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Alzheimer’s disease (AD) is a neurodegenerative disease with complex pathological
characteristics, whose etiology and pathogenesis are still unclear. Over the past
few decades, the role of the extracellular matrix (ECM) has gained importance in
neurodegenerative disease. In this review, we describe the role of the ECM in
AD, focusing on the aspects of synaptic transmission, amyloid-β-plaque generation
and degradation, Tau-protein production, oxidative-stress response, and inflammatory
response. The function of ECM in the pathological process of AD will inform future
research on the etiology and pathogenesis of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia and the fourth leading cause
of death after cardiovascular disease, cancer, and acquired immune deficiency syndrome (AIDS).
AD symptoms usually manifest as memory loss, cognitive decline, personality changes, and other
neurological indications including depression, restlessness, anxiety, and aggressive behaviors. The
typical pathological characteristics of AD are amyloid-beta (Aβ) deposits, neurofibrillary tangles
(NFTs), synapse and neuron loss, glial activation, and disorganization of the extracellular matrix
(ECM). Numerous hypotheses, such as the Aβ hypothesis (Hardy and Selkoe, 2002), the oxidative
stress hypothesis (Maccioni et al., 2010), and the Tau protein abnormal phosphorylation hypothesis
(Terry and Buccafusco, 2003), have attempted to explain the etiology of AD and have targeted
both genetic and environmental factors (Wenk, 2003), yet the causative mechanisms of this disease
remain elusive.

The ECM is a structural network composed of various macromolecules secreted by cells,
namely collagen, elastin, fibronectin, laminin, glycoproteins like tenascin-R (TNR), and tenascin-C
(TNC), glycosaminoglycans (GAGs), and proteoglycans (Frantz et al., 2010). In the central
nervous system (CNS), neural ECMmolecules produced and released by neurons and surrounding
cells (astrocytes, oligodendrocytes, etc.) are extensively accumulated in the extracellular space
(Testa et al., 2019). Proteoglycans consist of a core protein covalently attached to one of
five GAG chains (Yanagishita, 1993), namely chondroitin sulfate, keratan sulfate, dermatan
sulfate, heparan sulfate, and the non-sulfated GAG hyaluronan. The carboxyl group of uronic
acid on the surface of hyaluronic acid (HA) has a large amount of negative charge, and its
repulsive effect causes the whole molecule to stretch and swell; the hydrophilic group can
also combine with a large number of water molecules to make the matrix isotonic and edema.
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These form a viscous colloid and generate swelling pressure,
giving the tissue good elasticity and resistance to pressure, as well
as interfere indirectly with parameters of neuronal excitability by
means of their influence on extracellular space volume (Arranz
et al., 2014). Chondroitin sulfate proteoglycan (CSPG) usually
acts as a barrier molecule and plays an important role in
embryonic development and plasticity of the central nervous
system in adulthood (Miyata and Kitagawa, 2016). Astrocytes
promote the growth and development of the brain by releasing
factors such as TNC (Pollen et al., 2015), which regulates
neuronal development. TNR is a membrane-bound connexin
that is closely related to the formation and stability of the
perineural network (Suttkus et al., 2014). The ECM serves to
maintain cell morphology and structure (Blumenthal et al., 2014)
and is involved in the survival, differentiation, development, and
migration of nerve cells. There are three main types of ECM in
the brain and spinal cord: the ubiquitously present ‘‘loose’’ ECM;
cell membrane-bound molecules such as TNR; and perineuronal
nets (PNNs) that wrap around specific neurons (Celio et al.,
1998; Deepa et al., 2006; Soleman et al., 2013). As a critical
component of the extracellular neural space, the ECM is closely
related to several neurodegenerative diseases, especially AD.
Many studies have reported alterations in the expression profile
of ECM proteins in early-onset AD. Table 1 lists changes in ECM
protein expression during the development of AD. Such changes
before the occurrence of AD could disturb the homeostasis of the
nervous system and promote the onset of AD.

As we communicate in this review, different types of ECM
may participate in the pathology of AD via different pathways
(Figure 1). Here, we focus on the role of the glycosaminoglycans
and proteoglycans in the occurrence of AD from the aspects
of synaptic signal transmission, Aβ plaque generation and
degradation, Tau protein production, oxidative stress response,
and the inflammatory response. Taken together, these pieces
of evidence strongly support that ECM dysregulation is closely
associated with AD, and future research can better inform efforts
to study the etiology and pathogenesis of AD.

THE ECM INHIBITS SYNAPTIC
TRANSMISSION AND AGGRAVATES THE
PATHOLOGICAL PROCESS OF AD

Synaptic changes are a frequent occurrence in neurodegenerative
diseases and are likewise observed in the early stages of AD.
The loss of synapses in the AD brain is closely associated with
cognitive dysfunction and the decline of learning and memory.
Many dendritic spine abnormalities and a decrease in synapse
number have been observed in cognition-related brain areas, like
the prefrontal cortex and hippocampus, in the early stages of AD
(Vertes et al., 1999).

AD is also called a ‘‘synaptic degeneration disease’’ (Selkoe,
2002). The critical balance between excitatory and inhibitory
neurotransmission, which is key to normal cognitive function,
is completely disrupted in the AD state (Boyce et al., 2016).
Some reports implicate keratan sulfate proteoglycan (KSPG) in
the regulation of synaptic function (Snow et al., 1996). The level

of KSPGs in the cerebral cortices of AD patients is much less than
in healthy individuals (Table 1, Lindahl et al., 1996). KSPGs have
been reported as primarily located at synapses and dystrophic
neurites within neuritic plaques of AD and the normal, aged
brain (Snow et al., 1996). Interestingly, the core protein of KSPG,
SV2Proteoglycan (SV2PG), is mainly located on the synaptic
vesicle membrane (Buckley and Kelly, 1985), indicating that
this position may be a potential site where the keratan sulfate
chain attaches to carry out the functions of the KSPG (Scranton
et al., 1993). In addition to being present in most synapses, the
SV2PG amino-acid sequence has homology with other proteins
identified as transporters (Bajjalieh et al., 1992; Feany et al.,
1992; Gingrich et al., 1992), suggesting a potential function
in synaptic vesicle transport. The localization of SV2PG on
dystrophic neurites indicates that changes in neurotransmission
maymainly involve abnormal neurites in AD (Buckley and Kelly,
1985; Snow et al., 1996). The lack of highly sulfated KSPGs in
AD may affect neurotransmission and weaken communication
between neurons, thereby impairing the learning and memory of
AD patients (Figure 1; Lindahl et al., 1996).

In addition to neurotransmission, synapse number and
neuronal plasticity are also affected in AD (Vertes et al., 1999).
Hyaluronic acid (HA) is one of the main components of the ECM
(De La Motte and Drazba, 2011) that is linked to AD pathology
via its effects on neuronal function and plasticity. The expression
of HA increases with the progression of AD (Table 1, Reed
et al., 2019). HA can inhibit the maturation of oligodendrocyte
progenitors (Back et al., 2005). Abnormal expression of HA will
demyelinate neurons, impair the transmission of nerve signals,
limit remyelination, and cause white matter lesions (Figure 1;
Montine et al., 2012). In human magnetic resonance imaging
studies (Back et al., 2011), it was observed that white matter
lesions in the medial prefrontal cortex (mPFC) were significantly
associated with vascular injury and co-localized with areas rich
in HA. The atypical increase of HA content in the brains of AD
patients may cause vascular injury, a decrease of cerebral blood
flow, decrease of oxygen and glucose supply to the brain, synapse
loss, decline of neuronal function, and ultimately aggravate the
cognitive deficits of AD patients (Figure 1; Park et al., 2014).
Finally, HA is also present in the core of PNNs (Figure 2), which
wrap around neurons and inhibit neuronal plasticity during
aging and disease (Sorg et al., 2016).

It was reported that Aβ plaques produced in the brains of
AD patients can cause changes in synaptic plasticity (Abramov
et al., 2009). According to these reports, the chondroitin sulfate
proteoglycan (CSPG) content in the brains of AD patients
is higher than that of healthy individuals (Table 1, Goetzl
et al., 2019). Chondroitin sulfate 4 (C-4) is expressed in the
core of senile plaques (SPs) and neurofibrillary tangles (NTFs),
non-chondroitin sulfate (C-0) is expressed in intracellular NTFs
and dystrophic neurites of SPs, and chondroitin sulfate 6
(C-6) is expressed in the core of NTFs and around SPs
(Dewitt et al., 1993). The combination of CSPGs and the
inhibitory receptor protein tyrosine phosphatase σ (PTPσ)
inhibits neuronal plasticity (Paveliev et al., 2016). Injecting
chondroitinase ABC (ChABC) into the hippocampus of AD
mice cuts off the CSPG network, thereby reducing Aβ plaques
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TABLE 1 | Expression of extracellular matrix (ECM) component changes in the pathological state of AD.

ECM component Expression in AD References

Hyaluronic Acid (HA) ↑ Nielsen et al. (2012), Nägga et al. (2014), Li et al. (2017), and Reed et al. (2019)
Heparin Sulfate Proteoglycan (HSPG) ↑ Van Horssen et al. (2003), Shimizu et al. (2009), and Lorente-Gea et al. (2020)
Chondroitin Sulfate Proteoglycan (CSPG) ↑ Shimizu et al. (2009) and Goetzl et al. (2019)
Keratan Sulfate Proteoglycan (KSPG) ↓ Lindahl et al. (1996) and Snow et al. (1996)
Dermatan Sulfate Proteoglycan (DSPG) ↑ Shimizu et al. (2009) and Genedani et al. (2010)
Tenascin C (TNC) ↑ Xie et al. (2013), Hondius et al. (2016), and Hasanzadeh et al. (2021)
Tenascin R (TNR) ↑ Manavalan et al. (2013) and Végh et al. (2014)
Reelin ↓ Herring et al. (2012), Mota et al. (2014), and Shabani et al. (2018)

The expression of KSPG and reelin decrease, whereas that of HA, HSPG, CSPG, DSPG, TNC, and TNR increase.

FIGURE 1 | The extracellular matrix (ECM) participates in the progression of Alzheimer’s disease (AD) via different mechanisms. Tenascin-C (TNC) is increased in
AD—it increases the stability of perineuronal nets (PNNs) to reduce the clearance of amyloid-β (Aβ), and participates in inflammatory pathways that leads to the
occurrence of AD. PNNs also wrap around neurons and protect them from the neurotoxic effects of Aβ. Heparin (HP) is increased in AD—high molecular-weight
(MW) HP promotes the formation of β-sheet secondary structure, and low molecular-weight (MW) HP inhibits it, which in turn affects the production of Aβ. Heparin
sulfate proteoglycans (HSPGs) are increased in AD; they promote the formation of Aβ fibrils, inhibit amyloid hydrolysis, and promote the production of Aβ. Dermatan
sulfate proteoglycans (DSPGs) are increased in AD—they may modulate the size of Aβ plaques, maintain the spherical structure of Aβ, thereby regulating the
occurrence of AD. Reelin is decreased in AD—it can promote the clearance of Aβ, and inhibit the expression of GSK-3β that phosphorylates the Tau protein and
promotes neurofibrillary tangle (NFT) formation, thus mediating the occurrence of AD. Tau hyperphosphorylation reduces hyaluronan synthase 1 (Has1), increases
hyaluronan synthase 3 (Has3), and up-regulates short-chain Hyaluronic acid (HA). HA is increased in AD; it inhibits the maturation of OPCs, causes demyelination,
reduces the supply of brain oxygen and glucose (O2/G), and may promote the occurrence of AD. TENASCIN-R (TNR) is increased in AD; it increases PNNs stability
and may prevent lipofuscin from destroying neurons. Keratan sulfate proteoglycan (KSPG) is decreased in AD and chondroitin sulfate proteoglycan (CSPG) is
increased; both these macromolecules may inhibit synaptic plasticity, cause synapse loss, and promote pathological damage in AD.

in the molecular layer, restoring synaptic density around Aβ

plaques, enhancing synaptic plasticity, and finally improving the
long-term memory capabilities of AD mice (Figure 1; Howell
et al., 2015). Interestingly, the injection of ChABC into the
secondary visual cortex (V2L) to relieve CSPG load can reduce
long-term spatial memory in rats without affecting short-term
memory, suggesting that the mechanisms of long-term and
short-termmemory are distinct. Moreover, rats’ recall of remote,
but not recent, visual fear memories is dependent on intact PNNs
in V2L (Thompson et al., 2018).

The PNNs are highly stable structures relieved from
constant renewal as they are not exposed to the catabolic

intracellular environment. Therefore, it has been proposed
that PNN may continue to be a material framework for
stabilizing long-term memory (Tsien, 2013). Moreover, the
PNNs promote the fast-spiking activity of Parvalbumin-positive
(PV+) interneurons, and consequently the excitatory–inhibitory
balance of neural networks required for cognitive functions
(Lensjø et al., 2017), which is essential for consolidation
and retrieval of memories (Xia et al., 2017). The efficacy of
ChABC in AD model and non-AD model animals may be
caused by differences in CSPG content (Goetzl et al., 2019).
In non-AD model animals, CSPG expression is relatively
normal and sufficient to maintain the balance of the PNN
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FIGURE 2 | Schematic of the molecular composition of PNNs. Hyaluronan synthases are located at the neuronal cell membrane, synthesizing hyaluronan and
secreting it into the perineuronal area. Members of the lectican family (aggrecan, neurocan, and brevican) bind to the hyaluronic backbone. Link proteins stabilize the
binding of CSPGs to hyaluronan. Tenascin-R (TNR) crosslinks the lecticans to form stable PNNs.

network. Using ChABC to break up CSPG affects the stability
of PNN and the material framework of long-term memory
(Tsien, 2013), resulting in a decrease in long-term memory.
Indeed, in AD model animals, the content of CSPG increases
(Goetzl et al., 2019), and the normal structure of PNN
can be restored by injection of ChABC so as to restore
long-term memory.

In the brains of AD animal models, PNNs surround Aβ

plaques, blocking the degradation of amyloid and inhibiting the
growth of neurites (Hockfield et al., 1990; Pizzorusso et al.,
2002; Mcrae et al., 2007). This restricts synaptic plasticity and
affects the transfer of information between neurons. Tenascin-R
(TNR), which is involved in the formation of PNNs (Figure 2),
is increased in the brains of AD patients (Végh et al., 2014).
Themain components of PNNs are lecticans (aggrecan, brevican,
neurocan, and versican), phosphacan, hyaluronan, TNR, and link
proteins (cartilage link protein Crtl-1/HAPLN-1 and brain link
protein Bral2/HAPLN-4; Figure 2). They interact with each other
to provide the molecular backbone of the PNN, thereby creating
a stable scaffold around the cell bodies and proximal dendrites
of neurons (Figure 1; Suttkus et al., 2014). PNNs inhibit the
outgrowth of neurites (Hockfield et al., 1990; Pizzorusso et al.,
2002; Mcrae et al., 2007), which may lead to restricted synaptic
plasticity and defective neurotransmission over the course of AD,
aggravating the disease’s pathological damage.

THE ECM IS INVOLVED IN THE
FORMATION AND DEGRADATION OF Aβ

PLAQUES

When Aβ oligomers form, they become anchored to the cell
membrane and result in the breakdown of the phospholipid
bilayer (Friedman et al., 2009). They also interact with
the hydrophobic region of the cell membrane to form
transmembrane pores, which leads to the outflow of cell contents
and an imbalance of ion homeostasis (Österlund et al., 2019).
High molecular-weight heparin (HP) can bind to Aβ and
promote the conversion of Aβ peptides from random coils to
β sheets (Bruinsma et al., 2010), thereby promoting amyloid
aggregation and fibrosis and stabilizing the formed senile
plaques. On the contrary, low molecular-weight HP can reverse
the process of amyloidosis by hindering the formation of β sheets
(Walzer et al., 2002), and thus prevent the neuropathic process
induced by Aβ (Figure 1). This fact indicates that HP proteins
of different molecular weights play different roles in the course
of AD. Studies have shown that removing the O-sulfuric acid
group in HP weakens its role in promoting Aβ aggregation.
Moreover, when the sulfuric acid group is completely removed,
its promotion of Aβ aggregation disappears completely (Ariga
et al., 2010), indicating that the sulfuric acid group is very
important for the aggregation of Aβ.
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The ECM-component HSPG is also increased in the brains
of AD patients (Table 1, Van Horssen et al., 2003). Agrin is an
HSPG containing nine protease-inhibiting regions (Stone and
Nikolics, 1995; Castillo et al., 1999) and prevents proteases from
degrading the Aβ protein. Agrin can enhance the formation of Aβ

fibrils in vitro and can protect fibrils against proteolysis (Gupta-
Bansal et al., 1995). As AD progresses, immature, non-fibrillar
Aβ plaques eventually develop into mature, fibrillar Aβ plaques
(Figure 1; Selkoe, 1991). This finding supports the contribution
of HSPG to the formation of mature Aβ fibrils in AD. The
pathogenic mechanism of this process operates as follows:
Agrin prevents proteases from degrading the Aβ protein, the
continuous deposition of which leads to the disease. Studies
have shown that the degree of sulfation of the HSPG is essential
to promote the formation of fibrils of Aβ (Cohen et al., 1997)
or other amyloid peptides (Castillo et al., 1998). The sulfation
pattern of HSPG does not occur randomly (Dennissen et al.,
2002). Five anti-HS antibodies obtained through phage-display
technology were used to label the topological structure of HSPG
epitopes, and it was found that each antibody recognized a
unique epitope structure of sulfate groups. This shows that the
position of the sulfate group is very important for the function
of the HSPG (Ten Dam et al., 2003, 2006; Kurup et al., 2007;
Wijnhoven et al., 2008). Highly N-sulfated and O-sulfated HS
may participate in the initiation of Aβ aggregation (Hileman
et al., 1998) or stabilize previously formed Aβ (Holm Nielsen
et al., 2000). The His-His-Gln-Lys amino-acid sequence on the
Aβ peptide chain is considered the binding site for the interaction
between glycosaminoglycans and Aβ, among which His13 may
be the main site for the function of the sulfate group.

There are different structures of Aβ aggregates (namely,
monomers, oligomers, and fibers) in the AD brain, indicating
that there may be a connection between the progression of
AD and the structure of Aβ (Gremer et al., 2017). Therefore,
understanding what maintains the spherical structure of Aβ

aggregates will provide a new perspective for the treatment of
AD. Dermatan sulfate proteoglycans (DSPGs) are upregulated
in the brains of AD rats (Table 1, Genedani et al., 2010). Using
a variety of antibodies to identify decorin, the core protein of
DSPG, in the brains of AD patients, positive staining was found
in the filamentous structure of amyloid deposits and NFTs.
Unlike HSPG, which tends to be evenly distributed in neuritic
plaques (NPs) containing amyloid, decorin is mainly distributed
around spherical amyloid plaques and the edges of amyloid fiber
bundles. The lack of decorin in the center of certain amyloid
plaques indicates that the distribution of DSPGs is spatially
restricted (Snow et al., 1992). The abnormal distribution of
decorin around amyloid plaques suggests that DSPGs may help
regulate the size of the amyloid plaques in NPs or maintain its
spherical structure (Figure 1; Obrink, 1973; Flint et al., 1984;
Vogel et al., 1984; Scott, 1988). Moreover, the close relationship
between blood vessels and amyloid plaques (Nortley et al., 2019)
suggests that vascular-wall proteoglycans may be associated with
Aβ deposits or NFTs in nearby plaques. Different DSPGs were
also shown to have different binding affinities for amyloid (Buée
et al., 1993). Taken together, this evidence supports that DSPGs
play an important role in the formation of amyloid plaques and

the pathogenesis of AD. After the induction of β-amyloid fibrils
in the rat striatum, the DSPG content and the total charge density
were shown to increase significantly (Genedani et al., 2010),
indicating that the production of Aβ in the AD brain may trigger
a responsive change in DSPG expression.

It has been reported that the expression of reelin and its
glycosylation pattern is altered in the cerebrospinal fluid of
AD patients (Botella-López et al., 2006). Specifically, there is
evidence to show that the depletion of reelin is an early event
in AD pathology (Table 1). A recent study showed that reelin
and its downstream signaling members APOER2, VLDLR, and
DAB1 are all affected in AD. Since reelin depletion occurs
before the onset of Aβ pathology, the decline of reelin may play
a role in the pathological precipitation of Aβ (Herring et al.,
2012). Consistent with the above, the expression of reelin in the
entorhinal cortex of transgenic mice and humans with AD is
reduced (Chin et al., 2007). Further, reelin has been shown to
inhibit Aβ production, promote Aβ clearance, and prevent Tau
protein hyperphosphorylation (Figure 1; Dulabon et al., 2000;
Brich et al., 2003; Deane et al., 2008).

INTERACTION BETWEEN ECM AND TAU
PROTEIN

Tau belongs to the microtubule-associated protein (MAP)
family, which can effectively stabilize microtubules and promote
retrograde (periphery to the nucleus) and anterograde (nucleus
to outer periphery) axonal transport (Kadavath et al., 2015;
Wang and Mandelkow, 2016). Therefore, the normal function
of tau is essential for neuronal transport and synaptic structure
(Avila et al., 2016; Guo et al., 2017). Tau hyperphosphorylation
can lead to the deterioration of the dendritic structure and
axonal transport, as well as the depolymerization of microtubules
(Baudier and Cole, 1987).

HA synthases (HAS), including Has1, Has2, and Has3, are
widely expressed in the central nervous system of mice. All types
of HAS are located in the cell bodies of neurons, but only Has1 is
found in axons. In TauP301S transgenic mice where tau protein
is overexpressed, it was found that Has1 is no longer localized
to axons, similar to the redistribution of Has1 expression
observed in the brains of AD patients. Additionally, in the
brains of TauP301S transgenic mice, Has1 expression decreases,
whereas Has3 expression increases, leading to the upregulation
of short-chain HA in the ECM (Figure 1; Li et al., 2017).
The localization of Has1 depends on intact microtubules, and
its mislocalization caused by the hyperphosphorylation of Tau
disrupts the balance of ECM components, promotes ECM
recombination, and inhibits the formation of PNNs. Under such
conditions, neurons become more susceptible to the invasion
of neurotoxic substances such as Aβ, which inhibit synaptic
remodeling and aggravate AD.

Reelin is activated through the SFK/PI3K/Akt pathway
to inhibit the expression of GSK-3β and prevent Tau
phosphorylation, another pathological occurrence in AD.
Recent studies have found that GSK-3β is the most effective Tau
protein kinase and can promote an abnormal increase in Tau
phosphorylation (Figure 1; Ohkubo et al., 2003). Consistently,
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studies have shown that the expression of GSK-3β colocalizes
with NFTs, and both its expression and activity are significantly
increased in the brains of AD patients.

THE ECM RESISTS OXIDATIVE STRESS
AND REDUCES AD DAMAGE

Under healthy physiological conditions, the reactive oxygen
species (ROS) metabolized by the body is maintained in
a steady state of redox by the body’s natural antioxidant
system. The hypothesis of free radical damage in AD postulates
that (Cabungcal et al., 2013) the body’s defense systems are
weakened with disease progression, causing the accumulation
of a pathologically high level of free radicals, which react with
unsaturated fatty acids in the cell membrane to form lipid
peroxides such as malondialdehyde. Malondialdehyde combines
with proteins, nucleic acids, and other biological macromolecules
to form insoluble lipofuscin deposits in cells (Kun et al., 2018).
Lipofuscin can damage cell structure, disrupt cell metabolism,
accelerate cell senescence and death, as well as affect learning
and memory (Giaccone et al., 2011; Kwon et al., 2016). As
shown in Table 1, as the course of AD progresses, the expression
of tenascin-R increases (Végh et al., 2014). Neurons in the
cortex and subcortex are surrounded by PNNs, which protects
them from neurofibrillary degeneration (Brückner et al., 1999;
Morawski et al., 2012). Studies have shown that compared with
unprotected neurons, those surrounded by PNNs are less affected
by the accumulation of lipofuscin present in AD (Morawski et al.,
2004). Since lipofuscin is an indicator of oxidative stress and
aging (Sohal and Brunk, 1989), this finding indicates that the
PNN may have a protective function against oxidative stress-
induced neurodegeneration in AD.

Aβ-induced cerebrovascular (CV) deficits are mediated
by ROS (Iadecola et al., 2009). Application of exogenous,
soluble Aβ (Aβ1–40 and Aβ1–42 monomers) onto isolated
mouse cerebral arterioles leads to significant oxidative stress
and vasomotor dysfunction, and anti-ROS strategies markedly
improve these CV deficits (Dietrich et al., 2010). Tg2576 mice
in age from 2–3 months with elevated levels of endogenous,
soluble Aβ species display substantial oxidative stress and CV
deficits (Park et al., 2005). HSPGs are an attractive upstream
candidate for Aβ-induced ROS production and CV dysfunction
in AD. HSPGs bind Aβ with high affinity and promote their
intracellular uptake in multiple cell types (Sandwall et al.,
2010), including human cerebral vascular smooth muscle cells
(VSMC; Kanekiyo and Bu, 2009). Therefore, HSPGs could be
key mediators of Aβ1–42-induced oxidative stress and Aβ1–40-
induced VSMC dysfunction. Aβ could interact with the cell
surface or extracellular-matrix HSPGs, leading to intracellular
calcium influx and ROS production. Toxic ROS species could
directly damage the VSMC contractile machinery, leading to
a hypercontractile phenotype that would reduce the supply
of oxygen and glucose to the brain, thereby aggravating the
pathology of AD (Reynolds et al., 2016).

Chondroitin sulfate (CS) oligosaccharides have also been
tested as a therapeutic strategy in AD. They block Aβ-induced
oxidative stress in SH-SY5Y cells and mitochondrial dysfunction

(Zhao et al., 2020) in AD mice. They also inhibit oxidative stress,
production of pro-inflammatory cytokines, and activation of the
toll-like receptor pathway in Aβ-injured BV2 microglia (Zhao
et al., 2020). CS oligosaccharides were reported to significantly
suppress Aβ-induced oxidative stress by increasing the activity
of antioxidant enzymes, including SOD and GSH-Px. It has
been suggested that CS oligosaccharides may bind Aβ fibrils
and inhibit them from interacting with cell and mitochondrial
membranes; this process may be associated with the molecular
weight of the CS oligosaccharides (Zhang et al., 2018). As
such, modulation of ROS and identification of the upstream
inducers of Aβ-mediated ROS production will be instrumental in
designing novel therapies to prevent Aβ-induced CV dysfunction
and to ameliorate the effects that these vascular deficits have on
AD dementia.

THE ECM PARTICIPATES IN THE
INFLAMMATORY RESPONSE AND
REGULATES INFLAMMATORY
DAMAGE IN AD

Neuroinflammation is a result of the biological response of
microglia and invading immune cells to harmful substances
(Gendelman, 2002). Studies have shown that the pathology of
AD (including Aβ accumulation and tau hyperphosphorylation)
can cause inflammation in susceptible areas (Akiyama et al.,
2000; Hamelin et al., 2016). The low molecular-weight HA
fragments synthesized by Has3 or degraded by hyaluronidase can
cause inflammation (Simpson et al., 2015). In severe AD, tumor
necrosis factor (TNF)-stimulated gene-6 (TSG-6) was shown
to be significantly increased and was found in NeuN-positive
neurons and microglia (Hanger et al., 2014). TSG-6 is believed
to reduce inflammation and provide tissue protection for various
organs (Day and Milner, 2019). It is expressed in the brains of
adult rodents and may become cross-linked with HA during the
formation of glial scars in the central nervous system (Coulson-
Thomas et al., 2016), thereby changing the structure of HA
(Baranova et al., 2011) to one that enhances interaction with
its receptors (Lesley et al., 2004; Lawrance et al., 2016; Richter
et al., 2018). In this way, TSG-6 may help HA to alleviate
neuroinflammation during AD (Day and Milner, 2019).

In AD, it has been reported that microglia (Krstic and
Knuesel, 2013; Niraula et al., 2017) and astrocytes (Batarseh
et al., 2016) can enhance the phagocytosis of harmful substances
to resist the damage caused by AD; however, other studies
suggest they secrete pro-inflammatory cytokines, which can
damage brain cells and aggravate the process of AD. Studies
have shown that a tenascin-C (TNC) deficiency reduces pro-
but enhances anti-inflammatory activation in the mutated
APP-transgenic mouse brain, associated with a reduced cerebral
Aβ load and higher levels of postsynaptic density protein 95
(PSD-95; Xie et al., 2013). In other words, TNC transforms
the neuroinflammatory process from pro- to anti-inflammatory
(Xie et al., 2013). Reducing the level of TNC in the brains
of AD mice significantly increased the number of microglia
and macrophages, and decreased the activity of β-secretase and
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γ-secretase in the hippocampus and cortex (Heneka et al., 2015),
which can effectively reduce the course of synapse damage
in AD. This finding indicates that the pathogenesis of AD is
not limited to neurons, but also includes interactions with the
immune mechanisms of the brain. Misfolded and aggregated
proteins bind to pattern-recognition receptors on microglia
and astrocytes, which trigger the innate immune response
characterized by the release of inflammatory mediators, thereby
aggravating the progression of AD (Heneka et al., 2015). As an
endogenous activator, TNC can accumulate in the AD brain and
cause chronic inflammation via the action of pro-inflammatory
cytokines (Figure 1).

The latest genomic and epidemiological studies have shown
that inflammation and immune responses in the brain are key
factors in the pathogenesis and progression of AD (Vanitallie,
2017). Therefore, using anti-inflammatory factors, such as those
in the ECM, to relieve pro-inflammatory responses is a viable
strategy for the treatment of AD.

THE ECM PROTECTS NEURONS FROM
NEUROTOXIC FACTORS IN AD

Fibrillar Aβ plays a central role in neurotoxicity in AD
brains (Mucke and Selkoe, 2012); it was shown to induce
oxidative damage and destroy the cytosolic Ca2+ homeostasis
of hippocampal neurons (Resende et al., 2007). Studies have
shown that Aβ promotes an increase in the concentration of Ca2+

in the cytoplasm of neurons (Kuchibhotla et al., 2008), which
increases the excitability of neurons and causes an increase in
the frequency of action potentials (AP; Scarnati et al., 2020).
The increase in neuronal AP frequency may be related to
the shortened refractory period and lower threshold potential
(Tamagnini et al., 2015), which is a common cause of neuronal
death in most degenerative diseases. Despite being the main
component of senile plaques in AD, Aβ protein does not show
neurotoxicity to CSPG-containing neurons. However, when
CSPG is removed with ChABC, Aβ1–42 becomes neurotoxic to
neurons (Miyata et al., 2007), suggesting that the neuroprotective
properties of PNNs could be harnessed as an effective treatment
in AD. Furthermore, DSPGs in the ECM prevent the neurotoxic
factors within and around senile plaques from interacting with
the nearby neurons or astrocytes, which restricts the further
spread of neurotoxic effects. Accordingly, neurons wrapped in
DSPG-rich ECM are not susceptible to Aβ’s toxic effects (Díaz-
Nido et al., 2002). Therefore, an increase in DSPGs may play a
key role in reducing amyloid neurotoxicity. The ‘‘two-sidedness’’
of the effects of CSPG and DSPG in AD allows researchers
to selectively eliminate or enhance the expression of CSPG or
DSPG.

CONCLUSION

The pathogenesis of AD is complex. In this article, we found that
the same ECMmay participate in the initiation and development
of AD through a variety of ways, while different ECMs may
participate in the pathogenesis of AD via the same pathway. This
review thus provides a broader basis for further understanding
AD pathogenesis.

In summary, different components of the ECM have different
roles in the neuropathology of AD, and regulating the expression
of individual components is an important step to stabilize or
improve the course of the disease. For example, as shown in
Figure 2, HA, CSPG, TNR, and other components make up
PNNs, which together maintain the stability of the extracellular
environment. There may be potential interactions between the
different components of the ECM, so that the ECM may
participate in a variety of ways. Although the ECM component
has various functions, it is also specific in different pathologies of
AD. Therefore, this special ECM component will be a potential
target and biomarker for the development and treatment of
AD. This review describes the possible relevant role of some
components of the ECM in AD, but the molecular mechanisms
underlying the pathogenesis of AD remain unclear. Therefore,
further elucidating the contributions of other ECM components
in the pathogenesis of AD will be of great significance for
its treatment and that of other AD-related neurodegenerative
diseases.
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