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Background: The number of primary human immunodeficiency virus (HIV)-1 non-B subtype infections
(non-B) and that of reports regarding the differences in the pathogenesis of subtype B and non-B in-
fections are increasing. However, to the best of our knowledge, there have been no reports on gross
deletion in the nef gene (gDnef) in non-B infections.
Methods: To determine whether there is a difference in the change in CD4þ T cells after treatment with
Korean Red Ginseng (KRG) between patients with subtype B and non-B infections, we retrospectively
analyzed and compared the annual decrease in CD4þ T cells (AD) and the proportion of gDnef in 77
patients who were followed for more than 10 years in the absence of combination antiretroviral therapy.
Results: Overall, AD was significantly faster in patients with non-B infections than in those with subtype
B infections. Survival analysis showed that the survival probability was significantly higher in subtype B
than in non B-infected patients. These differences mainly resulted from significant differences in the
amount of KRG and age. In the patients treated with KRG, there was a significant correlation between the
amount of KRG and the AD in both subtypes. Interestingly, there was a significant correlation between
the amount of KRG and the proportion of gDnef in patients infected with subtype B, but not in those
infected with non-B. The same phenomenon was observed when the KRG dose was adjusted.
Conclusion: Our results suggest that non-B may be biologically more stable than subtype B.
© 2022 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The high viral diversity of human immunodeficiency virus
(HIV)-1 has possible implications for the differential rates of disease
progression, responses to combination antiretroviral therapy (ART),
and the development of a vaccine; however, there are confounders,
such as access to medical care, nutritional status, socioeconomic
level, host genetic factors, and mode of viral transmission [1e3].
HIV-1 subtype B is the most common subtype in developed coun-
tries, and accounts for approximately 11%e12% of the global
epidemic [4]. Primary HIV-1 infections with various non-B sub-
types (hereafter called non-B) are increasing in developed coun-
tries [4e6]. There have been reports on the difference in disease
progression among the patients infected with non-B [7e9]. More-
over, there have been reports regarding the differences in the
replicative capacity [8,10] and down-modulation of the human
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leukocyte antigen class I and CD4 receptor [11] between the viral
subtypes. In particular, patients with subtype D infections show a
faster rate of CD4þ T cell decline than that in patients infected with
subtype B [12,13]. Despite the different demographic characteris-
tics, including the mode of transmission in Korea (Table 1), to the
best of our knowledge, there have been no reports on the differ-
ences in disease progression between subtype B and non-B.

The HIV-1 nef gene is important for the maintenance of high
viral loads and is critical for progression to acquired immunodefi-
ciency syndrome (AIDS) [14,15]. Therefore, it is considered themain
determinant of virulence [16]. Many studies have shown that long-
term slow progressors (LTSPs) harbor defective nef genes more
frequently than rapid progressors infected with subtype B [17e20].
A previous study revealed that Korean Red Ginseng (KRG) ingestion
caused a significantly slow decrease in CD4þ T cells in patients [21].
Using KRG, some patients can maintain their CD4þ T cell counts for
more than 20 years without receiving ART. Furthermore, KRG
treatment nonspecifically induces gross deletion in nef (gDnef), gag,
and pol in subtype B [20,22e27]. Consequently, it has been reported
that the long-term intake of KRG prolongs survival in patients
his is an open access article under the CC BY license (http://creativecommons.org/
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Table 1
Characteristics of 77 patients infected with human immunodeficiency virus-1 subtype B or non-B subtypes and treated with KRG.

Characteristic Subtype B Non-B subtypes P-value

No. of patients 46 31
Year of diagnosis
1986e1990 14 17 <0.05
1991e1995 27 14
1996e2000 4 1

Sex ratio (M:F) 39:7 27:5
Age at diagnosis (yr) 25 ± 9 32 ± 7 <0.001
Type of work
Overseas sailors and their spouses 4 29 <0.0001
Sex worker 2 0
Others 40 3 <0.0001

Mode of transmission
Heterosexual contact 9 30 <0.0001
Men who have sex with men 23 1 <0.0001
Transfusion or blood product 14 0 <0.001

Follow-up since diagnosis (months) 170 ± 41 151 ± 34
No. of patients treated with KRG 38 19 <0.05
Total amount of KRG administered (g) 6816 ± 7303 2408 ± 4930 <0.01
Monthly amount of KRG (g) 39 ± 40 14 ± 22 <0.01
No. of patients treated with zidovudine 11 11
Plasma RNA (copy/mL) at baseline 13,673 ± 18,551 28,156 ± 53,509
First CD4þ T cell (/mL) 546 ± 284 678 ± 233 <0.05
Last CD4þ T cell (/mL) 191 ± 205 159 ± 138
Interval from first to last CD4þ T cells (months) 163 ± 40 161 ± 61
Annual decrease in CD4þ T cells (/mL) 28 ± 17 45 ± 24 <0.001

KRG, Korean Red Ginseng.
This suggests that delta-nef played a major role in disease progression.
In the control group that did not take red ginseng, the delt-nef ratio was significantly higher in the patients followed for more than 10 years than in the follow-up group for less
than 10 years.
This seems to have contributed to long-term survival by slowing the annual decrease in the number of CD4þ T cells.
This seems to be a defective gene contributed to the long-term survival and slower CD4 þ T cells, open reduction in the number.
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infected with HIV-1 subtype B [28] by decreasing hyper-immune
activation [29] and inducing genetic defects [22e27]. However,
differing frommany reports on subtype B, there are only a few case
reports on the gDnef in patients with non-B infections [30,31].

This study, to our knowledge,is the first report on the proportion
of gDnef in patients with non-B infections and compared the re-
sponses with respect to CD4þ T cells and the proportion of gDnef
after KRG treatment between patients infected with subtype B and
non-B over 10 years. It is likely that an older age and lower amount
of KRG in non-B may have played a role in the observed faster
annual decrease in CD4þ T cells (AD) compared to that found with
subtype B infection. However, there was no significant difference in
the change in CD4þ T cells when the amount of KRG was adjusted.
These results of a comprehensive nationwide study suggest the
possibility of subtype difference in the genetic stability of HIV-1.
2. Materials and methods

2.1. Patients

Among our cohort, we selected 77 patients, all of whom were
followed for more than 10 years in the absence of ART since diag-
nosis. Based on phylogenetic analysis of the nef gene [32], the non-B
subtypes were determined. In this study, the number of patients
infected with subtype B and non-B was 46 and 31, respectively
(Table 1).
2.2. KRG treatment

Among patients with subtype B and non-B infections, 8 and 12
patients were not treated with KRG and 38 and 19 were treated
with KRG for a variable period, respectively (Table 2). KRG capsules
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were manufactured from the roots of 6-year-old, fresh ginseng
plants (Panax ginseng Meyer) harvested in the Republic of Korea
(Korea Ginseng Corporation, Seoul, Korea). One capsule contained
300 mg of powder without any additives. The patients were
instructed to take six capsules orally, three times daily for a total
daily dose of 5.4 g [21e26,33]. There was an interruption in KRG
ingestion for 4e5 months after the first 6-month pilot study, and
there were several other interruptions before July 2000. In addition
to KRG, zidovudine was administered to 11 patients in each group
(Table 1).
2.3. Ethics statement

The institutional review board of the Asan Medical Center
approved the protocol of this study (Code 2012e0390; June 4,
2012). All subjects provided their informed consent for inclusion
before participating in the study. The study was conducted in
accordance with the principles of the Declaration of Helsinki.
2.4. Measurement of CD4þ T cell count and viral load

CD4þ and CD8þ T cells were measured using a FACScan flow
cytometer (BD, Franklin Lakes, NJ, USA) after staining peripheral
blood mononuclear cells with phycoerythrin- and fluorescein
isothiocyanate-conjugated antibodies for CD4 and CD8 antigens
(Simultest Reagents; BD) [30]. The HIV-1 RNA copy number in the
serumwas measured using an AMPLICOR 144 HIV-1 monitoring kit
(Roche, Basel, Switzerland). The copy numbers were converted into
plasma equivalent numbers per mL [34].



Table 2
Comparison of Korean Red Ginseng-treated and control groups among patients infected with human immunodeficiency virus-1 subtype B or non-B subtypes.

Group Subtype B Non-B subtypes P-value

KRG-treated group

No. of patients 38 19 <0.05
Age at diagnosis (yr) 24 ± 10 31 ± 7 <0.01
Follow-up since diagnosis (months) 174 ± 46 154 ± 40
Total amount of KRG administered (g) 8236 ± 7276 3929 ± 5849 <0.05
Monthly amount of KRG (g) 47 ± 40 23 ± 25 <0.05
Plasma RNA (copy/mL) at baseline 14,631 ± 19,751 33,073 ± 64,959
Annual decrease in CD4þ T cells (/mL) 26 ± 16* 40 ± 23 <0.01
Control group
No. of patients 8 12
Age at diagnosis (yr) 28 ± 5 34 ± 6 <0.05
Follow-up since diagnosis (months) 149 ± 16 146 ± 21
Plasma RNA (copy/mL) at baseline 7510 ± 5447 18,324 ± 13,236 <0.05
Annual decrease in CD4þ T cells (/mL) 41 ± 17* 52 ± 25

*P < 0.05 between 26 ± 16 and 41 ± 17.
KRG, Korean Red Ginseng.
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2.5. RNA preparation, amplification of nef, and subtyping

Total RNA was extracted from 300 mL of serum using a QIAamp
UltraSense Viral RNA kit (Qiagen, Hilden, Germany), as described
previously [26,32]. The outer primer set (Nef5050 and LTR3) and
inner primer set (Nef5 and N10) for subtype B and various primer
sets for non-B are described in detail in a previous report [32]. The
PCR fragments (wild type and short one) were purified from
agarose gels with an MG gel extraction SV Kit (MGmed Inc., Seoul,
Korea) and sequenced directly using Applied Biosystems 3730XL
(Macrogen Inc., Seoul, Korea). PCR contamination was monitored
by physical separation for the PCR environment, BLAST searches,
and phylogenetic analysis. The subtyping was performed as
described in a previous study [32]. Eight out of 46 patients with
subtype B infections harbored the western subtype B, whereas the
rest harbored the Korean subclade B.

The distribution of non-B (n¼ 31) was as follows: 13, CRF02_AG;
3, G; 3, A1; 2, A; 2, A2; 2, C; 2, CRF06_cpx; 2 untypable; and 1 each
for D, CRF01_AE, and F [32].

2.6. Definition of gross deletion in nef

Gross deletion in nef was defined as an out-of-frame deletion
and a deletion of more than 15 nucleotides [20]. Genes with small
in-frame deletions (3e15 bp) that included the last cysteine were
considered intact.

2.7. Statistical analysis

Data are expressed as the mean ± 2 standard deviations for
continuous variables and as counts and percentages for categorical
variables. Proportions were compared between phases and groups
using the Chi-squared or Fisher's exact tests. KaplaneMeier sur-
vival analyses and Pearson's correlation coefficient were used to
explore the difference between subtype B and non-B usingMedCalc
Statistical Software version 19.2.6 (MedCalc Software Ltd., Ostend,
Belgium). Statistical significance was defined as P < 0.05.

2.8. Sequence data

GenBank accession numbers in this study are as follows:
KU588425-857, KY557339-8278, KY683848-995, KX259025-105,
MF457421-449, MG461319-39, MG548757-788 and MH396195-
369.
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3. Results

3.1. Patient characteristics

The demographic characteristics of the 77 patients infected with
HIV-1 subtypes B and non-B are shown in Table 1. The sex ratio was
not significantly different between the two groups. The proportions
of overseas sailors and age at diagnosis were significantly higher in
patients infected with non-B than in those infected with subtype B
(P < 0.001 for both) (Table 1). The follow-up period since diagnosis
was 170 ± 41 and 151 ± 34 months in patients with subtype B and
non-B infections, respectively. The number of patients treated with
KRG and the amount of KRG administered were significantly higher
in subtype B than those in non-B infections (in order, P < 0.05 and
P < 0.01). Consequently, the AD (/mL) was significantly slower in
patients with subtype B infections than in those with non-B in-
fections (P < 0.001) (Table 1). HIV-1 RNA at baseline was higher in
patients with non-B than in those with subtype B infections,
despite slightly higher CD4þ T cell counts (Table 1). There was no
significant correlation between the earliest RNA copy number and
AD.
3.2. KRG treatment significantly slowed AD in subtype B

In subtype B, the AD was significantly lower in the KRG-treated
group than that in the control group (P < 0.05), whereas in non-B,
there was no such significant difference (Table 2). The number of
deaths before ART in the 31 patients with non-B and 46 patients
with subtype B infections was 9 (29%) and 4 (8.7%), respectively
(P < 0.05). KaplaneMeier survival analysis showed that survival
probability was significantly higher in patients with subtype B in-
fections than in those with non-B infections (P < 0.01) (Fig. 1).
However, there was no significant difference in the AD in the
control group, and the difference was less prominent than that in
the KRG-treated group (Table 2). This finding suggests that the
amount of KRG was significantly related to the difference in the AD.
3.3. Correlations between the mKRG, AD, and gDnef proportion

In both subtypes, there was a significant correlation between
mKRG and the AD (P < 0.05 for non-B subtypes and P < 0.01 for
subtype B) (Fig. 2A and B). Interestingly, there was no significant
correlation between the mKRG and the proportion of gDnef in non-



Fig. 1. KaplaneMeier survival analysis showed that the survival probability from
diagnosis to death or start of combination antiretroviral therapy was significantly
higher in patients with human immunodeficiency virus-1 subtype B (n ¼ 46) than in
those with non-B infections (n ¼ 31) (**P < 0.01).
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B infections (Fig. 2C), whereas there was a significant correlation in
subtype B infections (P < 0.01) (Fig. 2D).
Fig. 2. Correlations between the monthly amount of Korean Red Ginseng (mKRG), annual de
significant correlation was observed between mKRG and the AD in both human immunodefi
the proportion of gDnef and mKRG was observed in subtype B, but not in non-B (C). *P < 0
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3.4. Comparison of the proportion of gDnef at 6-month intervals
adjusted by the amount of KRG

In subtype B, 38 patients were treated with KRG (Table 1) and
the proportion gradually and significantly increased with the in-
crease in KRG treatment from 983 to 1971 g (corresponding to the
7e12 month doses) compared to the baseline (10.3% versus 4.1%;
P < 0.0001) (Fig. S2). In non-B, 19 patients were treated with KRG
(Table 1). Thus, the proportion of gDnef was significantly higher in
subtype B than that in non-B with KRG >1971 g (15.2% versus 6.8%
at the amount of KRG >1971 g; P < 0.0001) (Fig. S2). Collectively,
these results strongly suggest the possibility that non-B may be
more biologically stable than subtype B.
3.5. Proportion of gDnef in subtype B was significantly higher than
that in non-B

We obtained a total of 723 and 1831 nef genes in the 31 patients
with non-B and 46 patients subtype B infections, respectively, who
were followed for >10 years in the absence of ART. In subtype B, the
proportion of gDnef (13.1%; 224/1707) with KRG treatment was
significantly higher (overall 2.3-fold) in the KRG group than that in
the control group (5.6%; 7/124) (P < 0.05) (Fig. 3A), whereas in non-
B, the proportion of gDnef with KRG treatment (6.1%; 36/586) was
similar to that in the control group (6.6%; 9/137) (Fig. 3A). Taken
together, the proportion of gDnef with KRG treatment was
crease in CD4þ T cells (AD), and proportion of gross deletion in the nef gene (gDnef). A
ciency virus-1 non-B (A) and subtype B infections (B). A significant correlation between
.05 and **P < 0.01.



Fig. 3. Comparison of the proportion of gross deletion in the nef gene (gDnef) between patients infected with human immunodeficiency virus-1 subtype B and non-B subtypes. (A)
In subtype B, the proportion of gDnef (13.1%) was significantly higher in the Korean Red Ginseng (KRG)-treated group than that in the control group (5.6%). In contrast, no such
association was found with non-B infection. (B) Thus, 19 patients with non-B infections were divided into two groups according to the amount of KRG administered per month
(mKRG): >20 g (n ¼ 7) and <20 g (n ¼ 12). The mKRG in the former (non-B mKRG >20 g) and in 46 subtype B infected patients was 44 ± 31 g and 39 ± 40 g (Table 1), respectively.
After adjustment of the KRG dose, the proportion of gDnef in the non-B subtypes remained significantly lower (7.5%) than that in the 46 patients infected with subtype B (12.6%)
(P < 0.01). Duration: from first CD4þ T cells to last CD4þ T cells before combination antiretroviral therapy; *P < 0.05, **P < 0.01, and ***P < 0.0001; AD, annual decrease in CD4þ T
cells; pts, patients.
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significantly higher in subtype B than that in non-B (13.1% versus
6.1%) (P < 0.0001) (Fig. 3A).
3.6. Significantly lower proportion of gDnef remained in non-B
after adjusting the KRG doses

We considered the possibility that the difference in the pro-
portion of gDnefmight be a result of the difference in the amount of
KRG (Fig. 3A). Thus, to determine whether the difference in the
proportion of gDnef between non-B and subtype B was associated
with the difference in KRG dose, we divided 19 patients with non-B
infections into two groups: mKRG >20 g (n ¼ 7; 44 ± 31 g) and
�20 g (n ¼ 12; 11 ± 6 g). The proportion of gDnef in the former
(mKRG >20 g) was higher (7.5%; 31/413) than that in the latter
(2.9%; 5/173) (P < 0.05). This finding suggests that the proportion of
gDnef was affected by the KRG dose, even in patients infected with
non-B subtypes. The mKRG in the mKRG >20 g group in patients
infected with non-B was similar to the 39 ± 40 g mKRG in 46 pa-
tients infectedwith subtype B (Table 1) (Fig. 3B). Despite the similar
mKRG in both subtypes, the proportion of gDnef in non-B (7.5%) was
significantly lower than that in subtype B (12.6%) (P < 0.01)
(Fig. 3B).

The AD was typically higher in non-B (37 ± 29/mL) than that in
subtype B (28 ± 17/mL in Table 1) (P > 0.05) (Fig. 3B). It was pre-
sumed that the significantly lower proportion of gDnef in non-B
compared to that in subtype B might be related to the higher AD
in non-B infections.
Table 3
Comparison of gross deletion in the nef gene in patients intensively treated with KRG.

Group Subtype B (mKRG >20

No. of patients (%) 25 (66)
Follow-up since diagnosis (months) 182 ± 50
Total amount of KRG administered (g) 11,917 ± 6334
Monthly amount of KRG (mKRG) 68 ± 34
Annual decrease in CD4þ T cells (/mL) 23 ± 14
g△nef (%) 220/1606 (13.7)

KRG, Korean Red Ginseng; LTSP, long-term slow progressor.
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We paid particular attention to three LTSPs with non-B in-
fections and treated with mKRG >20 g. These patients were treated
with an mKRG of 72 ± 28 g over 204 ± 78 months (Table 3). Despite
a relatively similar AD in patients under the same conditions, the
proportion of gDnefwas significantly lower in the three LTSPs (5.1%)
than in those with subtype B infections (13.7%) with an mKRG of
68 ± 27 g (P < 0.0001) (Table 3).
4. Discussion

Our study showed that the proportion of gross deletion in the
nef gene in patients with subtype B infections was significantly
higher than that in patients with non-B subtype infections after
KRG treatment. In detail, patients with subtype B infections
responded significantly to KRG treatment with respect to AD and
the proportion of gDnef. In contrast, patients with non-B infections
responded to KRG treatment with respect to AD, but not gDnef. In
subtype B, the proportion of gDnef depended on the amount and
duration of KRG treatment, whereas in non-B, a similar association
to that in subtype B was not observed (Fig. 3). Thus, we believe that
this difference might be due to the difference in the amount of KRG
provided to the patients harboring the two subtypes (Table 2),
although the proportion of overseas sailors and age at diagnosis
were significantly higher in the patients infected with non-B than
in those infected with subtype B (P < 0.001 for both) (Table 1). Even
after adjusting for the difference in the KRG dose, the proportion of
gDnef remained significantly lower in non-B than that in subtype B
g) 3 LTSPs with non-B P-value

3 (16) <0.0001
204 ± 78
16,272 ± 8936
72 ± 28
18 ± 27
16/312 (5.1) <0.0001
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(Fig. 3B) (P < 0.01). Our data suggest that this difference in the
proportion of gDnef is related to the difference in AD between the
two subtypes; furthermore, the genetic defect in nef appears to be
one of several factors supporting long term non-progressors
infected with subtype B.

The difference in the proportion of gDnef between the two
subtypes can be explained by the following factors: first, there was
a low viral load of <100 copies/mL for 8e10 years in patients 88e17
and 90e14 and approximately 1000 copies/mL for 10 years in pa-
tient 93e01 (Fig. S1). As the proportion of gDnef is typically less
than 10% of the viral populations of the wild type, it was more
difficult to detect a minor portion of viruses by PCR in these three
patients with a low viral concentration. This phenomenonwas also
observed during suppressive ART compared to that obtained before
ART (20.6% versus 3.2%; 15.6% versus 2.9%) [24,26]. In addition, the
number of nef from these three patients (n¼ 312) comprised 53% of
the number of non-B nef. Moreover, we found the same phenom-
enon in pol; the proportion of genetic defects was also significantly
higher in subtype B (11.9%) [27] than that in the same three patients
with non-B (1.9%) (P < 0.01), with a significant decrease in the
proportion of gDpol during ART (11.9% versus 4.1%) [27]. Second,
there were differences in the passage number over time between
the two subtypes in the Korean population. In detail, the trans-
mission of subtype B occurred actively, particularly in men who
have sex with men among Koreans, whereas the transmission of
non-B occurred in spouses via heterosexual contact [32]. Thus, this
subtype is relatively less adapted to Koreans, as shown in a previous
study [35]. Third, regarding multiple passages over time, the
replicative fitness of HIV-1 may have decreased since the start of
the pandemic [36]. This attenuation in the Korean subclade of HIV-
1 subtype B might be a consequence of serial bottlenecks during
transmission and the increase in sequence length over time [37],
resulting in the adaptation of HIV-1 to the human host [13].

Many reports have suggested that long term non-progressors
harbor gDnef more frequently than progressors [17e19]. The fre-
quency of gDnef is very rare even in long term non-progressors
infected with subtype B [19]. There are only a few case reports on
gDnef in patients with non-B infections [30,31]. In addition, except
for a patent on a method of deleting nef in HIV-1 using red ginseng
(No. 20072033123, 2009, Australia) [20], there are no similar re-
ports on any therapeutic agent, including medicinal food, that de-
letes or attenuates microorganism or virus similar to gross
deletions in HIV-1 such as gDnef [26].

Regarding the mechanism underlying the occurrence of gDnef,
we propose two potential pathways. First, g△nef might result
indirectly from “immunological pressure” such as anti-
inflammatory action, immune modulation toward Th1 cytokines,
and potentiation of cytotoxic T lymphocyte activity by viral sup-
pression [26]. Second, due to this immunological pressure on pro-
viral DNAwithin the host chromosome, many cellular factors could
be involved in provirus latency [26]. It is well known that chro-
matin remodeling enzymes such as histone deacetylases (HDACs)
recruited to the HIV promoter play an important role in HIV latency.
HDAC inhibitors might lead to the activation of HIV in latently
infected cells and result in the fragmentation of proviral DNA.
Recently, ginsenosides Rg3, Rh2, and compound K have been
established as HDAC 3 inhibitors [38e40]. In addition, approxi-
mately 200 substances, such as ginsenosides, polysaccharides,
polyacetylenes, peptides, trace elements, and amino acids have
been isolated from ginseng. Therefore, it might be difficult to
elucidate the exact mechanism, although a previous study found
that ribonuclease extracted from P. ginseng displays an inhibitory
activity against HIV-1 reverse transcriptase [41].

The current study had several limitations. First, there was a
significantly higher proportion of overseas sailors and patients of
736
older age in the non-B group compared to that in the subtype B
group. Second, patients with non-B infections were administered a
lower amount of KRG. Third, the mode of transmission was
different between the two subtypes. Fourth, the viral load at
baseline was higher in patients with non-B infections than in those
with subtype B infections.

The findings of this study help recognize the potential difference
in genetic stability between subtype B and non-B under KRG
treatment for an extended period. Further study is needed to clarify
how much the low proportion of gDnef in non-B is associated with
the AD in patients infected with the rapidly progressing subtype D.
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