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1  | INTRODUC TION

Freshwater ecosystems cover <1% of the Earth's surface, but are 
home to around 6% of all known species (Strayer & Dudgeon, 2010). 
The warming rates of recent decades combined with the multitude 

of anthropogenic stressors threaten the biological diversity, struc‐
ture, and function of freshwater ecosystems (Mantyka‐Pringle, 
Martin, Moffatt, Linke, & Rhodes, 2014; Strayer & Dudgeon, 2010; 
Woodward, Perkins, & Brown, 2010). Habitat fragmentation and the 
limited ability of many species to track spatial shifts toward suitable 
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Abstract
The distribution of a species along a thermal gradient is commonly approximated by 
a unimodal response curve, with a characteristic single optimum near the tempera‐
ture where a species is most likely to be found, and a decreasing probability of occur‐
rence away from the optimum. We aimed at identifying thermal response curves 
(TRCs) of European freshwater species and evaluating the potential impact of climate 
warming	across	species,	taxonomic	groups,	and	latitude.	We	first	applied	generalized	
additive models using catchment‐scale global data on distribution ranges of 577 
freshwater species native to Europe and four different temperature variables (the 
current	annual	mean	air/water	temperature	and	the	maximum	air/water	temperature	
of the warmest month) to describe species TRCs. We then classified TRCs into one of 
eight curve types and identified spatial patterns in thermal responses. Finally, we in‐
tegrated empirical TRCs and the projected geographic distribution of climate warm‐
ing to evaluate the effect of rising temperatures on species’ distributions. For the 
different	temperature	variables,	390–463	of	577	species	(67.6%–80.2%)	were	char‐
acterized	by	a	unimodal	TRC.	The	number	of	species	with	a	unimodal	TRC	decreased	
from central toward northern and southern Europe. Warming tolerance (WT = maxi‐
mum temperature of occurrence—preferred temperature) was higher at higher lati‐
tudes. Preferred temperature of many species is already exceeded. Rising 
temperatures will affect most Mediterranean species. We demonstrated that fresh‐
water	species’	occurrence	probabilities	are	most	frequently	unimodal.	The	impact	of	
the global climate warming on species distributions is species and latitude depend‐
ent.	Among	the	studied	taxonomic	groups,	 rising	temperatures	will	be	most	detri‐
mental	 to	 fish.	 Our	 findings	 support	 the	 efforts	 of	 catchment‐based	 freshwater	
management and conservation in the face of global warming.
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habitats cause freshwater biodiversity to be highly vulnerable to cli‐
mate	warming	(cf.	Markovic,	Carrizo,	Kärcher,	Walz,	&	David,	2017).

The magnitude of the already observed temperature alterations 
plays a fundamental role for determining the future climatic suitabil‐
ity of current species’ ranges. Temperature has strong impacts on the 
physiology (Vornanen, Haverinen, & Egginton, 2014), growth (Elliott 
&	Allonby,	2013)	and	behavior	of	certain	species	(Frost	et	al.,	2013).	
According	to	the	Fifth	Assessment	Report	of	the	Intergovernmental	
Panel	on	Climate	Change	(IPCC,	2013),	the	linear	trend	of	the	globally	
averaged combined land and ocean surface temperature data show a 
warming	of	0.85°C	(0.65–1.06°C),	over	the	period	1880–2012	(IPCC,	
2013).	Recent	warming	was	shown	to	drastically	shift	the	ranges	of	
different	taxonomic	groups	(Chen,	Hill,	Ohlemueller,	Roy,	&	Thomas,	
2011;	Domisch	et	al.,	2013;	Markovic	et	al.,	2017),	leading	to	a	de‐
cline	of	many	populations	(Parmesan,	2006).	In	particular,	for	strictly	
aquatic	species,	temperature	may	set	environmental	tolerance	range	
limits	(Wiens,	2011).	Accordingly,	already	minor	shifts	in	water	tem‐
perature lead to considerable changes of species assemblages.

The typical assumption for a thermal response curve of a species 
is	the	Gaussian	curve	(Gauch	&	Whittaker,	1972),	with	the	preferred	
temperature at its peak. For freshwater species, responses along ther‐
mal gradients are sparsely explored, providing the opportunity to in‐
vestigate current thermal response shapes. Most previous studies on 
the thermal responses of freshwater species have been constrained 
to single taxonomic groups or to single stream networks. For example, 
using	the	logistic	generalized	linear	regression	models	(GLMs),	Logez,	
Bady, and Pont (2012) have identified thermal responses for 21 native 
European	fish	species,	while	Isaak,	Wenger,	and	Young	(2017)	identi‐
fied thermal responses for 14 fish and amphibian species for a moun‐
tain	stream	network	in	the	U.S.	Rocky	Mountains.	Similarly,	Pyne	and	
Poff (2017) identified insect taxon response curves for temperature 
and streamflow. Comparative studies delineating response curves of 
species from various taxonomic groups are missing.

Assessing	species	responses	along	environmental	gradients	com‐
monly involves the use of various statistical approaches that estimate 
the probability of a species’ occurrence as a function of the environ‐
mental conditions across the current species’ geographic range, that 
is,	the	environmental	response	curves.	Generalized	linear	regression	
models are among the most widely used approaches for identifying re‐
sponse curves. However, there are numerous alternative approaches 
such	as	95%‐quantile	regressions	(Carrascal,	Villén‐Pérez,	&	Palomino,	
2016)	or	Huisman‐Olff‐Fresco	models	(HOF)	(Huisman,	Olff,	&	Fresco,	
1993).	The	latter	are	considered	one	of	the	best	statistical	tools	for	
response modeling, because of their predictive performance (Jansen 
&	 Oksanen,	 2013;	 Oksanen	 &	 Minchin,	 2002).	 It	 was	 shown	 that	
HOF	models	perform	better	than	GLMs	or	beta	functions	(Lawesson,	
Fosaa,	&	Olsen,	2003;	Oksanen	&	Minchin,	2002).	Generalized	addi‐
tive	models	 (GAMs)	provide	response	curves	that	coincide	with	the	
shape	of	 those	resulting	from	the	HOF	models	 (Jansen	&	Oksanen,	
2013).	Specifically,	Jansen	and	Oksanen	(2013)	have	shown	that	the	
HOF	models	were	mostly	located	in	the	range	of	the	95%	confidence	
interval	 of	 GAMs.	 Additionally,	 according	 to	Oksanen	 and	Minchin	
(2002),	GAMs	and	HOF	models	usually	were	consistent,	but	GAM	has	

a	greater	flexibility	regarding	the	response	shape	than	HOF	models,	
which are restricted to a limited number of shapes.

This study explores and compares the thermal responses of 577 
European freshwater species of molluscs, fish, plants, odonates, 
and crayfish. Thermal properties derived from global species ranges 
(209,659 catchments) are transferred to the European scale (16,689 
catchments).	We	use	GAMs	to	link	the	species	occurrence	data	to	the	
annual	mean	 air/water	 temperature	 and	 to	 the	maximum	 air/water	
temperature	 of	 the	 warmest	 month,	 respectively,	 to	 parameterize	
species’ thermal response curves (TRCs). Specifically, we examine and 
compare the TRC types for the different temperature variables and 
the thermal properties across the individual species, taxa groups, and 
latitudes. The TRCs link the species occurrence probability to tem‐
perature patterns and are thus of fundamental importance for the 
conservation of freshwater biodiversity given the current warming 
rates	and	the	likelihood	of	further	temperature	increases	(cf.	Isaak	et	
al., 2017). Finally, we match the empirical thermal response curves 
with the projected temperature for the middle of the 21st century to 
evaluate the impacts of temperature alterations on freshwater species 
distributions throughout Europe.

2  | METHODS

2.1 | Species data

The	IUCN	Global	Species	Programme,	as	part	of	the	Red	List	assess‐
ment	process	(IUCN,	2013,	2014),	compiled	presence	and	absence	data	
on freshwater species distribution ranges in polygon shape files corre‐
sponding to global watershed boundaries. To capture the whole range 
of freshwater species native to Europe, the global species data from the 
IUCN	Global	Species	Programme	were	used.	Global	data	were	available	
for 1,402 freshwater species native to Europe including 609 molluscs, 
473	 fishes,	 209	plants,	 106	odonates,	 and	 five	 crayfish	 (see	 https://
www.iucn.org/theme/species/our‐work/iucn‐red‐list‐threatened‐spe‐
cies for more details). Freshwater species data were mapped to 209,659 
catchments	at	the	HydroBasins	level	8	resolution	(Lehner	&	Grill,	2013)	
(see	Supporting	 Information,	Appendix	S1,	Figure	S1.1).	Only	species	
that occurred in at least 50 catchments were part of the analysis to 
guarantee	an	accurate	estimate	of	the	TRCs	(Coudon	&	Gégout,	2007).	
Due to the dendritic structure of river networks, catchment mapping is 
more appropriate for freshwater species than the point‐to‐grid mapping 
used for mapping terrestrial species’ occurrences (see Fagan, 2002). 
In	addition,	given	that	catchments	serve	as	units	for	freshwater	man‐
agement and conservation (commonly referred to as the Catchment‐
Based	Approach—CaBA,	see	DEFRA,	2013),	catchment‐scale	mapping	
of freshwater species’ occurrences ensures compatibility between 
the	management	and	the	analysis	scales	 (Lévêque,	Oberdorff,	Paugy,	
Stiassny, & Tedesco, 2008; Markovic et al., 2017).

2.2 | Climate data

Global	 climatic	data	were	ascertained	 for	 the	second	half	of	 the	
20th century (1960–1990, hereafter referred to as baseline) from 

https://www.iucn.org/theme/species/our-work/iucn-red-list-threatened-species
https://www.iucn.org/theme/species/our-work/iucn-red-list-threatened-species
https://www.iucn.org/theme/species/our-work/iucn-red-list-threatened-species
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the	WorldClim	 (version	 1.4)	 30	 arc‐second	 (approximately	 1	km	
× 1 km) dataset (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005, 
www.worldclim.org, accessed on March 19, 2018). Due to a lack 
of in situ and satellite‐retrieved water temperature data given the 
large spatial extent of our study (209,659 river catchments), pa‐
rameterization	of	species’	thermal	response	curves	was	based	on	
the catchment‐specific annual mean air temperature (Tmeanair) and 
the maximum air temperature of the warmest month (Tmaxair) of 
the baseline period. However, given a strong correlation between 
water	 and	 air	 temperature	 (Markovic,	 Scharfenberger,	 Schmutz,	
Pletterbauer,	&	Wolter,	2013;	Mohseni,	Stefan,	&	Eriksson,	1998),	
we used a global relationship model to transform air temperature 
to	stream	water	temperature	on	a	monthly	basis	(Punzet,	Voß,	Voß,	
Kynast,	 &	 Bärlund,	 2012).	 Thus,	 we	 estimated	 the	 annual	 mean	
water temperature (Tmeanwater) and the maximum water tempera‐
ture of the warmest month (Tmaxwater). The annual mean water 
temperature was derived by averaging the transformed monthly 
average	 air	 temperatures.	 Areas	without	 appreciable	 flows,	 that	
is, lakes, reservoirs, and lagoons, were excluded from the analy‐
sis. Pairwise Pearson correlations among the four used variables 
ranged	from	0.81	to	0.98	(Supporting	Information	Table	S1.1).

Future climate projections for Europe (16,689 river catchments) 
were gathered for the middle of the 21st century (hereafter referred to 
as	2050s)	from	the	CIAT	(International	Center	for	Tropical	Agriculture)	
30	 arc‐seconds	 gridded	 dataset	 (www.ccafs‐climate.org).	 The	 pro‐
jections	 in	 the	CIAT	dataset	were	obtained	by	 three	climate	models	
(MOHC,	IPSL,	and	MPI),	each	considering	the	RCP4.5	(Representative	
Concentration Pathways) emission scenario. RCP4.5 follows a medium‐
low mitigation of greenhouse gas emission and represents intermediate 
scenarios (van Vuuren et al., 2011). The gridded layers of the 20th and 
21st century Tmeanair and Tmaxair were mapped to HydroBasins level 
8	resolution	catchments	using	the	ESRI	ArcGIS	zonal	statistics	tool	and	
afterwards transformed to projections of Tmeanwater and Tmaxwater 
using	the	derived	global	relationships	model	(Punzet	et	al.,	2012).

2.3 | Modeling thermal response curves

2.3.1 | Statistical model

Global	 distributions	 of	 freshwater	 species	 native	 to	 Europe	 were	
modeled	using	GAMs	(Hastie,	2016).	GAMs	are	useful	to	model	non‐
linear relationships and for relating binary data to probabilities by an 
adequate	 transformation	of	 the	 fit.	 The	 evaluation	of	 the	 species’	
thermal response curves for the four different temperature variables 
Tmeanair, Tmaxair, Tmeanwater, and Tmaxwater (four models per spe‐
cies) was based on a univariate modeling approach, that is, Tmeanair, 
Tmaxair, Tmeanwater, or Tmaxwater was the only explanatory variable, 
respectively. Furthermore, a smoothing by spline functions with 
three degrees of freedom, that is, a piecewise interpolation by poly‐
nomials of maximal order two, was applied in order to get a smooth 
representation of the probability.

Based on the probability results from the statistical model, a 
threshold for separating presences and absences of a species was 

determined	by	minimizing	the	absolute	difference	between	specific‐
ity (the rate of correctly predicted absences) and sensitivity (the rate 
of	correctly	predicted	presences)	(Fielding	&	Bell,	1997).	Minimizing	
the difference between the sensitivity and specificity generally 
leads	to	accurate	predictions	(Jimenez‐Valverde	&	Lobo,	2007).

To evaluate the models’ performance, two main measures were 
calculated: the area under the receiver operating characteristic 
(ROC)	curve,	AUC	 (Hosmer	&	Lemeshow,	2000),	and	the	true	skill	
statistic (TSS = sensitivity + specificity – 1), whereas specificity and 
sensitivity are the result of the probability threshold determination 
(Allouche,	Tsoar,	&	Kadmon,	2006).	AUC	values	can	range	from	0	to	
1, with values of 0.5–0.7 demonstrating poor performance, 0.7–0.9 
moderate,	and	>0.9	high	performance	(Manel,	Williams,	&	Ormerod,	
2001;	Swets,	1988).	An	AUC	value	of	0.5	 indicates	a	 random	pre‐
diction	while	 an	AUC	value	of	0	means	 that	 every	presence	 is	 in‐
correctly	predicted.	TSS	values	range	from	−1	to	+1,	where	values	
≤0	indicate	a	random	and	+1	a	perfect	performance	(Allouche	et	al.,	
2006).	Consequently,	only	species	with	thermal	modeling	results	ful‐
filling	AUC	≥0.7	and	TSS	≥0.4	for	all	four	temperature	variables	were	
included in further investigations.

To account for accuracy of the predictive performance, the data 
were split into a training (80%) and validation (20%) dataset. The 
random data splitting into the training and the validation datasets 
procedure was repeated 100 times, leading to 100 individual values 
of the main performance measures for the calibration and valida‐
tion phase, respectively, which were averaged afterwards (Dormann, 
Purschke,	 Márquez,	 Lautenbach,	 &	 Schröder,	 2008).	 The	 average	
AUC	and	TSS	values	of	the	validation	were	used	for	the	assessment	
of the predictive performance.

Uncertainty	was	depicted	by	calculating	95%	confidence	 inter‐
vals	 (CIs)	 around	 the	modeled	 probabilities	 of	 occurrence,	 that	 is,	
around	the	thermal	response	curves,	for	each	observation.	CIs	give	
an impression of the scattering and the preciseness of statistically 
calculated key figures (De Jong & Heller, 2008).

2.3.2 | Thermal response curve types

The resulting thermal response curves for each of the four tempera‐
ture variables, illustrating the probability of occurrence along the 
thermal gradient, were classified into eight different curve types (see 
Table	2).	Type	I	corresponds	to	a	Gaussian	distribution,	that	is,	a	uni‐
modal symmetric response, showing a uniform distribution of the spe‐
cies’ occurrence around the temperature with the highest probability 
of	occurrence	(here	termed	as	“preferred	temperature”).	Type	II	repre‐
sents a unimodal right skewed response and thus a tendency toward 
warmer	regions.	Type	III	describes	a	unimodal	 left	skewed	response,	
representing the tendency toward colder regions, that is, regions below 
the	preferred	temperature.	Type	IV	represents	no	response,	that	is,	the	
response curve is approximately a constant line at some probability. 
Type V describes an increasing probability of occurrence up to a certain 
threshold and an afterwards nearly constant response at the height 
of the respective threshold, showing a constant probability for higher 
temperatures.	Type	VI	corresponds	 to	a	mirror	 image	of	 the	Type	V	

www.worldclim.org
www.ccafs-climate.org
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response.	Type	VII	response	is	characterized	by	a	monotonic	growth	
and	Type	VIII	by	a	monotonic	decline,	indicating	higher	or	lower	prob‐
abilities along cold to warm temperatures, respectively (see Table 2).

Responses	 were	 automatically	 identified	 as	 Type	 IV,	 that	 is,	 no	
response, if the maximum probability of occurrence was smaller than 
0.01, because for these low probability TRCs no reliability can be as‐
sumed.	In	cases	of	a	maximum	probability	greater	than	or	equal	to	0.01,	
all types were taken into consideration in order to determine the type 
via an automatic identification that makes use of the slope properties of 
each thermal response curve.

2.3.3 | Assessment of species’ thermal properties

The global thermal range of each single species is defined as the current 
temperature range. Thus, the thermal range is the difference between 
the maximum temperature and the minimum temperature of occur‐
rence. Thermal ranges or breadths facilitate the understanding of the 
vulnerability to extinction and of the rarity of a species (Slatyer, Hirst, 
&	Sexton,	2013).	Additionally,	for	each	of	the	four	statistical	models,	a	
thermal	preference	 for	species	of	Types	 I‐III,	 that	 is,	 for	 species	with	
unimodal responses, was specified. The preferred temperature (Tpref) 
is the temperature with the highest probability of occurrence. Tpref 
was	 determined	 by	 using	 the	 function	 “optimize”	 implemented	 in	 R	
(R Development Core Team, 2017), which searches for the maximum 
probability. The maximum temperature at which the species was regis‐
tered for each temperature variable was set as critical temperature (CT).

Species sensitivity to global warming is closely related to spe‐
cies’ thermal range, thermal distribution and preferred temperature 
(cf. Markovic et al., 2017). For example, species with a small thermal 
range and low CT are more likely to be sensitive to rising tempera‐
tures. The potential exposure to global warming at the European 
scale	was	 quantified	 using	 the	 difference	 between	 the	 average	 of	
the respective projected temperature variables of the three climate 
models and the corresponding species‐specific CT. The difference 
was considered “critical” if the projected temperature exceeded CT 
(i.e., the current baseline maximum temperature of occurrence of the 
species). “Warming tolerance” (WT) was calculated as the difference 
between CT and Tpref of the statistical model (WT = CT – Tpref). For 
each temperature variable, “safety margin” (SM) was calculated as the 
difference between Tpref and the average temperature of the species’ 
current temperature range (Tav) (SM = T pref – Tav). WT and SM val‐
ues were derivable only for species with a unimodal response curve 
(Types	I‐III).	Geographical	variations	at	the	European	scale	of	these	
tolerance measures were depicted by averaging across latitude. We 
note that the critical temperature (CT), safety margin (SM), and the 
warming tolerance (WT) are the common terms used to describe 
the species thermal performance curves (TPCs) (see Deutsch et al., 
2008). Here, we used the latter terms to provide comparable descrip‐
tors of the TRCs, but underline that the interpretation of the CT, SM, 
and WT in the context of TRCs and TPCs is different. Specifically, 
while	TPCs	address	the	question	of	the	species’	performance	within	
a	certain	thermal	range,	the	TRCs	address	the	question	of	the	likeli‐
hood of species occurrence.

3  | RESULTS

Results from transformed temperature variables, that is, annual mean 
water temperature and maximum water temperature of the warmest 
month, led to similar patterns in thermal response curves and thermal 
properties of the considered species. Therefore, the focus of the results 
and the following discussion will be on the non‐transformed temperature 
variables, that is, annual mean air temperature and maximum air tem‐
perature of the warmest month. However, results for the water tempera‐
ture	variables	are	presented	in	the	Supporting	Information	Appendix	S1	
(Table	S1.2,	Figures	S1.7	–	S1.16)	and	S2	(Tables	S2.3	and	S2.4).

3.1 | Species thermal range

The current thermal ranges based on the global species ranges var‐
ied greatly across the taxa groups (see Figure 1a,b, Supporting 
Information	Tables	S2.1	and	S2.2;	for	convenience,	in	figures	and	ta‐
bles taxa groups are ordered according to the number of initially avail‐
able species). The globe wanderer (Pantala flavescens), the freshwater 
snail big‐ear radix (Radix auricularia), the widely distributed pea clam 
(Pisidium casertanum), and the water‐starwort (Callitriche brutia) with 
thermal ranges above 47°C and 45°C for Tmeanair and Tmaxair, respec‐
tively, were among the species with the highest thermal ranges. The 
molluscs species Turricaspia lindholmiana, restricted to the estuarine 
waters	of	the	Dnieper	River	system	(Ukraine)	and	the	Don	River	sys‐
tem	(Russia),	had	the	smallest	realized	thermal	range	regarding	both	
air temperature variables (1.5°C for Tmeanair	and	2.3°C	for	Tmaxair). 
While for Tmeanair the	second	smallest	realized	thermal	range	was	as‐
signed to the fern Marsilea batardae (2.2°C)	 endemic	 to	 the	 Iberian	
Peninsula, for Tmaxair the fish species Percarina maeotica had the sec‐
ond smallest thermal range for Tmaxair (2.5°C). The median of the real‐
ized	thermal	ranges	was	smallest	for	fish	and	molluscs	(Figure	1a,b).

3.2 | Models’ performance and uncertainty

Of	 the	 initially	 1,402	 considered	 European	 freshwater	 species,	 649	
species occurred in more than 50 catchments and were thus suitable 
for	the	species	distribution	modeling.	Of	the	649	species	whose	spatial	
distributions	were	modeled	using	GAM,	validation	model	performance	
was	moderate	to	high	(0.7	≤	AUC	≤1	and	0.4	≤	TSS	≤1)	across	the	tem‐
perature variables for 577 species (see Table 1, Figure 1c,d, Supporting 
Information	Tables	S2.1	and	S2.2).	Models	with	AUC	<0.7	and	TSS	<0.4	
were considered insufficiently accurate, which led to an elimination of 
the corresponding species from the further analysis (n = 72). The vali‐
dation	AUC	and	TSS	values	were	highest	for	fish	(0.94	≥	AUC	median	
≥0.88	and	0.77	≥	TSS	median	≥0.61)	and	lowest	for	plants	and	odonates	
(0.92	≥	AUC	median	≥0.84	and	0.71	≥	TSS	median	≥0.54).	The	uncer‐
tainty of the modeled occurrence probabilities was low.

3.3 | Thermal response curve types

Considering	all	 categorizations	of	 the	air	 temperature	variables,	
the most common TRC types for molluscs, fish, plants, odonates 
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(Table	 2)	 and	 crayfish	 (Supporting	 Information	 Tables	 S2.1	 and	
S2.2)	 were	 Type	 I	 (unimodal	 symmetric	 response,	 374	 (Tmaxair) 
and	 437	 (Tmeanair)	 species)	 and	 Type	 IV	 (no	 response,	 107	
(Tmeanair) and 179 (Tmaxair) species) (Table 2). For example, for 
Tmeanair,	58.6%	 (molluscs)	 to	89.3%	 (plants,	odonates)	had	Type	
I	as	thermal	response	curve	(Supporting	Information	Figure	S1.2;	
Figure	S1.3	 for	Tmaxair; Table 2, Table S2.1 and S2.2). The Type 
IV	 response	was	mainly	 found	for	endemic	and	restricted‐range	
species. However, for Marsilea batardae	 endemic	 to	 the	 Iberian	
Peninsula	 we	 found	 a	 Type	 I	 response	 for	 the	 annual	 mean	 air	
temperature (Tmeanair),	suggesting	that	a	Type	IV	response	can‐
not	be	generalized	for	all	endemic	and	restricted‐range	species.	A	
Type	 IV	response	consequently	represents	species	with	statisti‐
cally no identifiable thermal preference.

With regard to the species’ TRCs spatial distribution, the num‐
ber of species with a unimodal thermal response curve type, that 
is,	Type	I‐III,	decreased	from	central	toward	northern	and	south‐
ern	Europe	(Supporting	Information	Figure	S1.4).

3.4 | Assessment of species’ thermal properties

Thermal	responses	were	unimodal	(Type	I‐III)	for	463	(80.2%)	and	
390	 (67.6%)	 species	 using	 Tmeanair and Tmaxair to model species 

distributions,	respectively	(Table	2,	Supporting	Information	Tables	
S2.1 and S2.2). For these species, the preferred temperature (Tpref), 
warming tolerance (WT) and safety margin (SM) could be deter‐
mined. Since high latitude analyses are based on a small number of 
species, high latitude WTs and SMs should be treated with caution. 
WT—latitude	 relationships	 were	 characterized	 by	 a	WT	 increase	
with	 increasing	 latitude	 until	 around	 55°N	 (Figures	 2	 and	 3).	 As	
mentioned,	for	latitudes	above	55°N,	no	reliable	trend	can	be	out‐
lined because of the low number of species representing the higher 
latitudes. The SMs of all considered species were located around 
0°C	for	40°–55°N	with	species	having	either	positive	or	negative	
SMs	 (Figures	2j	and	3j).	Both,	WT	and	SM,	were	generally	below	
5°C	for	species	with	an	average	latitude	of	occurrence	below	45°N	
for Tmeanair	(e.g.,	the	“Vulnerable”	Iberian	mollusc	Unio tumidiformis 
with	WT	=	1.1°C,	SM	=	0.4°C	(Supporting	Information	Tables	S2.1	
and	S2.2)).	 Species	 living	 in	 regions	>55°N	had	 safety	margins	of	
down	to	around	−7°C	(e.g.,	the	pea	clam	Pisidium casertanum with a 
safety	margin	of	−7.4°C	and	−7.2°C	for	Tmeanair and Tmaxair, respec‐
tively)	 (Figures	2b	and	3b;	Supporting	Information	Table	S2.1	and	
S2.2).	Of	those	species	with	a	unimodal	response,	the	proportions	
of species with a negative safety margin per taxa group were be‐
tween	22%	(molluscs)	and	44%	(odonates)	(Supporting	Information	
Figure S1.5). We note that for Tmaxair the proportion of species 

F I G U R E  1   Thermal ranges of the 
species and the distribution of the 
accuracy measures per taxonomic group 
for the respective temperature variable, 
that is, for (a, c) Tmeanair and (b, d) Tmaxair. 
The boxplots illustrate the distribution of 
the	minimum,	25%	quantile,	median,	75%	
quantile,	and	maximum	of	the	thermal	
ranges. The minimum and maximum are 
displayed by the end of the corresponding 
whiskers.	Note	that	crayfish	were	
excluded	because	of	the	low	frequency	of	
analyzed	species
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with negative SMs was higher than for Tmeanair, ranging from 70% 
(fish)	to	91%	(plants)	(Supporting	Information	Figure	S1.6).

For both air temperature variables, the analyses showed that 
areas in Spain and Mediterranean coastlines will be affected the 
most by rising temperatures (Figures 4e and 5e). Regarding the CT 
deduced from Tmaxair, regions in Eastern Europe, especially in the 

coastal area of the Caspian Sea and the Danube region will likely 
suffer	from	temperature	increases	(Figure	5e).	Among	the	studied	
taxonomic groups rising temperatures will be most detrimental to 
fish with more than 25% of the species in the respective catch‐
ments having a CT below the predicted temperatures mostly in the 
southern areas of Europe, reaching from the coastlines of Portugal 

Taxonomic group No. species
No. species with 
n ≥ 50

No. species with AUC 
& TSS > limit

Molluscs 609 106 99

Fish 473 243 220

Plants 209 196 178

Odonates 106 99 75

Crayfish 5 5 5

Sum 1,402 649 577

TA B L E  1   Development of the species 
number per taxonomic group. The table 
includes the initial number of species, the 
number of species, which occurred in at 
least 50 catchments, and the number of 
species, which fulfilled the statistical 
model accuracy criteria for all four 
temperature	variables,	that	is,	the	AUC	
and TSS values of the species’ statistical 
thermal response curve model were >0.7 
and 0.4, respectively

TA B L E  2  Thermal	responses	according	to	the	univariate	GAM	using	the	annual	mean	air	temperature	and	the	maximum	air	temperature	
of the warmest month. n	is	the	total	number	of	species	with	the	respective	TRC.	Note	that	crayfish	were	excluded	because	of	the	low	
frequency	of	analyzed	species

No.
Thermal response 
curve type

Taxonomic groups

Molluscs Fish Plants Odonates

Tmeanair Tmaxair Tmeanair Tmaxair Tmeanair Tmaxair Tmeanair Tmaxair

I n 58 43 148 109 159 156 67 61

% 58.6 43.4 67.3 49.5 89.3 87.6 89.3 81.3

II n 0 1 0 0 0 0 1 2

% 0.0 1.0 0.0 0.0 0.0 0.0 1.3 2.7

III n 5 1 13 6 7 6 0 0

% 5.1 1.0 5.9 2.7 3.9 3.4 0.0 0.0

IV n 36 54 59 105 9 12 3 8

% 36.4 54.5 26.8 47.7 5.1 6.7 4.0 10.7

V n 0 0 0 0 0 0 1 1

% 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.3

VI n 0 0 0 0 0 4 0 0

% 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0

VII n 0 0 0 0 0 0 3 3

% 0.0 0.0 0.0 0.0 0.0 0.0 4.0 4.0

VIII n 0 0 0 0 3 0 0 0

% 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0

∑ 99 220 178 75

Note. Tmeanair,	Annual	mean	air	temperature;	Tmaxair, Maximum air temperature of the warmest month.
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and Spain to the coastlines of the Caspian Sea (Figures 4 and 5). 
Overall,	the	relative	frequency	of	species	with	a	critical	difference	
between the projected and current maximum temperature of oc‐
currence in a catchment was mainly below 10% (Figures 4e and 

5e). These numbers were generally exceeded in the coastal areas of 
Spain	and	Italy,	in	south‐west	Portugal,	in	coastal	areas	of	Greece,	
in	 the	 Alpine	 region,	 the	 Balkans,	 and	 the	 western	 areas	 of	 the	
Caspian Sea.

F I G U R E  2  Latitudinal	distributions	and	nonlinear	trend	lines	of	warming	tolerance	(WT	=	CT	−	Tpref) and safety margin (SM = Tpref	−	Tav) 
for freshwater species inferred from the temperature variable Tmeanair. CT represents the maximum temperature of a species’ occurrence, 
Tpref the temperature corresponding to the highest probability of occurrence and Tav the average temperature of the current distribution 
range.	WT	and	SM	were	only	computed	for	species	with	a	unimodal	response,	that	is,	responses	for	which	a	temperature	that	maximizes	
the probability of occurrence could be determined. Here, latitude values correspond to the average latitude of each species’ European 
latitudinal range. WT, SM, and average latitude values were determined for (a, b) molluscs, (c, d) fishes, (e, f) plants, (g, h) odonates, and (i, j) 
all	taxonomic	groups	with	unimodal	response	curves	combined.	Note	that	crayfish	were	excluded	because	of	the	low	frequency	of	analyzed	
species. Each dot represents the WT and SM of one species in the respective figure
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4  | DISCUSSION

Since	decades,	the	classical	Gaussian	response	curve,	which	has	a	
single optimum and a decreasing probability of occurrence away 
from the optimum along the thermal gradient, is a well‐accepted 

assumption	 for	 a	 species’	 thermal	 response	 (Gauch	&	Whittaker,	
1972). Thermal response curves of the European freshwater spe‐
cies did not vary greatly among taxonomic groups and the species 
within	a	group.	Our	results	highlighted	that	the	unimodal	response	
curves	 (Type	 I–III)	 were	 most	 frequent	 among	 all	 considered	

F I G U R E  3  Latitudinal	distributions	and	nonlinear	trend	lines	of	warming	tolerance	(WT	=	CT	−	Tpref) and safety margin (SM = Tpref	−	Tav) 
for freshwater species inferred from the temperature variable Tmaxair. CT represents the maximum temperature of a species’ occurrence, 
Tpref the temperature corresponding to the highest probability of occurrence and Tav the average temperature of the current distribution 
range.	WT	and	SM	were	only	computed	for	species	with	a	unimodal	response,	that	is,	responses	for	which	a	temperature	that	maximizes	
the probability of occurrence could be determined. Here, latitude values correspond to the average latitude of each species’ European 
latitudinal range. WT, SM, and average latitude values were determined for (a, b) molluscs, (c, d) fishes, (e, f) plants, (g, h) odonates, and (i, j) 
all	taxonomic	groups	with	unimodal	response	curves	combined.	Note	that	crayfish	were	excluded	because	of	the	low	frequency	of	analyzed	
species. Each dot represents the WT and SM of one species in the respective figure
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taxonomic groups and all four temperature variables (Tmeanair—an‐
nual mean air temperature, Tmaxair—maximum air temperature of 
the warmest month, Tmeanwater—annual mean water temperature, 
Tmaxwater—maximum water temperature of the warmest month) 
that	were	used	 to	model	 the	 thermal	 response	 (390–463	of	577	
species, i.e., 67.6%–80.2%). High pairwise correlations of the tem‐
perature variables (above 0.8) explain the similarities of the results. 

For	species	with	spatial	distribution	ranges	characterized	by	sub‐
stantially differing thermal gradients across the used temperature 
metrics, the corresponding thermal response types (TRCs) also 
varied. Species with unimodal response types were most common 
in central Europe, following thus the species richness patterns. 
Namely	the	species	density	was	higher	in	central	than	in	northern	
and southern Europe.

F I G U R E  4  Relative	frequency	per	catchment	of	species	with	the	critical	maximum	temperature	(CT)	inferred	from	Tmeanair that is 
exceeded	by	the	averaged	projected	temperature	of	the	three	climate	models	MOHC,	IPSL,	and	MPI	for	the	2050s	for	(a)	molluscs,	(b)	fishes,	
(c) plants, (d) odonates, and (e) all taxonomic groups combined. The grey area represents either no occurrence or catchments in which the 
CT,	that	is,	the	maximum	temperature	of	a	species’	occurrence,	is	not	exceeded	by	the	projected	temperatures.	Note	that	crayfish	were	
excluded	because	of	the	low	frequency	of	analyzed	species
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Despite the “overarching importance of thermal regimes to 
aquatic	life”	(Isaak	et	al.,	2017),	thermal	niches	of	freshwater	species	
are	only	scarcely	studied.	For	example,	Lassalle,	Béguer,	Beaulaton,	
and Rochard (2008) found unimodal responses using annual tem‐
perature for Acipenser gueldenstaedtii, Acipenser stellatus, Alosa alosa, 
Alosa tanaica, Vimba vimba, and Osmerus eperlanus, corresponding to 
our	 response	 type	 categorization	 for	 Tmeanair. The response type 

of the cold‐water specialist brown trout (Salmo trutta,	 Type	 III	 for	
Tmaxwater)	coincides	with	the	findings	of	 Isaak	et	al.	 (2017),	where	
both	the	multivariate	and	univariate	(using	August	stream	tempera‐
ture as explanatory variable) models showed a unimodal response. 
For	 the	 fish	 species	 investigated	 by	 Logez	 et	 al.	 (2012)	 using	 the	
mean air temperature in July, response curves for Tmaxair are differ‐
ent for three fish species (Alburnus alburnus, Rhodeus amarus, Salmo 

F I G U R E  5  Relative	frequency	per	catchment	of	species	with	the	critical	maximum	temperature	(CT)	inferred	from	Tmaxair that is 
exceeded	by	the	averaged	projected	temperature	of	the	three	climate	models	MOHC,	IPSL,	and	MPI	for	the	2050s	for	(a)	molluscs,	(b)	fishes,	
(c) plants, (d) odonates, and (e) all taxonomic groups combined. The grey area represents either no occurrence or catchments in which the 
CT,	that	is,	the	maximum	temperature	of	a	species’	occurrence,	is	not	exceeded	by	the	projected	temperatures.	Note	that	crayfish	were	
excluded	because	of	the	low	frequency	of	analyzed	species
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trutta). Differences may have resulted from consideration of native 
portions	of	species	ranges	by	Logez	et	al.	(2012),	whereas	our	study	
considers global species ranges.

Warming tolerances and safety margins for the different tem‐
perature variables showed only marginal differences in the latitu‐
dinal trends. The species‐based warming tolerance increased by 
moving	northwards	until	55°N,	 indicating	that	on	average	species	
in central Europe had a greater difference between the critical and 
preferred temperature than southern species and thus a greater 
capacity to cope with warming. For high latitude species, no reli‐
able	 latitudinal	 relationships	 above	 approximately	 55°N	 could	 be	
given due to a low species number as compared to much larger data 
availability	for	southern	to	central	Europe.	 In	addition,	due	to	the	
statistical	barrier	of	50	occurrences	at	the	analyzed	scale,	many	en‐
demic	species	of	the	Italian,	Iberian,	and	Balkan	Peninsulas	with	few	
catchment occurrences could not be included for southern parts of 
Europe.	Most	species	in	central	Europe	have	a	high	colonization	ca‐
pability, wider distribution ranges and experience greater intra‐an‐
nual variability than species at lower latitudes, which explains their 
warming tolerance. Furthermore, while some specialists of cold 
climates in the far north had also a low warming tolerance com‐
parable to species in the south (e.g., Gasterosteus islandicus native 
to	Iceland	with	WT	=	3.8°C	and	WT	=	3.1°C	inferred	from	Tmeanair 
and Tmaxair, respectively), other species with average latitudes lo‐
cated	 in	 colder	 climates	 (>60°N)	 had	 higher	 warming	 tolerances.	
High warming tolerance at these latitudes may be an indication of 
species occurrences in areas different from the European ranges. 
For example, the fish species Osmerus dentex (WT = 19°C and 
WT = 14°C inferred from Tmeanair and Tmaxair, respectively) occurs 
at	 the	 European	 scale	 at	 an	 average	 latitude	 of	 67°N,	 but	 is	 also	
found	at	 lower	 latitudes,	 for	example,	 in	 Japan	or	Korea.	Despite	
the	fact	that	WT	increased	with	latitude	up	to	about	55°N,	one	has	
to be cautious with the interpretation of this result as the preferred 
temperature, Tpref, might have been already exceeded for some spe‐
cies (negative safety margin).

Shuter	 and	 Post	 (1990)	 and	 Brazner	 et	 al.	 (2005)	 found	 that	
temperature is one of the main drivers of the spatial distribution 
of stream fish, suggesting high vulnerability to future temperature 
rise.	 In	 our	 study,	 future	 temperature	 predictions	 showed	 that	
especially fish will be affected critically by rising temperatures. 
Fishes	spend	their	entire	life	cycle	in	the	water.	Consequently,	they	
depend on the water temperature throughout all life stages, in con‐
trast to merolimnic species (e.g., odonates) that are connected to 
the waters only in early stages of their life cycle, having the ability 
to	escape	water	temperature	rises	in	critical	periods.	Additionally,	
sensitivity of fishes to temperature changes (Magnuson, Crowder, 
& Medvick, 1979), in terms of survival and growth, underline the 
threat fishes are facing in the future. Potential movement is con‐
nected	with	a	maximization	of	the	growth	rate	(Jobling,	1981)	and	
metabolic	 power	 available	 for	 reproduction	 and	 activity	 (Kelsch,	
1996) and may vary by life‐history strategies, for example, migra‐
tory and sedentary fish. Considering all taxonomic groups, espe‐
cially the Balkans, the western area of the Caspian Sea and the 

coastal areas of the Mediterranean Sea like southern Portugal 
and	 Spain	 or	 Italy	 and	 Greece	will	 be	 affected	 according	 to	 the	
temperature	projections.	Additional	 changes	 in	 the	marine	 realm	
(Lejeusne,	Chevaldonne,	Pergent‐Martini,	Boudouresque,	&	Perez,	
2010) demonstrate the ongoing and upcoming changes in the 
Mediterranean area. More than 25% of the considered species 
in the catchments of these regions had a CT below the predicted 
temperature of the 2050s. Some species can adapt, more or less 
fast, to a certain extent by physiological adjustment (Johnson & 
Kelsch,	 1998)	 or	 behavioral	 thermoregulation	 (Heggenes,	 Krog,	
Lindås,	Dokk,	&	Bremnes,	1993),	while	another	option	for	escap‐
ing or mitigating these threatening conditions is movement to 
suitable	 areas.	 However,	 especially	 in	 the	 regions	 of	 the	 Iberian	
Peninsula and the Mediterranean area, where thermal alteration 
impacts will be the strongest, endemic, or restricted‐range species 
prevail. The latter suggest an urgent need for further research on 
species’ sensitivity to climate warming; in particular, effects of ris‐
ing temperatures have to be investigated in the context of species 
thermal properties, with the focus on species with currently small 
thermal ranges, and dispersal traits paired with habitat suitability 
and connectivity.

Strengths and weaknesses of statistical models describing spe‐
cies distributions have been extensively evaluated in the literature 
(see, e.g., Franklin, 2009). Considering our study, the thermal re‐
sponse curves and thus the occurrence probabilities along thermal 
gradients	resulting	from	GAMs	should	be	viewed	in	the	context	of	the	
analyzed	scale	(catchments)	and	statistical	approach.	Consequently,	
different thermal responses may result from local scale data and 
for species with few occurrences (n <50) thermal responses could 
not be captured. Thus, high‐endemism areas (peri‐Mediterranean 
region and Balkans) are in need of additional extensive analyses at 
finer scales. Furthermore, our thermal response curves do not con‐
sider the above discussed possibility of adaption to environmental 
changes. We considered annual mean water temperature and the 
maximum water temperature of the warmest month as a transfor‐
mation of the corresponding air temperature via a global relation‐
ships	model	(Punzet	et	al.,	2012).	The	key	shortcoming	of	the	latter	
model is that it solely depends on air temperature and thus ignores 
effects such as catchment heterogeneity, shading, or dissolved ox‐
ygen	 concentration.	 Although	 thermal	 responses	 give	 a	 quantifi‐
cation of thermal habitats (Hester & Doyle, 2011) and a necessary 
assessment of the impact of future global warming (Vetaas, 2000), 
they do not account for other environmental and community influ‐
ences.	It	 is	important	to	keep	in	mind	that	species	do	not	respond	
to a single environmental factor (Økland, 1992). Therefore, our re‐
sults on thermal properties and responses should be viewed in the 
context of complex interactions of different factors. For example, 
Verberk,	Durance,	Vaughan,	and	Ormerod	(2016)	outlined	effects	of	
stream	oxygenation	on	thermal	tolerances,	while	Arismendi,	Safeeq,	
Johnson, Dunham, and Haggerty (2012) found that the combina‐
tion of flow reduction and temperature increase could lead to an 
exacerbation of the reduction in cold‐water species habitat. The 
latter	 leads	 to	 a	process	 known	as	 “thermophilization,”	 describing	
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the increasing dominance of warm‐water species (De Frenne et al., 
2013).	 As	 such,	 amplifications	 of	 climate	 change	 related	 impacts	
caused by anthropogenic pressures, for example, intensified eutro‐
phication of lake catchments and especially the disappearance of 
water	bodies	and	modification	of	habitats	(Nowakowski,	Thompson,	
Donnelly, & Todd, 2017) should be further considered in the con‐
text	of	the	potential	future	species	distributions.	New	generations	
of species distribution models aim at combining abiotic and biotic 
factors, but need detailed and thus rarely available ecological in‐
formation about species for reliable projections (Singer et al., 2016; 
Urban	et	al.,	2016).

In	summary,	future	temperatures	are	expected	to	exceed	the	
current maximum temperature of occurrence of species living 
in coastal areas of the Mediterranean Sea, the Balkans, and the 
western area of the Caspian Sea. Synergetic effects of rising tem‐
peratures and other influencing factors, such as restricted catch‐
ment connectivity or anthropogenic disturbances in these areas, 
will additionally aggravate the viability of populations, but the 
whole scope of climate change impacts remains difficult to grasp. 
However, given the high vulnerability of freshwater ecosystems to 
climate change, re‐assessments of the existing conservation areas 
and integrated management practices that facilitate species mi‐
gration are urgently needed. Furthermore, for keeping the thermal 
habitat suitability of European catchments within species toler‐
ance limits, a renewed effort to slow down the pace of climate 
change is essential.
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