
eventually organ damage in these patients.

3  |  IMMUNOMODUL ATORY ROLE OF 
EGCG

3.1  |  Antiviral property of EGCG

Green tea offers a variety of health benefits to mankind as it helps 
in the prevention and treatment of numerous infectious viral dis-
eases. It has been one of the popular beverages consumed by peo-
ple all over the world. It contains many polyphenols such as EGCG 
and Theaflavin that belong to the flavonoid family. One cup of tea 
has around 100–300 mg of EGCG which accounts for more than 
80% of the catechin in them (Hu et al., 2018; Khan et al.,  2006; 
Zaveri,  2006). The absorption of EGCG is relatively high, with a 
maximal plasma concentration of more than 1 g/ml (Zaveri, 2006). At 
micromolar concentrations, EGCG has been demonstrated to sup-
press infections caused by various viruses such as porcine reproduc-
tive and respiratory Syndrome Virus (PRRSV), Dengue virus, HIV-1, 
and hepatitis C virus (HCV) (Calland et al., 2012; Ge et al.,  2018; 
Raekiansyah et al., 2018; Sodagari et al., 2016). When taken orally, 
EGCG, on the other hand, is unstable and has a low bioavailability. 
It is quickly oxidized before it reaches its destination. As a result, 
several scientists have proposed structural modifications of EGCG, 

such as ester derivatives (Zhong & Shahidi, 2011), to improve its bio-
availability. Combining EGCG with other antiviral medications can 
further boost its bioavailability. Some studies propose encapsulat-
ing EGCG with nanoparticles to improve its effectiveness (Munin 
& Edwards-Lévy, 2011). These polyphenols (EGCG and theaflavin) 
further inhibit the activity of SARS-CoV-2 3CL protease protein that 
is majorly responsible for the release of nonstructural proteins (nsps) 
from polyproteins that are required for the maintenance of the viral 
life cycle (Du et al., 2021; Jang et al., 2020). According to a recent 
report, the impact of EGCG on SARS-CoV-2 3CL Protease enzyme 
was found to be more profound compared with SARS 3CL protease 
which was in corroboration with the lower half-maximal inhibitory 
concentration (IC50) dose of EGCG (0.847–16.5 μM) used for SARS-
CoV-2 3CL protease with respect to a higher IC50 dose of EGCG (25–
100 μM) for SARS 3CL protease. In addition, EGCG IC50 values for 
human coronaviruses (HCoV-OC43 and HCoV-229E) were higher 
than the IC50 for SARS-CoV-2 (Jang et al., 2021), suggesting the ben-
eficial role of EGCG in preventing SARS-CoV-2 infection.

3.2  |  Antioxidant role of EGCG

EGCG exhibits its antioxidant capability in two ways as follows: one 
by directly affecting ROS production and the other by boosting the 
body's defense mechanism (Frei et al., 2003; Shi et al., 2000). The 
potent free radicals scavenging activity of EGCG is due to the D 
ring in its galloyl group. Tea polyphenols prevent oxidative damage 
of DNA in cell cultures by lowering the expression of cytochromes 
P450 (Feng et al., 2002; Shibutani et al., 1991). This finding is sup-
ported by the lower amount of oxidative stress-induced DNA marker 
8-oxoguanine. As a result, tea polyphenols may be able to treat oxi-
dative stress-related illnesses by boosting antioxidant capacity and 
therefore reducing oxidative damage (Palmer et al., 1987; Ropero & 
Esteller, 2007). There are also some indirect methods in which tea 
polyphenols might protect against illness caused by oxidative stress. 
EGCG will function as a messenger molecule for downstream sign-
aling pathways by creating reduced levels of ROS, particularly hy-
drogen peroxide (Engel, 2006). EGCG, on the other hand, enhances 
several other intracellular second messengers, such as Ca2+, cAMP, 
and cGMP, by interacting with a particular receptor 67LR (67 kDa 
laminin receptors) (Umeda et al.,  2008). These messengers, par-
ticularly cGMP, can further downstream induce the activation of 
PI3K/Akt/endothelial nitric oxide synthase (Akt/eNOS) (Palmer 
et al.,  1987) signaling pathway. This reduces oxidative stress and 
heals the illnesses associated with it (Figure 2).

Several investigations have shown the anti-inflammatory prop-
erties of EGCG. Apart from lowering the STAT-1 activity, EGCG 
can also inhibit STAT3 activity which is activated by IL-6 cytokine 
thereby influencing many cellular processes (Figure 2). High levels 
of IL-6 cytokine produced during the inflammatory reactions in 
COVID-19 patients are one of the key factors determining the se-
verity of the disease. So, drugs like tocilizumab that could inhibit 
IL-6 signaling can limit the development of the disease (C. Zhang 
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et al.,  2020). EGCG also seems to be a promising bioactive sub-
stance derived from plants for the treatment of COVID-19 disease 
as it inhibits IL6-JAK/STAT3 pathway. Further, EGCG can also block 
the activation of the transcription factor NF-κB (Shi et al.,  2019; 
Sun et al.,  2020), which plays a central role in many immunologic 
processes associated with inflammatory diseases (Hayakawa 
et al.,  2019; Ohishi et al.,  2016; Reygaert,  2018). NF-κB regulates 

the production of various pro-inflammatory cytokines that are 
increased in the cytokines storm syndrome in COVID-19 (Khan 
et al., 2006; Reygaert, 2018; Zaveri, 2006). The capacity of EGCG to 
induce Nrf2 nuclear translocation and HO-1 activity results in anti-
inflammatory effects, particularly on neuronal cells, arthritis (Singh 
et al., 2010), and atherosclerosis. In animal models, EGCG activation 
of Nrf2 at nontoxic doses has been documented (Dong et al., 2016; 

F I G U R E  2 EGCG inhibits oxidative stress, apoptosis, and inflammation by boosting antioxidants and mitochondrial biogenesis via. 
SIRT1 activation. SIRT1 suppresses the transcription of several cytokine genes by directly regulating the NF-κB pathway. The SIRT1 
activator EGCG inhibits the production of the inflammatory cytokine IL-1 by inhibiting the NLRP3 inflammasome signaling pathway. The 
severe COVID-19 infection leads to enhanced macrophage activity, that release high levels of pro-inflammatory cytokines resulting in 
cytokine storm. The EGCG suppresses the hyperinflammation and ROS production by upregulating SIRT1 to inhibit the production of 
these hyperinflammatory macrophages, inhibit the p38 MAPK pathway, and increase the levels of antioxidant enzymes SOD and CAT by 
deacetylating PGC1α and FOXO1 in the FOXO1-induced signaling cascade. EGCG-mediated SIRT1 activity can suppress the activation 
of the p53 protein that regulates pro-apoptotic proteins BAX and PUMA which are induced during DNA damage by ROS. 3CLpro, 3C-like 
protease; ACE2 Receptor, angiotensin-converting enzyme-2; BAX, Bcl-2-associated X protein; CAT, catalase; COX-2, cyclooxygenase 2; ERK, 
extracellular signal-regulated kinase; FOXO, Forkhead box transcription factors; JNK, Jun N-terminal kinase; IL-1β, interleukin 1 beta; IL-6, 
interleukin 6; iNOS, inducible nitric oxide synthase; MAPK, mitogen-activated protein kinase; MMP-9, matrix metallopeptidase 9; NF-kB, 
nuclear factor-kappa-light-chain-enhancer of activated B cells; NLRP3 inflammasome, NLR family pyrin domain containing 3 inflammasome; 
Nrf2, nuclear factor erythroid 2-related factor 2; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha; PUMA, 
p53 up-regulated modulator of apoptosis; ROS, reactive oxygen species; SARS-CoV-2 Virus, severe acute respiratory syndrome coronavirus 
2; SIRT1, sirtuin 1; SOD, superoxide dismutase; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor-alpha.
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Na et al., 2008; Sun et al., 2017; Yang et al., 2018). Infection with 
the respiratory syncytial virus reduces antioxidants, and 14 detox-
ification enzymes, including superoxide dismutase (SOD), catalase, 
glutathione peroxidase (GPX), and glutathione S-transferase (GST), 
inhibit Nrf2 expression in the lungs of mice. The infection severely 
lowers these enzymes in the airways of children with severe bron-
chiolitis. The degree of clinical illness in infected babies is connected 
to the decline in these enzymes (Hosakote et al., 2011). Similarly, the 
severity of the disease is connected to reduced SOD3 expression in 
the lungs of older COVID-19 patients (Laforge et al., 2020).

As previously indicated, EGCG at a nontoxic daily dose (less 
than 30 mg/kg i.p. or 300 mg/kg i.g.) in mice can ameliorate hypoxia-
induced oxidative stress, s cytokine storm, and diabetes comorbidity 
while also lowering Glucose Regulated Protein 78 (GRP78) expres-
sion/activity, ER stress, thrombosis, sepsis, and lung fibrosis. These 
measures might benefit in the prevention or treatment of COVID-19 
and associated disorders if they could be duplicated in people. As a 
consequence, EGCG might be utilized to treat COVID-19 patients 
with hyperinflammation (Zhang et al., 2021).

3.3  |  Anti-inflammatory role of EGCG

According to Singh et al., EGCG can reduce inflammatory responses 
in Rheumatoid Arthritis by inhibiting numerous stages in the JAK/
STAT pathway and the MAP Kinase signaling pathway, in addition to 
anti-ROS action (Singh et al., 2010). In another study, EGCG inhib-
ited inflammation, sebum production, and growth of P. acne in Acne 
vulgaris, a skin disorder by activating AMPK and inhibiting insulin 
receptor substrate-1/PI3K/Akt, NF-κB, and AP1 signaling pathway 
(Yoon et al., 2013). A dose of 10 μmol/L of EGCG was observed to 
be protective for the primary culture of hepatocytes in vitro (Kucera 
et al.,  2015). Because these green tea catechins including EGCG 
have several targets and work in a pleiotropic manner, these may 
be utilized to improve the quality of life of patients with inflamma-
tory illnesses such as COVID-19 (Hayakawa et al.,  2019; Kucera 
et al., 2015).

4  |  IMMUNOMODUL ATORY ROLE OF 
MEL ATONIN

4.1  |  Antiviral role of melatonin

Many viruses, particularly those that generate a cytokine storm, re-
duce melatonin production, which has a bad effect on the health and 
immunity of the host (Anderson & Reiter, 2020). The viral infections 
addressed in this review demonstrate the evasion of the host de-
fense system by targeting the production and function of melatonin 
by depleting tryptophan (a melatonin precursor) and inhibiting the 
gene expression of enzymes synthesizing melatonin. Thus, many 
viral illnesses become more severe because of these melatonin-
depleting effects.

According to recent research, SIRT1 inhibits the translocation 
of High Mobility Group Box 1 (HMGB1) from the nucleus that in-
hibits Dengue virus (DENV) replication via eliciting interferon (IFN)-
stimulated genes (ISGs) (Morchang et al., 2021; Zainal et al., 2017). 
MT reduced DENV production in the early stages of the virus' re-
production according to our findings. Melatonin's antiviral action 
is thought to be due to the elicitation of ISGs, which activates the 
SIRT1 pathway.

Antiviral properties of MT have been utilized to treat lower 
respiratory tract illness caused by a respiratory syncytial virus 
(RSV), where bronchial epithelial cells are damaged by infiltra-
tion of immune cells overproducing cytokines and ROS leading to 
hyperinflammation.

RSV activates the TLR3, which activates NF-κB, and leads to 
increased production of pro-inflammatory cytokines. When RSV-
infected macrophages were given melatonin, TLR3-mediated 
downstream gene expression was shown to be reduced. Further, 
melatonin supplementation in RSV-infected mice reduced the sever-
ity of damage to lung cells which was supported by increased levels 
of glutathione production and antioxidant enzymes (SOD) and de-
creased production of ROS and RNS (Boga et al., 2012).

Similarly, the influenza A virus is another virus that affects the 
respiratory tract and causes significant tissue damage. In all these 
illnesses, lymphocytes, neutrophils, and macrophages infiltrate the 
lung parenchyma, causing pro-inflammatory and nonspecific ox-
idative stress-related damage (Boga et al., 2012). Melatonin treat-
ment significantly reduced the number of CD8+ T cells responsible 
for producing TNF-α in Influenza A-infected mice in the spleen and 
lungs, which might help to minimize the degree of lung damage 
(Huang et al., 2010).

Melatonin, through inhibiting calmodulin, prevents ACE-2 from 
interacting with the spike protein of Coronavirus and prevents 
its entry into the host cell. Melatonin inhibits the chymotrypsin-
like protease, which aids in the cleavage of viral polyproteins 
(Cardinali,  2020). Melatonin was observed to influence the RAS 
pathway by promoting the activity of angiotensin 1–7 and inhibiting 
the activation of angiotensin II in treating various metabolic disor-
ders (Campos et al.,  2013). In the case of patients suffering from 
severe Coronavirus infection, MT inhibits the NLRP3 inflammasome, 
which inhibits pyroptosis and, as a result, has an anti-inflammatory 
impact (Yang, 2020) (Figure 3). Extensive clinical research has thus 
demonstrated that melatonin has preventative and clinical benefits 
for numerous diseases, including cancer, neurological disorders, and 
viral diseases like Coronaviruses.

4.2  |  Immunoregulatory role of melatonin

Melatonin ameliorates both innate and adaptive immune responses 
by regulating the proliferation and maturation of immune cells like 
B and T lymphocytes, agranulocytes, and granulocytes in the bone 
marrow. It is a neurohormone secreted from the pineal gland which 
affects many organs of the body (Liu et al., 2020; Miller et al., 2006; 
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F I G U R E  3 Melatonin inhibits oxidative stress, apoptosis, and inflammation by boosting antioxidants via activation of SIRT1. Melatonin 
inhibits early virus replication or 3CLpro which aids in fighting against viral infection. Melatonin exerts its anti-inflammatory properties by 
stimulating sirtuin proteins, inhibiting activation of TLR4, and reducing the levels of pro-inflammatory cytokines from hyperinflammatory 
macrophages through downregulation of NF-kB signaling. SIRT1 in association with melatonin scavenges the production of ROS and RNS by 
increasing antioxidants and thereby reduces the damage produced by oxidative stress. Melatonin leads to the downregulation of inducible 
nitric oxide synthase and cyclooxygenase-2 which further decreases inflammation via. the NF-kB signaling pathway. Sirtuins, an Nrf2 
promoter, in the presence of melatonin inhibit the inflammasome NLRP3 activity, inhibiting pyroptosis and preventing airway inflammation. 
SIRT1 activates interferon-stimulated genes (ISG), which activates nuclear HMGB1, resulting in the generation of the antiviral effect of 
melatonin. 3CLpro, 3C-like protease; ACE2 Receptor, angiotensin-converting enzyme-2; ALI, acute lung injury; ARDS, acute respiratory 
distress syndrome; IL-1R, interleukin-1 receptor; IL-1β, interleukin 1 beta; IL-6, interleukin 6; ISG, interferon-stimulated genes; MAPK 
pathway, mitogen-activated protein kinase; NF-kB, nuclear factor-kappa-light-chain-enhancer of activated B cells; NLRP3 Inflammasome, 
NLR family pyrin domain containing 3 inflammasome; Nrf2, nuclear factor erythroid 2-related factor 2; Nuclear HMGB1, nuclear high 
mobility group box protein 1; Pro IL-1β, pro interleukin 1 beta; RNS, reactive nitrogen species; ROS, reactive oxygen species; SARS-CoV-2 
Virus, severe acute respiratory syndrome coronavirus 2; SIRT1, sirtuin 1; TLR4, toll-like receptor 4; TNFR, tumor necrosis factor receptor; 
TNF-α, tumor necrosis factor-alpha; Type 1 IFN, type I interferons.
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Rogers et al.,  2018). It is also involved the defense mechanism of 
plants and protects them against oxidative damage and many biotic 
and abiotic stresses. Melatonin therapy may enhance antigen pres-
entation of macrophages and microglia of rat brain by upregulating 
their class I and class II MHC receptors, complement receptor 3 anti-
gens, and cluster of differentiation 4 (CD4) antigens.

Melatonin decreases inflammation by inhibiting activation of 
TLR4 and NF-κB, downregulating the synthesis of enzymes like 
iNOS and COX-2, which result in lower levels of pro-inflammatory 
cytokines (Figure 3). MT increase the level of anti-inflammatory IL-10 
cytokine and lowers cytokine production from hyperinflammatory 
glycolytic macrophages by transforming them into macrophages that 
are anti-inflammatory and that perform oxidative phosphorylation. 
This holds true in COVID-19 patients where melatonin stimulates 
the protein sirtuin 1, which suppresses the formation of hyperin-
flammatory (Martin Gimenez et al., 2020; Niu & Li, 2020; Öztürk 
et al., 2020). On the other hand, some research suggests that mel-
atonin may have an inhibiting impact on immune responses. More 
comprehensive experiments are needed, according to conflicting 
research, to fully comprehend the molecular pathways modulated 
by MT in the immune system (Niu & Li, 2020).

4.3  |  Antioxidant role of melatonin in countering 
oxidative stress and inflammation

Melatonin is a potent antioxidant and a free radical scavenger 
(Reiter et al., 1997). It can bind up to ten free radicals per molecule 
in comparison to traditional antioxidant molecules like vitamins C 
and E which can only bind one (Tan et al., 2007). MT can easily pass 
through membranes of various cells and mechanical barriers like the 
blood–brain barrier or the placental membrane because of its am-
phiphilic nature and high bioavailability (Reppert et al.,  1979). MT 
enhances mitochondrial function by increasing complex I and IV ac-
tivity and suppressing electron leakage (Juybari et al., 2019).

MT has been shown in several studies to have the ability to re-
duce inflammation in vivo and in vitro by regulating various pathways 
(Xu et al.,  2007). Supplementation of melatonin in foodstuff may 
boost the production of the anti-inflammatory cytokine IL-1R and 
the negative acute-phase protein (APP) fibrinogen (Yu et al., 2017). 
Melatonin has been shown to have an anti-inflammatory effect in 
a variety of high-  and medium-grade inflammatory diseases. MT 
was shown to decrease LPS-induced TNF-α in human blood cells 
(Silva et al., 2004). MT inhibited the production of IL-6 from IL-2 
stimulated human lymphocytes and monocytes in vitro. MT has an 
anti-inflammatory impact on the NLRP3 inflammasome (Figure 3). 
In recent research, Zhang et al.  (2016) showed that melatonin is a 
strong inhibitor of the Inflammasome NLRP3 in an ALI mouse model 
triggered by LPS. Melatonin's positive impact decreases the flow of 
neutrophils and macrophages into the lungs and improves pulmo-
nary damage (Zhang et al., 2016).

Recently, several studies suggested that sirtuin is associated with 
diverse actions of melatonin. The idea that melatonin exerts indirect 

effects on RORα via the circadian system has recently gained trac-
tion. SIRT1 increases the amplitude of the rhythm by increasing 
transcription of the core oscillator genes Bmal1 and Clock through 
deacetylation of PGC-1α, making it easier for RORα to bind to RORE 
sequences (Chang & Guarente, 2013).

5  |  IMMUNOMODUL ATORY ROLES OF 
SIRTUINS

5.1  |  Modulation of inflammation by SIRT1 proteins

Sirtuins are proteins belonging to the class III histone deacetylase 
(HDACs) family that are ubiquitously found in all forms of life includ-
ing humans. It was called after the Saccharomyces cerevisiae gene 
silent information regulation-2 and was known to be involved in the 
regulation of multiple processes like premature aging, inflammation, 
DNA damage, or any kind of genomic instability. A total of seven sir-
tuins (SIRT1–SIRT7) are present in humans (Frye, 2000). Among the 
seven sirtuins, silent information regulation-1 (SIRT1) has prominent 
anti-inflammatory, antiapoptotic, and antiaging effects (Nakagawa & 
Guarente, 2011) in several chronic diseases.

SIRT1 deacetylates histone proteins at specific residues (like H3 
and H4) and nonhistone proteins like tumor suppressor p53, fork-
head box protein O (FOXO) transcription factors, NF-κB, PARP, per-
oxisome proliferator-activated receptor-gamma coactivator 1-alpha 
(PGC-1α), and hypoxia-inducible factor (HIF)-1α (Brunet,  2004; 
Jeong et al., 2007; Lim et al., 2010).

SIRT1 can lead to reduced inflammation in COVID-19 patients by 
directly modulating the immune response in macrophages and sup-
pressing the activity of NF-κB by deacetylating Lys310 of the RelA/
p65 subunit (Rajendrasozhan et al., 2008; Yeung et al., 2004). The 
p53 signaling pathway was shown to be upregulated in SARS-CoV-2-
infected people's peripheral blood mononuclear cells, suggesting a 
role for cell death in COVID-19 pathogenesis. However, in COVID-19 
patients with severe and intermediate illnesses, the role of p53 in 
lymphocyte homeostasis is unknown. According to a recent study, 
reduced expression of the deacetylase SIRT1 led to lower transcrip-
tion levels of p53, compromising B and T cell signaling hemostasis 
and leading to B and T cell death, one of the main explanations for 
the severe symptoms of COVID-19 illness (Bordoni et al., 2021).

SIRT1 through modulation of NF-κB activation reduces poly 
(ADP-ribose) polymerase-1 (PARP-1) activity (Beneke,  2012; 
Rajamohan et al.,  2009). Studies have shown that knocking down 
the SIRT1 in macrophages of mice increases LPS-stimulated TNF-α 
(Yoshizaki et al., 2010). SIRT1 deacetylates c-Fos and inhibits activa-
tor protein-1 (AP-1) and leads to the downregulation of COX-2 gene 
expression in macrophages (Zhang et al., 2010). The COX-2 enzyme 
is expressed by cells involved in inflammation and helps the cells in 
the conversion of arachidonic acid into prostaglandins and other 
eicosanoids (Sellers et al., 2010).

SIRT1 influence the RAAS pathway by reducing the expres-
sion levels of AGTR1 in aged transgenic mice overexpressing SIRT1 
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compared with control mice (Diaz-Ruiz et al., 2015). SIRT1, there-
fore, reduces hypoxia by deacetylating hypoxia-inducible factor 
(HIF)-1α at residue LYS674 (Lim et al., 2010).

5.2  |  SIRT1 controls the biogenesis of mitochondria

SIRT1-stimulated deacetylation of PGC-1α acts as a chief regula-
tor of mitochondrial metabolism and biogenesis (Amat et al., 2009; 
Guo et al., 2014). SIRT1promotes translocation of PGC-1α to the nu-
cleus where it leads to coactivation of Nrf1/Nrf2 and mitochondrial 
transcription factor A (TFAM) to regulate the expression of genes 
responsible for encoding proteins involved in transcription and repli-
cation of mitochondrial DNA and the multienzyme complexes of the 
mitochondrial respiratory chain.

5.3  |  SIRT1 modulation of oxidative stress

SIRT1 has been exhibited to control ROS levels by modulating the 
mitochondrial electron transport chain. Inhibition of NF-κB tran-
scriptional activation by and reduction of expression of gp91phox 
and p22phox encoding for NADPH oxidase subunits by SIRT1, there-
fore prevents the production of reactive oxygen and nitrogen radi-
cals by phagocytes (Anrather et al., 2006; Manea et al., 2007; Xie 
et al., 1994). NFE2L2, also referred to as Nrf2 in literature is known to 
bind to the antioxidant response element (ARE) sequences in promot-
ers of the antioxidant genes and plays a crucial role in the activation 
of cellular antioxidant defense. Melatonin signals SIRT1-dependent 
transcriptional activation of Nrf2 to exert anti-oxidative effects have 
been reported in the developing rat brain and BV2 cells, and SIRT1 in-
hibitor remarkably decreased the SIRT1 and Nrf2 expression in BV2 
cells (Shah et al., 2017). SIRT1 was also demonstrated to add to the 
activation of the Nrf2/ARE antioxidant pathway and hamper the ap-
optosis of type II alveolar epithelial cells (Ding et al., 2016).

5.4  |  SIRT1 protein working in tandem with MT in 
COVID-19 patients

According to new retrospective research, COVID-19 infection may 
be much less prevalent in people who take supplementary melatonin 
(36–72 mg/day given in four divided doses). It was observed that a 
daily dose of MT led to decreased mortality rate, avoids ventilation 
problems, and decreased the duration of hospital stay of these pa-
tients. This effect might be explained by the fact that MT can up-
regulate type 1 interferon production by Coronavirus and activate 
polyubiquitination of the mitochondrial antiviral signaling (MAVS) 
protein through activation of SIRT1. In COVID-19 patients where 
there is oxidative stress due to uncontrolled production of cytokines 
and reactive oxygen species by the infected immune cells, SIRT1 
helps to mount an effective antiviral response mediated by upregu-
lating genes transcribing the Type I IFN (IFNβ) and by preventing the 

release of high mobility group box 1 (HMGB1) (Bonaldi, 2003) from 
the nucleus by avoiding its acetylation. SIRT1 was reported to up-
regulate NFE2L2 protein that can inhibit the activation of the NLRP3 
inflammasome, reducing the pro-inflammatory cytokine secretion of 
IL1 and IL18 and inhibiting the NF-κB activity, which is downstream 
of the MAVS protein, responsible for inducing the IFNβ through in-
terferon regulatory factor 3 (IRF3) (Dinicolantonio et al., 2021; Li 
et al., 2020). If these theories are accurate, a nutraceutical regimen 
containing sirtuin activator melatonin may be useful in COVID-19 
treatment that helps to alleviate severe inflammatory reactions in 
these patients by regulating the MAVS/IRF3/IFNβ, NF-κB, NRF2, 
HMGB1/ISG signaling pathways and boosting an antiviral effect.

5.5  |  Association of SIRT1 protein with polyphenol 
EGCG in viral diseases

According to several studies, supplementation of EGCG in diet may 
protect against complex neurodegenerative, cardiovascular, inflam-
matory, and cancer disorders by increasing SIRT1 deacetylase ac-
tivity, (Niu et al., 2013). SIRT1 inhibits the transcription activity of 
activator protein-1 (AP-1), resulting in the downregulation of COX-2 
gene expression, according to recent research (Zhang et al., 2010). 
EGCG was shown to decrease hepatic cholesterol synthesis by 
binding to the sterol regulatory element-binding protein (SREBP)-2 
and by upregulating SIRT1, FOXO1 expression, SOD activity, and 
total antioxidant activity (TAOC) and decreasing malondialdehyde 
(MDA) content (Li & Wu, 2018). It was also shown to possess anti-
inflammatory effects and enhanced disposal of glucose in adipo-
cyte cells by phosphorylating AMPK in the presence of SIRT1 (Xiao 
et al., 2014). EGCG stimulates SIRT1 protein which induced Akt and 
inhibits the NF-κB by phosphorylation of its p65 subunit. Another 
study reported the influence of the antioxidant property of EGCG on 
decreasing age-associated inflammation and liver injury by regulat-
ing the FOXO3a/SIRT1 signaling pathway through downregulation 
of the expression of NF-κB activity (Niu et al., 2013).

As a result, targeting the SIRT1 signaling pathways might be a 
viable treatment strategy for a variety of viral illnesses. The highest 
promising SIRT1-binding capability was found in EGCG, hence, it can 
be hypothesized to be a propitious pathway to treat viral diseases 
like COVID 19.

5.6  |  Clinical studies of EGCG in humans with 
moderate and severe SARS-CoV-2 infection

Tea has been linked to the prevention and treatment of COVID-19 
in three recent trials (Chowdhury & Barooah,  2020; Menegazzi 
et al.,  2020; Mhatre et al.,  2021). Early stages of viral infection, 
including attachment, entry, and membrane fusion, are inhib-
ited by epigallocatechin-3-gallate (EGCG) (Hoffmann et al.,  2020; 
Kaihatsu et al.,  2018; Mhatre et al.,  2021; Steinmann et al., 2013; 
Xu et al., 2017). The majority of these studies were carried out in 
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vitro in circumstances that may differ significantly from those found 
in people, therefore the findings should be regarded with caution.

In human HepG2 cells, the Nrf2-activator PB125® suppresses 
both ACE2 and TMPRSS2 production (McCord et al., 2020). In renal 
proximal tubule cells, genetic deletion of Nrf2 or pharmacological 
suppression of Nrf2 upregulates ACE2 expression, whereas its ac-
tivator, oltipraz, downregulates ACE2 expression (Zhao et al., 2018). 
Genes connected to Nrf2-dependent antioxidant response are con-
siderably reduced in COVID-19 patients' lung biopsies, and Nrf2 
inducers (4-octyl-itaconate and dimethyl fumarate) reduce SARS-
CoV-2 replication and inflammatory response (Cuadrado et al., 2020; 
Olagnier et al., 2020). These findings suggest that activating Nrf2 
might help prevent SARS-CoV-2 infection and reduce COVID-19n 
severity (Zhang et al., 2021).

In an LPS-induced mouse model of ALI, EGCG (15 mg/kg, i.p.) ad-
ministered 1 hr before and 3 hr after LPS instillation lowers ALI, neu-
trophil infiltration, and the rise in the M1/M2 macrophage subtype 
ratio (Almatroodi et al., 2020). If similar effects can be demonstrated 
in humans, EGCG might be useful in avoiding the cytokine storm and 
ARDS induced by SARS-CoV-2. In one study, the initial salivary con-
centrations of EGCG were 10–50 μM, with elimination t1/2 values of 
10–20 min, after drinking 200 ml of warm tea (containing 1200 mg of 
green tea extracts) and rinsing the mouth violently 10 times (Yang 
et al., 1999). Saliva samples (taken similarly) initially contained 120–
300 μM EGCG after participants kept 96 mg EGCG in 60 ml in their 
mouth for 2 min and then fell to 25–65 μM after 30 min.

These data suggest that after drinking or gargling tea, the levels of 
EGCG and other catechins in the oral/nasal/pharyngeal cavity may be 
high enough to protect against viral infection. It was observed in Japan 
that gargling a tea catechin solution on a daily basis lowered the inci-
dence of influenza infection in the elderly (Yamada et al., 2006). These 
exciting findings should be reproduced with a larger number of people 
and used to further antiviral studies in humans.

In another study by Bettuzzi et al., 10 SARS-COV-2 patients with 
positive swabs were treated at home for 15 days with two sessions of 
inhalation and three capsules each day (total catechins: 840 mg; total 
EGCG: 595 mg). All patients recovered fully and had no symptoms 
after a median of 9 days, with a range of 7–15 days. Seven patients had 
a negative SARS CoV-2 nasopharyngeal swab test after a median of 
9 days and a range of 6–13 days (Bettuzzi et al., 2021). At the end of 
the therapy, the following inflammatory markers viz. ɑ-1 antitrypsin, 
C-reactive protein, and eosinophils were significantly lowered in all pa-
tients, whereas 7 out of 10 also showed decreased levels of IL-6 and 
erythrocyte sedimentation rate. A bigger number of people must be 
engaged in a research study to establish if green tea polyphenols might 
assist COVID-19 patients to recover faster and prevent a fatality.

6  |  CONCLUSION

The Coronavirus disease-19 pandemic is currently the world's most 
significant health concern. There is currently no single effective 
drug for the treatment of COVID-19 infection, but the inclusion of 

a variety of nutraceuticals derived from medicinal plants could pro-
vide a promising adjunct therapy for COVID-19 disease. Identifying 
the conditions in which SIRT1 or other sirtuins mediate or operate in 
tandem with Melatonin and/or with EGCG, therefore supporting or 
enhancing melatonin's and/or EGCG activities, will be a critical effort 
in near future. As evidenced by data from various viral illnesses with 
the enhanced cytokine release and inflammation, this relates to their 
common effects on TCR, TLR4, NF-κB, and inflammasomes as well 
as several newly found or investigated pathways.

In this review, we propose how SIRT1-dependent and 
-independent pathways could work along with MT and EGCG in pre-
venting the entry and growth of Coronavirus 2 inside the host cell 
and modulate underlying signaling pathways specially NF-κB protein 
to alleviate the inflammation, oxidative stress, and lung injury in pa-
tients with severe COVID-19 infection. To support our hypothesis, 
more clinical trials need to be set up to standardize the dose and 
time of administration of this phytotherapeutics.

We propose that the NF-κB signaling pathway is one of the com-
mon pathways involved in the pathogenesis of the disease known to 
be suppressed by SIRT1 activators EGCG and MT in patients with se-
vere SARS-CoV2 infection. Thus, the inclusion of these phytochem-
icals as dietary supplements may help in combating Coronavirus 
2 infection in the host by strengthening their immune system. 
However, the crosstalk between these phytochemicals, SIRT1 and 
NF-κB, and their mechanism of action should be further validated 
through clinical studies and that may prove beneficial for the pre-
vention and recovery of COVID-19 patients.
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