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Abstract

Motivation: A perennial problem in the analysis of environmental sequence information is the as-

signment of reads or assembled sequences, e.g. contigs or scaffolds, to discrete taxonomic bins. In

the absence of reference genomes for most environmental microorganisms, the use of intrinsic nu-

cleotide patterns and phylogenetic anchors can improve assembly-dependent binning needed for

more accurate taxonomic and functional annotation in communities of microorganisms, and assist

in identifying mobile genetic elements or lateral gene transfer events.

Results: Here, we present a statistic called LCA* inspired by Information and Voting theories that

uses the NCBI Taxonomic Database hierarchy to assign taxonomy to contigs assembled from en-

vironmental sequence information. The LCA* algorithm identifies a sufficiently strong majority on

the hierarchy while minimizing entropy changes to the observed taxonomic distribution resulting

in improved statistical properties. Moreover, we apply results from the order-statistic literature to

formulate a likelihood-ratio hypothesis test and P-value for testing the supremacy of the assigned

LCA* taxonomy. Using simulated and real-world datasets, we empirically demonstrate that voting-

based methods, majority vote and LCA*, in the presence of known reference annotations, are

consistently more accurate in identifying contig taxonomy than the lowest common ancestor algo-

rithm popularized by MEGAN, and that LCA* taxonomy strikes a balance between specificity and

confidence to provide an estimate appropriate to the available information in the data.

Availability and Implementation: The LCA* has been implemented as a stand-alone Python library

compatible with the MetaPathways pipeline; both of which are available on GitHub with installation

instructions and use-cases (http://www.github.com/hallamlab/LCAStar/).

Contact: shallam@mail.ubc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The rise of next-generation sequencing technologies has generated a

tidal wave of sequencing projects focused on natural and engineered

ecosystems, resulting in a plethora of environmental sequence

information. Several software pipelines, including MG-RAST (Meyer

et al., 2008), HUMAnN (Abubucker et al., 2012) and MetaPathways

(Hanson et al., 2014a,b; Konwar et al., 2013, 2015) have been de-

veloped to process environmental sequence information, provide taxo-

nomic and functional annotations and assist in metabolic pathway
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reconstruction. Despite the availability of these pipelines, accurately

assigning taxonomy to environmental sequence information remains a

challenging enterprise given a general lack of reference genomes for

most uncultivated microorganisms. From a bioinformatics perspective,

current software tools lack statistical frameworks and hypotheses tests

for the assignment of reads or assembled contigs to discrete taxonomic

bins leaving developers and investigators with limited theoretical dir-

ection (Prosser, 2010; Thomas et al., 2012).

Due to the popularity of the MEGAN software, the lowest-

common ancestor (LCA) method is routinely applied to individual

open reading frame (ORF) annotations with a correction based on

homology search quality statistics (Huson et al., 2007). While using

LCA to assign individual ORF taxonomy seems straight-forward, it

is unclear how to effectively apply this rule to contigs or scaffolds

containing multiple ORFs. Consider an alternative perspective of

electing a representative taxonomy where each qualifying ORF an-

notation ‘votes’ for overall contig assignment. In this election indi-

vidual ORFs may have differing ‘taxonomic opinions’, projecting

their vote differently onto the Tree of Life. Two popular Voting

Theory results provide justification in choosing a majority as the

correct response. Condorcet’s Jury Theorem considers an election of

two opinions, one correct and one incorrect and voters each inde-

pendently choose one of these two opinions with the assumption

that they choose the correct response with probability P > 1
2

(Estlund, 1994). The observed majority converges in probability to

the correct decision as the election size grows to infinity.

Alternatively, Feige and colleagues studied the depth of noisy deci-

sion trees where each query at a node produces the correct answer

with some probability P > 1
2 (Feige et al., 1994). They derived tight

bounds on the number of queries required to compute threshold and

parity functions, and analyze a noisy comparison model with tight

bounds on comparison, sorting, selection and merging. However,

applying these Voting Theory methods to taxonomic count data is

complicated by the hierarchical definitions. For instance, individual

ORFs predicted on the same contig may be assigned to different

taxonomic levels within closely related lineages, e.g. species, sub-

species, strain, or serovar. The approximate nature of popular hom-

ology search algorithms and idiosyncratic database annotation in-

creases uncertainty in taxonomic estimation from functional genes,

making accurate placement on the taxonomic hierarchy a challenge.

Moreover, sparse observations of multiple related taxa can under-

mine confidence in the reported majority.

Here, we introduce LCA*, an entropy-based statistic and algo-

rithm for declaring a sufficiently supported majority on the NCBI

Taxonomic Database Hierarchy (NCBI Tree) (Federhen, 2012). The

statistic offers a principled method of electing a majority taxon by

applying results from Information and Voting Theory to contig or

scaffold annotations, obtaining an acceptable majority while minimiz-

ing changes to the underlying taxonomic distribution. Moreover,

order-restricted statistical results can be used to provide supremacy

tests for an elected taxonomy as an alternative to traditional v-squared

uniformity tests. Using both simulated and real world datasets we

demonstrate that in the presence of known reference alignments,

voting-based methods of simple Majority and LCA* are consistently

more accurate than the conventional LCA algorithm popularized by

MEGAN, hereafter referred to as LCA2, and that LCA* taxonomy

strikes a balance between specificity and confidence to provide an esti-

mate appropriate to the available information in the data.

1.1 Motivation
Lets work LCA* through an illustrative example where taxonomic

annotations are quite variable and dispersed (Fig. 1). A simple

Majority method, choosing the taxonomy with the most annotations

may be intuitive, but a majority of 3 out of 11 taxa is not very con-

vincing. Alternatively, to combat this dispersion it might be a good

idea to elect the LCA as the majority, but this very conservative esti-

mate manifests limited resolving power (e.g. root, prokaryotes, etc.).

In the case of individual ORF annotations, LCA estimates would be

made less extreme by discarding annotations that do not meet cer-

tain quality thresholds, on the evolutionary assumption that hits to

taxa phylogenetically further away from the origin will be less simi-

lar. However, in the case of assembled environmental sequence in-

formation, e.g. contigs or scaffolds, this is often not an option,

because common practice summarizes annotations via some taxo-

nomic estimation method (e.g. Best-BLAST, LCA). LCA* takes a

bottom-up approach by expanding the specific simple majority esti-

mate upwards in the taxonomic hierarchy, progressively collapsing

annotations until a satisfying majority, an a-majority, is obtained.

Here, we can leverage relevant Voting Theory results like

Condorcet’s Jury Theorem and the work of Feige on noisy decision

trees to justify a proportion a > 1
2. However, there remains the issue

of how to collapse the tree automatically, as collapsing arbitrarily

can introduce significant bias. Here, we will use the information-

3 2

1

1 2 11Majority

LCA*

LCA2

Fig. 1. Illustrative example of taxonomic assignment methods: LCA*, Majority and LCA2. Node numbers indicate the number of annotations associated with each

taxonomic position in the tree, and the double-circled node is the actual originating taxonomy. In a typical metagenomic assembly ORF, annotations can be vari-

able, spanning a number of different positions in the tree. In this example, LCA2 provides a conservative estimate, while the simple Majority method provides a

specific taxon without very much support from the data. The LCA* tempers the Majority estimate by collapsing annotations up the tree in a principled way until a

sufficient a-majority is reached (a > 0:5), distributing the entropy of the underlying taxonomic distribution as little as possible
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theoretic interpretation of entropy to motivate an algorithm of col-

lapsing annotations in a principled way.

Since the application of information entropy is relatively rare in

microbial ecology outside of diversity estimation (Legendre and

Legendre, 2012), we will provide a brief introduction that will help

in the understanding and motivation of LCA*. Entropy (Shannon’s

Entropy) is the fundamental unit of information defined as the aver-

age amount of information needed to specify the state of a random

variable. Intuitively it can be described as a measure of uncertainty.

The uniform random variable, a situation where all outcomes are

equally likely has the highest possible uncertainty, and therefore the

highest entropy, while a more spiked random variable has less un-

certainly, and therefore less entropy. Entropy is an extremely useful

concept, and has been central to the development of coding theory

(e.g. file compression), cryptography and signal processing (Wade,

1994). Moreover, differences in entropy (also known as Relative

Entropy or the Kullback–Leibler divergence) are used as a measure

for the divergence between two probability distributions (Kullback

and Leibler, 1951). For example, in Machine Learning, Random

Forest classifiers use entropy as a measure of separation quality, and

it is used to identify the most discriminating separations in a hier-

archy of classifier models (Breiman, 2001). The LCA* algorithm,

uses the concept of entropy to measure the amount of change that

collapsing annotations up the tree to a particular node will cause,

calculating an a-majority while minimizing the change in entropy of

the taxonomic distribution as much as possible.

2 LCA*: derivation and algorithm

In order to reason clearly about assembled environmental sequence

information, annotations and taxonomy within the NCBI Tree, it is

first necessary to construct a mathematical framework that defines

them, their relationships, and describes any additional notation

needed to perform the entropy calculations and implement the algo-

rithm. First, we will describe notation for the inherent tree-structure

of the NCBI Tree, and add some specific notations for child nodes

and child sub-trees that will be useful when calculating the entropy

of annotations within the tree. Next, we will describe assembled en-

vironmental sequence information from contigs or scaffolds, pre-

dicted ORFs and annotations, and define what it means for a

particular set of annotations to have a sufficient a-majority. To fa-

cilitate the collapsing of annotations up the taxonomic hierarchy,

we will define an annotation as having a taxonomic lineage in terms

of partially ordered sets, which will allow us to define phylogenetic-

ally valid transformations among observed annotations. In particu-

lar, we will define consistent reductions to be a special kind of

transformation for collapsing all annotations within a sub-tree up to

its root node.

Having devised clear methods for moving annotations around

the tree, we will then define the entropy of the tree in terms of its an-

notations collapsed at a particular node. From here we will make a

key observation that the entropy of annotations collapsed at a given

node can be decomposed to the sum of itself and its children. Using

this new decomposition to formulate the difference in entropy be-

tween two annotations, we observe that minimizing the difference is

equivalent to minimizing the entropy of the node we choose to move

to, an observation that will be extremely useful in formulating an ef-

ficient algorithm. Reasoning that we can calculate the change in en-

tropy of annotations collapsed at every node, there must be some

node with annotations that has both a valid a-majority and a min-

imal entropy change compared to all other nodes in the tree. This

node is the target LCA*. Finally, we formulate an algorithm to

calculate LCA*. We first describe a brute-force method of finding

the valid node, and then observe that a node-coloring scheme re-

stricting calculations to observed annotations significantly reduces

computational complexity.

2.1 Derivation
Let the NCBI Taxonomic Database Hierarchy be a tree TNCBI,

where the nodes x represent taxa and edges represent phylogenetic

relationships. Let X denote the set of all nodes in TNCBI,

X ¼ fx1;x2; . . . ; xMg, where M is the total number of taxa in TNCBI

(including taxa at internal nodes). Next, let Tx denote a sub-tree

within TNCBI rooted at node x. Let the set of nodes in sub-tree Tx be

denoted Xx, allowing a complete recursive notation for all trees and

sub-trees of TNCBI (Fig. 2). As a special case we will denote the root

node of TNCBI as x�, and it follows that X � Xx� .

It will be convenient to discuss the children of a given node x 2 X,

so let the set of immediate children of node x be Yx ¼ fy1; . . . ; ysg,
where s is the number of immediate child nodes of x. Further, the set

of immediate children of x have respective sub-trees

Yx ¼ fTy1
;Ty2

; . . . ;Tys
g, where each child sub-tree has the set of

nodes Xy1
;Xy2

; . . . ;Xys
. A node x is a leaf node if it has no immediate

children, i.e. Yx ¼1 and Yx ¼1, otherwise x is a non-leaf node.

Next, let us describe assembled contigs, ORFs, and their taxo-

nomic annotations. Let R be the set of ORFs in the metagenome,

and every ORF in R is by way of some annotation associated with a

taxonomic node x 2 X on TNCBI. Let ORFs that came through the

annotation procedure without a known taxonomy be set to ‘root’ at

node x�. In other words, every predicted ORF in a contig has a cor-

responding taxonomic annotation, which is set to ‘root’ if it did not

find an acceptable hit in the annotation database. Suppose contig C

has the set of N ORFs OC ¼ fo1; . . . ;oNg with a corresponding n-

tuple of annotations AC ¼ ða1; . . . ; aNÞ where annotation ai corres-

ponds to ORF oi 2 OC for i ¼ 1; . . . ;N. We use the notation ~A to

denote the set of annotations in the n-tuple A, with the set of anno-

tations from contig C being detonated as ~AC.

We need to determine or elect a taxon from annotations ~A to

label contig C. One straight-forward method might be to use a sim-

ple majority vote procedure on the taxonomic assignments for each

ORF on contig C, AC. However, there may not be a simple majority

among taxa AC, or even a majority with a minimum proportion of

the votes a, where a > 1
2, a so-called a-majority.

DEFINITION 1 (a-majority). Given an n-tuple of annotations A,

for any a > 1
2 we say that A satisfies an a-majority if there is a taxon

...

x*
TNCBI

Tx

y
1

y
2

y
s

x

Fig. 2. The NCBI taxonomy tree structure used in our derivation. Nodes repre-

sent taxons and a line between two nodes shows taxonomic relationships. Tx

denotes the sub-tree of TNCBI rooted at x and y1; y2; . . . ; ys are the immediate

children of x
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a 2 A that constitutes at least a-fraction of the elements. Conversely,

if no such taxon a exists then we say annotations A does not satisfy

an a-majority.

Clearly, given two proportions a and a0 such that a � a0 > 1
2, if

some annotation n-tuple A has an a-majority, then by transitivity it

implies that A also has an a0-majority.

It might be possible to obtain an a-majority by replacing annota-

tions A with modified annotations A0, where each taxon a is

replaced by one of its ancestral taxa a0, and define such a relation-

ship as a partial order on taxa as a0� a, where a; a0 2 X. For ex-

ample, if a is Alphaproteobacteria, a0 could be Proteobacteria or

some other ancestor of a all the way to the root x�. Clearly, it is al-

ways possible to create a majority by replacing each taxon a 2 A

with the root x�. However, this trivial result has limited resolving

power, as we have lost almost all taxa-specific information about

contig C other than ‘C came from LUCA.’ In fact, any modified set

of taxa A0 essentially represents some loss of taxon-specific informa-

tion from A. Therefore, we would like to formulate a way to quan-

tify this loss of information in a principled way such that we can

design an algorithm to construct an a-majority while minimizing the

amount of information loss required to attain it.

To formulate this problem, we need to extend the definition of

the partial order � to n-tuples as follows. We will now denote

some specific transformations on an n-tuple of taxa that we call

reductions:

i. For any two taxa a; a0 2 X we denote the reduction of a to a0 as

a! a0, such that, a0� a. If there exists an annotation a00 such

that a00� a then either a00 is equal to a or a00. In other words, a00 is

either a itself or in its lineage. When a is reduced to a00 through a

! a0 ! � � � ! a00 then we denote such a multistep reduction of a

to a00 as a!� a00.

ii. We define the partial order relation � r for n-tuples A and A0 as:

A0� rA if for every pair of elements a and a0 from A and A0, at

the same index positions, satisfies the relation a0� a. Then we

denote by A! A0 to mean for every corresponding element a (in

A) and a0 (in A0) we have a! a0; and by A!� A0 we denote the

fact that for every corresponding pair of elements a (in A) and a0

(in A0) we have some series of transformations a!� a0. Note that

for both A! A0 and A!� A0 we have A � rA
0.

We define annotation n-tuple A0 to be consistent if for every pair of

annotations a and a0 from A and A0 we have a� a0 and a0� a. Thus,

we define a consistent reduction to be any reduction A! A0, and

similarly, a set of consistent reductions as A!� A0 where this condi-

tion holds. This consistency condition is imposed in order to not

bias a taxon in terms of its depth on the NCBI Tree (measured from

the root node). For example, if for annotations A � ða1; a2Þ, where

a1 ¼ Alphaproteobacteria and a2 ¼ Proteobacteria, then A does not

preserve consistency since a2 � a1. However, annota-

tions A0 � ða01; a02Þ, where a01 ¼Alphaproteobacteria and a02 ¼
Betaproteobacteria, then annotations A0 preserves consistency.

Intuitively, we can view a consistent reduction A! A0 as a reduc-

tion of all annotations descending from x to x, or in other words,

the collapsing of all annotations corresponding to a sub-tree of x

to x.

Let’s note some observations about the reduction of annotation

n-tuples. Every reduction step for an annotation n-tuple A to an-

other n-tuple A0; A! A0; A0 is less specific with respect to A. It is

important to realize that A0 cannot convey any new information

about A. Moreover, for any annotation n-tuple A, there exists a re-

duction A!� A00 where A00 respects a-majority for some a in the

interval ð12 ; 1�; note that A00 ¼ A�, where A� is the n-tuple where

every element is the root x�, can always provide a possible solution.

Therefore, if annotation n-tuple A does not have a a-majority, there

exists an A00 that has a-majority and A!� A00, i.e. a sequence of single

step reductions A! A1 ! � � � ! Ak ! A00. For a given A there may

be multiple solutions to take the position of A00, and in such cases we

would like to pick the candidate that loses the least amount of taxo-

nomic information. In this case, we assume that information-

theoretic entropy and biological ‘taxonomic information’ coincide.

We must now define entropy of taxonomic annotations A.

DEFINITION 2. Given annotation n-tuple A and node x in TNCBI,

we define entropy Hðx; AÞ as Hðx; AÞ ¼ �
P

z2X pAðzÞlogpAðzÞ ¼
�
P

z2X\ ~A pAðzÞlogpAðzÞ, where pAðzÞ ¼ rAðzÞ
N ; ~A is the unique set of

elements in A, rAðzÞ is the number of annotations in ~A that are taxon

z, and N is the length of the annotation n-tuple A.

Having defined our reductions and tree entropy given annotation

n-tuple A, given an acceptable majority proportion threshold

a 2 ð0:5; 1�, we can now formulate a minimal entropy reduction on

A to an a-majority satisfying A0.

DEFINITION 3 (Minimal Entropy Reduction). Given annotation n-

tuple A from contig C and a majority proportion a, we would like to

produce an annotation A0 through reductions A!� A0, such that A0

satisfies an a-majority and minimizes the change in entropy for all

such A0, i.e. min8A0 ;A0 � rA jHðx; AÞ �Hðx; A0Þj, electing the a-major-

ity taxon of A0 as the origin of C.

In order to find an annotation n-tuple A0 that has an a-majority

and minimizes the change in entropy, it is sufficient to replace some

subset of A, S, by the lowest common ancestor of all taxa a in S, i.e.

a � s for all s 2 S. If there exists another a0 such that a0� s for each

s, this implies a0 ¼ a, (i.e. the lowest common ancestor of S is

unique). Therefore, one brute-force way would be to compute the

change in entropy for all valid transformations DHðx; A;A0Þ � Hðx;

AÞ �Hðx; A0Þ at every node x.

Next we will expand on and define some simplifications of en-

tropy Hðx; AÞ and change in entropy DHðA;A0Þ, that will prove use-

ful in the actual construction of the LCA* algorithm. Notice that

entropy can be written

HðAÞ ¼ �
X
z2X

rAðzÞ
N

log
rAðzÞ

N
¼ � 1

N

X
z2Xx

rAðzÞ logðrAðzÞÞ � logN
� �

¼ � 1

N

X
z2Xx

rAðzÞlogðrAðzÞÞ þ logN

N

X
z2Xx

rAðzÞ

¼ � 1

N

X
z2Xx

rAðzÞlogrAðzÞ
� �

þ logN;

where rAðzÞ refers to the number of annotations assigned to taxon

node z. Similarly, observing that the set of annotations in a sub-tree

at x, Xx, can be partitioned as the union of itself and the nodes in its

immediate children’s sub-trees Xx ¼ fxg [ [
y2Yx

Xy, we can partition

the entropy of a set of annotations as follows:

HðAÞ ¼ � 1

N

X
z2Xx

rAðzÞlogrAðzÞ
� �

þ logN

¼ � 1

N
rAðxÞlogrAðxÞ þ logN � 1

N

X
y2Yx

X
w2Xy

rAðwÞlogrAðwÞ

¼ � 1

N
rAðxÞlogrAðxÞ þ

X
y2Yx

LA
y

" #
þ logN

where LA
y ¼ rAðyÞlogrAðyÞ if y is a leaf node in TNCBI and

LA
y ¼

P
z2Yy

LA
z , otherwise. Note that we decomposed the entropy
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into two main terms, the entropy of node x, rAðxÞlogrAðxÞ, and the

sum of the entropy terms of its immediate children’s trees,
P

y2Yx
LA

y

(Fig. 3).

From here we can express the change in entropy DHðA;A0Þ on a

consistent reduction of annotations A! A0 as

DHðA;A0Þ ¼ � 1

N

X
z2Xx

rAðzÞlogrAðzÞ þ logN

" #

� � 1

N

X
z2Xx

rA0ðzÞlogrA0ðzÞ þ logN

" #
:

Since we are interested in an A0 that minimizes DHðA;A0Þ, note that

all terms corresponding to A in the above relation remain constant.

We can simplify the calculation by focusing on finding an A0 such

that A0 is a consistent reduction of A and minimizes

dHðA;A0Þ � �
P

z2Xx
rA 0 ðzÞlogrA0ðzÞ and the recursive relation

dHðx; A;A0Þ ¼ �rA 0 ðxÞlogrA 0 ðxÞ þ
X
z2Yx

dHðz; A;A0Þ; (1)

based on which we will design our algorithm. We will now show

that such a transformation to A0 exists for any given starting annota-

tions A.

PROPOSITION 1. Suppose A is any n-tuple of annotations, then for

any a > 1
2 there exists a taxon bx and a consistent reduction of A to

some n-tuple A00, such that (i) A00 respects a-majority, (ii) dHðA;A00Þ
¼ minA0 � A dHðA;A0Þ for all consistent reductions A!� A0 and (iii) A

and A00 only differ in the elements where bx is in A00.

Proof. Note that in the above proposition it is easy to show the ex-

istence of a taxon bx that satisfies conditions (i) and (ii). This is becausebx ¼ x� is a trivial solution that satisfies condition (i), and the set of

candidates that satisfies A00 is non-empty, hence here exists a taxon

that satisfies condition (ii). In order to realize (iii), note that since A!�
A00 and A00 has an a-majority, therefore, there exists an annotation ~x

in A00 which is at least a fraction of all elements in A00. Since the reduc-

tions A!� A00 are consistent, we can achieve the a majority by simply

collapsing the annotations that are descendants of ~x in TNCBI, or spe-

cifically, for all annotations a 2 A where ~x � a; a!� ~x. h

2.2 Algorithm
Since we have outlined a mathematical framework defining a-major-

ity, consistent reductions on the NCBI Tree, and a recursive defin-

ition of the entropy of annotations A ¼ ða1; a2; � � � ; aNÞ on TNCBI,

we can now focus on designing and implementing an algorithm,

ComputeLCA*, that calculates an a-majority for a given contig C

while minimizing changes to its underlying information entropy.

The input to ComputeLCA* consists of the NCBI taxonomy tree

TNCBI, and the n-tuple of ORF annotations A for the ORFs in a con-

tig C, and the threshold a that defines the majority (Algorithm 1).

Since we are interested in the taxon that minimizes the change in en-

tropy dHðA;A0Þ, our algorithm is designed to exploit the recursive

nature of traversal in the TNCBI as well as the recursive delta entropy

term (Equation 1).

We use the global hash data-structures S½x� and L½x� for every

node x 2 X. S½x� stores the sum of annotations at node x at its col-

lapsed sub-tree x0 2 Xx, and similarly L½x� stores the sum of entropy

terms rðx0Þlogrðx0Þ for each node in the subtree of x0 2 Xx, i.e. dHðx;

A;A0Þ at a given x. ComputeLCA* starts at the root x� and recur-

sively traverses TNCBI, calculating sums of L and S at all nodes. The

algorithm then selects the sum that minimizes the relative entropy

and also has sufficient support a.

2.2.1 Implementation

ComputeLCA* for a typical number of annotations on a contig does

not take more than a few hundred milliseconds, but the described

brute-force method traversing the entire NCBI Tree is computation-

ally inefficient, and for samples with hundreds of thousands of con-

tigs the total computation time could be large. Therefore, in the

implementation of the ComputeLCA*, a key optimization step is

incorporated that skips the examination of subtrees where no anno-

tations exist.

Consider the set of N ORFs and corresponding set of N annota-

tions originating from contig C. Let M be the total number of taxo-

nomic nodes in TNCBI. Then according to ComputeLCA*, it can

take O(MN) steps to compute the LCA* taxonomy for C. Note

that at line 14 of ComputeLCA*, it is redundant to visit the sub-

tree rooted in the child node stored in loop variable c if there are

no annotations in the sub-tree. However, in order to know if anno-

tations are present in a given sub-tree of TNCBI, before running

ComputeLCA*, we color all nodes whose subtree contains a non-

empty set of annotations. We mark the nodes by considering one

annotation at a time, say a, as follows:

xTx

y
1

y
2 ys...

Fig. 3. Decomposition of entropy into sub-trees. A key observation in our der-

ivation is that the entropy of annotation A in a tree rooted at a given annota-

tion node x, Tx, can be decomposed into the sum of node x and the nodes of

its immediate children’s subtrees ðy1; y2; . . . ; ys Þ as Xx ¼ fxg [ [
y2Yx

Xy . From

here we can decompose the calculation of entropy H(A) in the same partition

Algorithm 1. ComputeLCA*

Require: TNCBI, A, a

Ensure: t�

1: S 1; L 1 / * S and L are hashes */

2: x�  rootðTNCBIÞ
3: call ComputeSL(x�;TNCBI;A)

4: t�  argminx s:t: S½x��ajAj L½x� /* result */

5:

6:

7: /* Subroutine ComputeSL computes the S, L for each

taxon */

8: subroutine ComputeSL(x;TNCBI;A)

9: if x is a leaf-node in TNCBI

10: L½x�  rðxÞlogrðxÞ
11: S½x�  rðxÞ
12: else

13: L½x�  0; S½x�  0

14: for each c in Children(x)

15: call ComputeSL(c;TNCBI;A)

16: L½x�  L½x� þ L½c�
17: S½x�  S½x� þ S½c�
18: return
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i. we start at the node a in TNCBI and travel upwards towards the

root one parent step at a time;

ii. in each step, if the current node p is not marked then mark p,

and move to its parent (if present), otherwise we are done with

annotation a;

iii. if the parent is already marked we are done with annotation a.

We now describe the relative computational complexity after

our optimization. Consider the partially ordered set ð ~A; � Þ of anno-

tations ~A on TNCBI, and suppose L is the size of largest subset S of ~A

such that any two annotations in S are not comparable via � to

each other. Our modified algorithm therefore takes (DL) steps to

mark the nodes in the upfront step, where D is the maximum tree-

depth in our set of annotations ~A 2 TNCBI. Since we only visit nodes

that have been colored at line 14, our modified algorithm has time

complexity O(DL). Although the worst-case time complexity could

still be O(MN), where the annotation-breath spans the entire TNCBI,

i.e. D¼M and L¼N, most real-word contig annotations tend to co-

alesce around a common lineage in the NCBI Tree. This makes

L<N and D < < M, and hence real-world running time O(DL) is

typically much smaller than O(MN).

3 Statistical significance

Although LCA* represents an a-majority taxonomic estimate, this

majority might not have statistical confidence, especially for smaller

contigs containing only a few ORFs. Here, we apply a multinomial

‘supremacy’ P-value to measure the statistical confidence of the

elected taxonomy (Nettleton, 2009). More details on the mapping

of LCA* to the hypothesis test and its implementation can be found

in Supplementary file 1, Section S1.

4 Methods

Simulated samples, parameter settings, distances and analytical

methods used in the performance analysis of LCA* can be found in

Section S2 of Supplementary File 1. A RMarkdown document

containing the code of this analysis can be found in Supplementary

File 2.

5 Results

The performance of LCA* was compared against two other taxo-

nomic estimation methods, LCA2 and Majority. LCA2 is the appli-

cation of the LCA algorithm to the taxonomic annotations of a

contig, while Majority is a simple majority method where taxonomy

is ascribed to the most number of annotations (Supplementary File

1, Section S2). We evaluated the relative prediction performance of

the three methods against two sets of simulated metagenomic con-

tigs (with and without target genes in the annotation database) and

one set of contigs from 201 microbial ‘dark-matter’ (MDM) single-

cell Amplified Genomes (SAGs) obtained from the Genomic

Encyclopedia of Bacteria and Archaea (GEBA) MDM project

(Rinke et al., 2013), a United States Department of Energy Joint

Genome Institute (JGI) initiative for sequencing thousands of uncul-

tivated bacterial and archaeal genomes from diverse branches of the

Tree of Life (Section 4).

In general, the voting-based measures Majority and LCA* out-

performed LCA2 using both the Simple-walk and weighted taxo-

nomic distance (WTD) distances (see methods). In both the Small

(10�100 randomly sampled contigs from 100 taxa) and Large

(10�2000 randomly sampled contigs from 2000 taxa) simulations,

as well as the GEBA MDM contigs, LCA* and Majority had

Simple-walk distances closer to zero when compared with LCA2

(Supplementary Fig. S1). With reference annotations removed from

the target database, distances of all three measures were significantly

increased in magnitude and variability, with voting based measures

offering only a marginal improvement (Supplementary Fig. S2). A

similar pattern was observed with the WTD, but here LCA2 is more

penalized for predictions widely outside their original taxonomic

lineage. Here, LCA2 predictions near the root caused a cluster of

negative WTD values in the GEBA MDM contigs (Supplementary

Fig. S3). Again, the removal of reference annotations increased

WTD distances in terms of magnitude and variability, with the

voting-based measures offering relatively minor improvement

(Supplementary Fig. S4). From a regression analysis perspective, it is

also possible to express these distances as error measurements, and

calculate the Root-mean squared error (RMSE) as a measure of ac-

curacy (Fig. 4). Here, the voting-based methods exhibited smaller

RMSE values in all cases, but were only significantly different at the

95% confidence level in the Large simulation and GEBA MDM con-

tigs when measured by the WTD. Without reference annotations

there was a trend to smaller RMSE values in the voting-based meth-

ods, but there was no significant difference between the three meth-

ods at the 95% confidence level (Supplementary Fig. S5). In no cases

were the RMSE statistics of voting-based methods LCA* and

Majority significantly different at the 95% confidence level.

The voting-based LCA* and Majority methods had similar per-

formance in terms of both the simple-walk and WTD with LCA* ex-

hibiting a slightly larger tail with reference annotations present

(Supplementary Figs S1 and S3). This difference is not seen without

reference annotations (Supplementary Figs S2 and S4). However,

the two methods differed significantly in their supremacy P-values

with and without the presence of reference annotations, LCA* re-

porting substantially smaller P-values on average (Supplementary

Figs S6 and S7), consistent with LCA* taxonomies providing greater

statistical confidence. Moreover, when we compare pairwise P-val-

ues, we can see that in the majority of instances, LCA* reported

more confident majority taxonomies. However, in many instances

the two voting-based methods were convergent, reporting the same

P-value when an a-majority is found in the original annotations and

no collapsing of annotations was necessary (Supplementary Fig. S8).

Fig. 4. Root-mean-squared error (RMSE) for LCA2, Majority, and LCA*, across

experiments and distances. Error bars represent 95% confidence intervals

drawn from a Student’s t-distribution
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With reference sequences removed, a similar pattern is observed, al-

though the statistical advantage of LCA* is diminished

(Supplementary Fig. S9). The cluster of points where the Majority

method’s P-values are 1.0 indicates a definite hazard in interpreting

the reported taxonomy. The P-value will equal 1.0 where there is a

tie for a majority taxonomy (i.e. Xk¼M), and highlights a situation

where an arbitrary decision is being made between two or more tax-

onomies. Interestingly, none of the LCA* estimates in our experi-

ments had a P-value of one, suggesting that because LCA* is

compelled to find some majority, occurrence of a such a stalemate

election is extremely rare.

6 Discussion

In this work we described, formulated, and implemented LCA*, an

entropy-based method to assign taxonomy to contigs assembled

from environmental sequence information. By defining a mathemat-

ical framework to reason about taxonomy, LCA* identifies a suffi-

ciently strong majority on the NCBI Tree while minimizing entropy

changes to the observed taxonomic distribution. This strikes a com-

promise between the competing goals of obtaining a sufficient ma-

jority of at least 50% of annotations as recommended by

Condorcet’s Theorem, while minimizing changes to the underlying

distribution. A likelihood-ratio test was implemented to test for the

supremacy of predicted taxonomies, reporting a P-value that can be

used as a measure of confidence and hazard for reported taxono-

mies. Using simulated and real-world datasets, we empirically dem-

onstrated that voting-based methods, majority vote and LCA*, are

consistently more accurate in taxonomically identifying a sequence

than the simple LCA2 method, and that LCA* taxonomy results in a

balance between specificity and confidence to provide an estimate

appropriate to the available information in the data.

While LCA* has a compelling theoretical basis for constructing

a majority from a variable taxonomic distribution, it is necessary to

consider several assumptions that the statistic makes. Due to the in-

herent variability in homology-search, annotation databases, or

taxonomic summary statistics (e.g. Best-BLAST, LCA, etc.),

observed annotations can appear on the tree at various taxonomic

levels. This raises a philosophical issue that observed multinomial

bins cannot be viewed as completely independent, as internal taxo-

nomic annotations could overlap in this model. One possible remedy

is to discard all annotations that do not fall on the leaves of the

NCBI Tree. However, annotation of metagenomic contigs can be

quite sparse, so discarding internal annotations in the name of inde-

pendence simply decreases valuable statistical power, and can artifi-

cially bias the signal towards an arbitrary taxonomy by removing

internal nodes. Alternatively, one could attempt to distribute anno-

tations from internal nodes equally to the observed leaves in the

tree. However, this creates its own discretization issue, as in many

cases votes cannot be distributed equally, and vote-splitting violates

basic assumptions of the multinomial model, i.e. votes are non-

negative integers. Moreover, vote-splitting can make the final pre-

dicted taxonomy more difficult to interpret, as the distribution in

each case could be very different from the observed, and risks elect-

ing a more specific taxonomy than supported by the data. In the

end, to avoid these issues we opted to leave internal annotations in

the election.

Though LCA* will attempt to give reasonable estimates when

observed annotations are highly variable, being an alignment-

dependent binning method its performance suffers substantially

when reference annotations are not present in the database, limiting

its capacity to estimate unknown taxonomy. Here, the method could

benefit by expanding the current framework to incorporate informa-

tion from the statistical properties of sequences found in alignment-

independent methods and ribosomal or Clusters of Orthogonal

Group (COG) marker genes. The election model could also be ex-

panded to incorporate genomic-signature information into a

weighted-voting or vote-splitting framework, which perhaps could

help improve statistical confidence in cases where observed annota-

tions are extremely sparse. However, expanding our current voting

theory model to include continuous variables is not compatible with

the current multinomial distribution. Range voting provides an al-

ternative perspective that attempts to accommodate a continuous

voting scale, but its theory has numerous impossibility results that

challenge all three of the common-sense principles of voting: pre-

serving majority rule, requiring a minimum level of core support,

and rewarding sincere voters (Balinski and Laraki, 2007).

‘Taxonomic reconciliation’ between NCBI Tree entries and riboso-

mal RNA gene or COG alignments (akin to methods recently imple-

mented in PhyloSift (Darling et al., 2014) would allow for an

apples-to-apples comparison between taxonomic and functional

marker gene binning methods, e.g. ML-TreeMap, MetaPhlan

(Segata et al., 2012; Stark et al., 2010), support more powerful inte-

grative alignment-dependent binning models, and facilitate prin-

cipled placement of taxa from one tree into the other.

7 Conclusions

The LCA* algorithm assigns taxonomy to contigs assembled from

environmental sequence information using the NCBI Tree. The algo-

rithm identifies a sufficiently strong majority on the hierarchy while

minimizing entropy changes to the observed taxonomic distribution

resulting in improved statistical properties. The algorithm and its

statistical tests have been implemented as a stand-alone Python li-

brary compatible with the MetaPathways pipeline; both of which

are available on GitHub with installation instructions and use-cases

(http://www.github.com/hallamlab/LCAStar/).
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