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Purpose: To compare supervised transfer learning to semisupervised learning for their
ability to learn in-depth knowledge with limited data in the optical coherence tomog-
raphy (OCT) domain.

Methods: Transfer learning with EfficientNet-B4 and semisupervised learning with
SimCLR are used in this work. The largest public OCT dataset, consisting of 108,312
images and four categories (choroidal neovascularization, diabetic macular edema,
drusen, and normal) is used. In addition, two smaller datasets are constructed, contain-
ing 31,200 images for the limited version and 4000 for themini version of the dataset. To
illustrate the effectiveness of the developedmodels, local interpretablemodel-agnostic
explanations and class activation maps are used as explainability techniques.

Results: The proposed transfer learning approach using the EfficientNet-B4 model
trained on the limited dataset achieves an accuracy of 0.976 (95% confidence interval
[CI], 0.963, 0.983), sensitivity of 0.973 and specificity of 0.991. The semisupervised based
solution with SimCLR using 10% labeled data and the limited dataset performs with an
accuracy of 0.946 (95% CI, 0.932, 0.960), sensitivity of 0.941, and specificity of 0.983.

Conclusions: Semisupervised learning has a huge potential for datasets that contain
both labeled and unlabeled inputs, generally, with a significantly smaller number of
labeled samples. The semisupervised based solution provided withmerely 10% labeled
data achieves very similar performance to the supervised transfer learning that uses
100% labeled samples.

Translational Relevance: Semisupervised learning enables building performant
models while requiring less expertise effort and time by using to good advantage the
abundant amount of available unlabeled data along with the labeled samples.

Introduction

Each year more than 30 million optical coher-
ence tomography (OCT) scans are obtained to support
eye care professionals to identify sight-threatening
diseases.1 OCT is a reliable way to detect eye-related
disorders at an early treatable phase and prevent vision
loss.2 The three-dimensional (3D) scans require analy-

sis and interpretation by an expert, but the volume of
scans produced is much higher than the number of
available healthcare professionals. Consequently, many
patients experience long delays until appointed treat-
ment, which in some cases lead to an irreversible visual
impairment that could have been prevented by prompt
intervention and suitable medical care.

Medical domains are often characterized by an
insufficient amount of data samples, which may lead
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to the poor ability of a neural network to gener-
alize. Manual labeling imaging data requires profes-
sional expertise and is an extremely costly, labor-
expensive, and time-consuming process. Generally,
medical datasets are composed of more unlabeled
data samples compared to labeled ones. Meanwhile,
machine learning algorithms are referred to as “black
boxes” because of the lack of explainability behind
their decisions, which is a prime obstacle to be accepted
by the general public and used in critical fields such as
medical diagnosis. The medical domain demands much
higher than other domains for fidelity, performance
and explainability of the neural networks models.

A well-known technique to overcome the challenge
of insufficient amount of training data is transfer learn-
ing. Transfer learning is a method to leverage knowl-
edge from one domain to another by utilizing the
developed abilities of the neural network to recog-
nize generic features such as edges, corners, colors.
It enables the training with fairly limited training
examples and reaches competitive performance results.
On the other side, semisupervised learning techniques
are beneficial when the dataset contains both labeled
and unlabeled inputs, generally, with a significantly
smaller number of labeled samples. Recent successes of
semisupervised learning have been themainmotivation
to investigate its use in the ophthalmological diagnostic
domain and compare its performance to the supervised
transfer learning-based approach.

Semisupervised learning has started gaining
popularity in recent years. The application of the
semisupervised learning approach is explored in a
limited number of different tasks and domains.3 In
this work, the main focus is medical image analysis
and the classification task of OCT data in particular.
Previously, semisupervised learning usage for image
classification has been explored in medical domains
such as brain tumor,4 breast cancer,5 chess X-ray,6
however, no investigation of the applications in the
OCT domain has been done to date.

In this work, we designed a transfer learning–
based solution using one of the current state-of-the-art
neural network architectures, particularly EfficientNet-
B4.7 To further address the problem of insufficient
data, we explore the application of semisupervised
learning by applying the recently proposed semisuper-
vised framework, SimCLR.8 Semisupervised learning-

based solutions have enormous potential in themedical
domain because of the general lack of labeled data
in the field. We aim to demonstrate the power
of using semisupervised learning by comparing the
performance between the supervised transfer learn-
ing approach and the semisupervised learning-based
solution.

Methods

Dataset Characteristics and Data Splitting

In this project, we use the largest publicly available
OCT dataset that is composed of four categories.9 The
dataset contains three groups of retinal pathologies:
choroidal neovascularization (CNV), diabetic macular
edema (DME), and drusen and one group of healthy
samples labeled as normal. A sample representation of
all four classes and their representative characteristics
are shown in Figure 1.

Precise data splitting is of high importance because
each individual patient is represented by multiple scans
in the dataset and the OCT scans that belong to the
same patient are very similar and often nearly identi-
cal. Therefore, the placement of the individual patient’s
scans in different data partitions such as train, test,
validation, might introduce bias to the model and
produce misleading performance results. The dataset
is highly imbalanced and includes in total 108,312
training images (37,206 CNV, 11,349 DME, 8,617
DRUSEN, and 51,140NORMAL) from 4,686 patients
and 1,000 testing images (250 for each category) from
633 patients. In this study, the dataset is further
analyzed and scans that belong to the same patient
and are placed in both the train and test partition are
eliminated from the training samples. This resulted in
reducing the training data from108,312 to 104,649with
1,000 set aside for the validation partition. The aimwas
to keep the testing data the same as provided by the
dataset authors while ensuring that the data splits are
composed of independent patients’ scans which are not
included in more than one partition.

A limited dataset is constructed by applying an
undersampling of the minority class technique. The
limited dataset consists of 7800 samples per training
category. The dataset is used to conduct experiments

Figure 1. OCT categories: CNV, DME, drusen, and normal.
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Table 1. Number of OCT Images per Dataset Partition
for the Three Dataset Varieties: Original, Limited and
Mini

Dataset Train Val Test Total

Original 104,649 1000 1000 106,649
Limited 31,200 1000 1000 33,200
Mini 4,000 1000 1000 6,000

Test dataset is the same for all three datasets varieties.
Validation dataset is the same for all three datasets varieties.

with fewer data samples to evaluate the performance
of the model with smaller amounts of data.

A mini dataset is created and is composed of
1000 image samples per training category. The prime
purpose of the mini dataset is to assess the general-
ization abilities of the neural networks on a very small
number of samples.

Table 1 summarizes the used dataset varieties.
For a fair comparison, the three datasets—original,
limited, and mini—share the same testing and valida-
tion datasets.

Data Preprocessing

The data preprocessing flow is illustrated in
Figure 2. The size of the images in the dataset
varies in width and height;00 therefore the images
are resized accordingly to the model requirements
(224 × 224 input size). After that, the normalization
technique is applied to convert the image pixel values
in the range [0, 1], subtract the mean from each image
and divide by the standard deviation. To increase the
diversity of the data two main data augmentation
strategies are applied. Horizontal random flip is one of
the strategies deployed, and although it is a very simple
method, it is particularly beneficial to the retinal image
domain due to the bilateral symmetry of the eye. The

technique imitates the inclusion of both left and right
eyes in the dataset since the results are biologically
feasible. The second data augmentation technique that
is implemented is the color space transformation and
particularly the color jitter technique of arbitrarily
changing the saturation, brightness, and contrast of
the image.

Supervised Transfer Learning-Based Solution
Details

In deep learning, it is a general perception that to
achieve high generalization ability of the model, a large
amount of labeled data is required. Building a neural
network with data-driven features such as convolu-
tional kernels with an insufficient amount of data can
easily result in bad generalization and consequently
a negative effect on the evaluation results. Moreover,
traditional learning is often associated with long train-
ing time and long hyperparameters tuning. However,
it still does not guarantee convergence, and it is highly
prone to overfitting or underfitting if not an adequate
quantity of data is provided. It is particularly challeng-
ing to collect a sufficient amount of labeled and verified
data in the medical domain because it requires medical
professionals to be involved in the process. In addition,
patients’ consents need to be obtained so that their
scans and medical information can be used.

A common strategy to address the issue of a lack
of data is to leverage knowledge from another domain
which is known as transfer learning. Instead of train-
ing a blank network, using a transfer learning approach
can make use of already optimized weights to detect
conventional features in the lower layers of the network
and only learn the weights in the upper layers. One
of the greatest advantages of this technique is that
models can train much faster, require less computa-
tional power, and converge with sufficiently fewer train-
ing data.

Figure 2. Data preprocessing pipeline.



Clinical Features With Minimum Supervision TVST | January 2022 | Vol. 11 | No. 1 | Article 11 | 4

There are two main types of transfer learning
settings: fixed feature extractor and finetuning. A
convolutional neural network as a fixed feature extrac-
tor is the case of using a pretrained model with
all layers’ weights frozen and the network is used
as a feature extractor. An exception is the last fully
connected layer that is required to learn the weights
because the pretrained model outputs 1000 classes as
per ImageNet and it has to be altered to the number
of categories for the given task. The second technique
is to finetune the convolutional neural network by
learning all the weights in the network by continu-
ing the backpropagation. The finetuning could happen
on different levels such as retraining all layers or just
some of the higher layers. The intuition behind keeping
the earlier layers frozen and only learning the last
layers comes from the fact that earlier layers learn
more generic features such as edges, corners, colors
whereas higher layers focus on more specific features
related to the data task. Depending on the size of
the dataset and the similarity of the data domain to
the ImageNet, different levels of finetuning can be
assessed. The smaller the data size is, the more frozen
layers should be kept due to overfitting possibilities.

In general, convolutional neural networks provide
three scaling dimensions: depth, width, and resolution.
The depth is specified by the number of layers of the
network, the width is defined by the maximal number
of nodes in a layer and the resolution of a CNN is
the image resolution passed to the network. Generally,
the scaling of neural networks leads to better perfor-
mance; however, it comes at a cost and brings various
complications. For instance, scaling in-depth raises the
problem of vanishing gradients, width scaling often
causes the accuracy to saturate quicker while resolution
scaling comes at a price of computational efficiency and
the accuracy improvement decreases in bigger models.
Thus it is of high importance to find the optimal scaling
along the different dimensions and identify the trade-
offs.

In this work, the EfficientNet model architecture is
used. The EfficientNet proposed by Tan et al.7 is estab-
lished as the current state-of-the-art architecture and
addresses the problem of finding the optimal scaling
factor for all dimensions of a neural network: depth,
width, and resolution. They are the first to express in
an empirical manner the relationship among the three
dimensions. It has been proven that the balance among
the three dimensions is vital for acquiring improved
accuracy and efficiency. The EfficientNet architecture
is based on scaling up in multiple dimensions rather
than in a single one. EfficientNet models consist of a
base model, EfficientNet-B0, which is then scaled along
the three dimensions and the different scaling factors
produce EfficientNets B1 to B7.

In this study, the EfficientNet model architecture
is used and particularly an EfficientNet-B4 model
is used that is pretrained on the ImageNet dataset.
To apply an effective transfer learning strategy, a
selection process to identify the number of layers
that are required to be retrained for optimal perfor-
mance is completed. The model achieved the most
competitive results when weights from the last four
blocks of layers are retrained while the convolutional
layers are kept frozen. AdaBound optimizer10 has
been used with a starting learning rate of 0.001 and
a final rate of 0.1. AdaBound is an adaptive gradi-
ent optimizer from the same family as Adam and
RMSprop with a dynamic bound of learning rate
which transforms into SGD at the end.Weighted cross-
entropy loss is applied to reflect on the irregularly
spread class samples. As a regularization technique,
early stopping is incorporated to detect the optimal
number of epochs to train the model and avoid overfit-
ting.

Semisupervised Learning-Based Solution
Details

One of the biggest challenges to develop machine
learning solutions in the medical domain is the lack of
labeled data samples. Annotatingmedical data requires
medical expertise and is regarded as a major burden
because it is a very expensive and time-consuming
process. Semisupervised learning is a method that
addresses this issue by taking advantage of the
abundant amount of unlabeled data along with the
labeled samples to enable the building of performant
models while requiring less expertise effort and time.
Generally, in semisupervised learning, image represen-
tations are learned from unlabeled data samples, and
then all representations are matched to a label based
on the proportion of samples that are labeled.

The primary motivation for this work is the
proposed simple framework for contrastive learning of
visual representations by GoogleAI, called SimCLR.8
The SimCLR not only improves significantly previ-
ous state-of-the-art self-supervised and semisupervised
learning methods and scores 85.8% top-5 accuracy
using only 1% of labeled data on the ImageNet dataset
but also beats some of the supervised learningmethods.

Contrastive learning is learning based on distinc-
tiveness and is at the core of the SimCLR framework. It
attempts to findwhatmakes two pairs of images similar
or dissimilar. SimCLR learns the visual representations
of the images by taking variously augmented versions
of the same data sample and maximizing the agree-
ment between the augmented samples by applying a
contrastive loss.
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Figure 3. SimCLR framework workflow.

The SimCLR framework flow is presented
in Figure 3. The first step is to generate batches of
size N from the training samples where N ∈ [128,
8192]. An augmentation function is defined to get an
input of an image and apply a random combination
of image transformations. For each data sample in
the batch, a random data augmentation function is
applied to produce a pair of two images xi and xj
for each input resulting in total 2N total samples.
Then, each of the augmented images is passed into an
encoder to extract the image representation vectors
hi and hj. The SimCLR framework is not restricted
and allows any choice of neural architecture as a base
encoder. Then, the hi and hj image vectors are passed
into a neural network called a projection head to apply
non-linear transformation and map them into zi and zj
representations. This produces an embedding vector z
for each of the augmented images in the batch. Next,
the similarity between each two augmented images is
calculated using cosine similarity. This score shows
how similar or dissimilar each image pairs are. The
assumption is that the similarity between augmented
images of class A will be high while the similarity
between samples of class A and class B will be lower.
Finally, a contrastive loss is calculated for every two
augmented pairs. The task is to maximize the similar-
ity between the zi and zj representations of the same
image. To evaluate the learned representation zi and zj,
a commonly used linear evaluation protocol is followed
where the base network is frozen and a linear classifier
is trained on top of it.

The SimCLR framework is used in this work.
Following the protocol of SimCLR, the data augmen-
tations applied in all of the experiments are random
cropping, resizing, random flipping, color distortion,
and Gaussian blur. The ResNet-50 architecture is used
as a base encoder and an MLP with one hidden layer
as a projection head. The performance of the SimCLR
has been assessed in various configuration settings to
find the optimal hyperparameters. The base encoder
is trained for 1000 epochs with a batch size of 256.
Training fewer epochs does not lead to convergence,
whereas training more epochs does not further benefit
the results. Although using a bigger batch size is almost
certainly expected to improve performance, in this

work 256 is selected due to computational limitations.
The NT-Xent is used for a loss function. because the
selected batch size in this study is comparatively small
(256), Adam is used as an optimizer in contrast to
the SimCLR paper where LARS is adopted. LARS
is advantageous to stabilize training with bigger batch
sizes which is not beneficial in this work. After the
training of the base encoder, the labels of a random
number of data samples are revealed (either 1% or 10%
of data samples) and then a linear classifier is trained
on top of the learned representations from the base
encoder.

Results

Supervised Transfer Learning Experimental
Results

Table 2 shows the comparative quantitative results
for the experiments performed on different dataset
variations using the EfficientNet-B4 model architec-
ture.

The proposed EfficientNet-B4 model trained on the
original dataset achieved 0.9812 accuracy with a sensi-
tivity score of 0.981 and a specificity score of 0.9936.
The performance of the EfficientNet-B4 trained on
the limited dataset is similar to the network trained

Table 2. Comparative Quantitative Results of the
EfficientNet-B4 Network in Different Dataset Variations

Metric
EN-b4
Original

EN-b4
Limited

EN-b4
Mini

Dataset original limited mini
Accuracy 0.9812 0.9762 0.8363
Loss 0.0558 0.0907 0.7011
Sensitivity (TPR) 0.981 0.973 0.683
Specificity (TNR) 0.9936 0.991 0.8943
F1 Score 0.9806 0.9729 0.8276
CKS 0.975 0.964 0.7157
MCC 0.9742 0.9649 0.6890

TPR, true positive rate; TNR, true negative rate; CKS, Cohen
kappa score; MCC, Matthews correlation coefficient.
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on the original dataset. The EfficientNet-B4 on the
limited data obtained an accuracy of 0.9762 with
0.973 and 0.991 rates for sensitivity and specificity. A
high sensitivity rate demonstrates high abilities of the
model to correctly identify scans with eye pathologies
(true positive rate), whereas the specificity rate shows
that the model learned to recognize healthy eyes (true
negative rates). A low false negative rate is extremely
critical for medical diagnostics systems. False negative
results are more detrimental than false positive because
the false negative result implies that the model failed to
refer the patient accordingly which could lead to the
patient not being treated and ultimately causing fatali-
ties. Therefore a high sensitivity rate is of huge impor-
tance in medical diagnosis applications. The model
trained on the mini dataset scored 0.8363 accuracy,
0.683 sensitivity, and 0.8943 specificity.

Since the accuracy score assumes that both false
negatives and false positives have similar costs, which
is not the case in the medical diagnosis; the F1 Score
is a metric that considers both false negatives and
false positives. The classifiers trained on the original
and limited dataset obtained F1 Scores of 0.9806 and
0.9729, respectively, whereas the model on the mini set
achieved a rate of 0.8276.

The Cohen kappa score is an evaluation metric that
considers imbalanced data and shows howmuch better
the model performed compared to a random classi-
fier given the frequencies of each class.11 The networks
developed on the original and the limited dataset
achieved a kappa score of 0.975 and 0.964, respectively,
and the classifier on the mini dataset acquired a score
of 0.7157.

Similar results to the Cohen kappa score are
observed when comparing the models’ performance
based on the Matthews correlation coefficient score
with the model trained on the original data achieving
0.9747, the limited one scoring 0.9649 and the mini
with 0.6890.

Tables 3 and 4 present the distribution of the evalu-
ation metrics for each of the four OCT categories—
CNV, DME, drusen, and normal.

Table 3. Summary of the Evaluation Metrics Per OCT
Category for the EfficientNet-B4 Developed on the
Original Dataset

Category Accuracy Precision Recall F1-Score

CNV 0.988 0.9643 0.992 0.974
DME 0.996 0.986 0.9935 0.9854
Drusen 0.96 0.982 0.9642 0.972
Normal 0.98 0.996 0.986 0.994

Semisupervised Learning Experimental
Results

Table 5 presents the conducted experiments using
the SimCLR framework. Both the limited dataset and
the mini dataset with 1% and 10% labeled data have
been used for the experiments. One of the goals was to
examine the impact of the number of total samples and
the percentage of labeled samples on the generalization
abilities of the network.

The classifier trained on the limited dataset with
10% labeled data achieved an accuracy of 0.946.
As discussed earlier, a low false negative rate is
extremely important in the medical domain. The classi-
fier achieved a sensitivity score of 0.941 and a speci-
ficity score of 0.9825. When training a semisupervised
model on the limited dataset with 1% labeled data, the
classifier achieved a 0.8117 accuracy rate. The model
scored a rate of 0.8063 for sensitivity and 0.9120 for
specificity. Another experiment on the mini dataset
with 10% labeled data has been done to examine the
model’s abilities to identify eye disorders when much
less data are available. The model achieved an accuracy
of 0.8435.

Table 6 shows the performance of the SimCLR
network developed on the 10% labeled data samples
across the four OCT dataset categories—CNV, DME,
drusen, and normal.

Table 4. Summary of the Evaluation Metrics Per OCT
Category for the EfficientNet-B4 Developed on the
Limited Dataset

Category Accuracy Precision Recall F1-Score

CNV 0.998 0.9504 0.9960 0.9727
DME 0.992 0.9880 0.9920 0.9900
Drusen 0.952 0.9754 0.9520 0.9636
Normal 0.968 0.9959 0.9680 0.9817

Table 5. Comparative Quantitative Results of the
SimCLR Performance in Different Dataset Variations

Metric
SimCLR

Limited 10%
SimCLR

Limited 1%
SimCLR
Mini 10%

Dataset limited limited mini
Labeled data 10% 1% 10%
Accuracy 0.946 0.8117 0.8435
Loss 0.2142 0.6271 0.6829
Sensitivity (TPR) 0.941 0.8063 0.8127
Specificity (TNR) 0.9825 0.9120 0.9223
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Table 6. Summary of the Evaluation Metrics Per OCT
Category for the SimCLRDevelopedon the 10%Labeled
Limited Dataset

Category Accuracy Precision Recall F1-Score

CNV 0.976 0.8971 0.9760 0.9349
DME 0.996 0.9542 1.0000 0.9766
Drusen 0.876 0.9520 0.8720 0.9102
Normal 0.936 0.9873 0.9360 0.9610

Discussion

Transfer learning applications in image classifica-
tion have been explored recently in the OCT domain in
a range of publications.12–15 Kermany et al.12 explored
the application of transfer learning with ImageNet
weights and Inception V3 model architecture. As part
of their work they also published their dataset, which
is currently the largest publicly available dataset and
is the one used in this work. The proposed classi-
fier by Kermany et al.12 acquired an accuracy of
0.966, sensitivity of 0.978 and specificity of 0.974.
Another example work using a transfer learning-based
approach is the Li et al.15 proposed solution to detect
OCT pathologies using a pretrained VGG-16 with
ImageNet weights. Accuracy of 0.986 was achieved
with 0.978 sensitivity and 0.994 specificity.

An observation over the reviewed materials is that
although in most cases the datasets are highly skewed,
there is no evidence that it has been taken under
consideration during the model development or train-
ing phase. Therefore the data imbalance problem is
addressed thoughtfully in this work. Another common
issue that has not been discussed by most of the studies
is the importance of splitting the data correctly. OCT
scans present 3D volumes of images and different
dataset partitions might contain multiple scans of the

same patient. To clarify, the OCT scans belonging to
the same patient are often quite identical and their
placement in different data partitions such as train,
test, validation, will introduce bias to the model, lead
to overfitting and produce misleading performance
results. Thus, in this work, it is carefully considered
to split the data precisely as it affects both supervised
based learning and semisupervised learning.

In previous works, semisupervised learning
approaches for image classification have been inves-
tigated in medical domains such as brain tumor,4
breast cancer,5 and chest radiography,6 but no studies
researched the semisupervised learning strategy in the
OCT data domain. In all these studies, the develop-
ment of novel semisupervised frameworks to classify
medical images has been explored. The proposed
SimCLR8 framework improved significantly previ-
ous state-of-the-art semisupervised learning methods
and also defeated some of the supervised learning
methods. It scores 85.8% top-5 accuracy using only 1%
of labeled data on the ImageNet dataset.

Table 7 describes the main experiments completed
in this study both in fully supervised and semisuper-
vised settings on the three different versions of the
OCT dataset—original, limited, and mini. The table
also outlines the impact of the proportion of provided
labeled samples on the downstream performance.

Both V2 and V7 experiments are conducted on the
limited OCT dataset with 100% labeled data. In the
V2 experiment, the transfer learning approach is taken
whereas in V7 semisupervised approach is applied. As
can be seen, the performance of the models in both
experiments is nearly equivalent. The fully supervised
model achieved an accuracy of 0.9762, whereas the
semisupervised-based network scored 0.9788 accuracy.
The other evaluation metrics follow the same trend as
the accuracy and are very similar. This demonstrates
that the results from the semisupervised approach (V7)
are comparable to the fully supervised one (V2), and

Table 7. Comparative Quantitative Results of the Performance of the EfficientNet-B4 Network and the SimCLR
Framework in Different Dataset Variations

Metric EN-b4 Original
EN-b4
Limited EN-b4 Mini

SimCLR
Limited 10%

SimCLR
Limited 1%

SimCLR Mini
10%

SimCLR
Limited
100%

Name V1 V2 V3 V4 V5 V6 V7
Dataset original limited mini limited limited mini limited
Label data 100% 100% 100% 10% 1% 10% 100%
Accuracy 0.9812 0.9762 0.8363 0.946 0.8117 0.8435 0.9788
Loss 0.0558 0.0907 0.7011 0.2142 0.6271 0.6829 0.2382
Sensitivity 0.981 0.973 0.683 0.941 0.8063 0.8127 0.9788
Specificity 0.9936 0.991 0.8943 0.9825 0.9120 0.9223 0.9937
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both frameworks learned the distinguishable features
of the data domain and developed an ability to discrim-
inates different eye pathologies.

The results achieved by the semisupervised classi-
fier trained with 10% labels (V4) are comparable to
the results achieved by the fully supervised classifier
trained on 100% labeled data using transfer learning
(V2). Both experiments are conducted on the same
limited dataset but on different proportions of labeled
data. Using transfer learning and training on a fully
labeled dataset yielded an accuracy of 0.9762, whereas
training with just 10% labeled data and using semisu-
pervised learning acquired a very closed accuracy score
of 0.946. The same performance pattern is observed
when comparing the other evaluation metrics such as
sensitivity, specificity, F1 score, Cohen kappa score
and Matthews correlation coefficient. Although the
semisupervised model is provided with much fewer
data samples to learn from, it demonstrated extremely
high abilities to identify the different OCT categories.
This demonstrates the power of semisupervised learn-
ing and its tremendous potential to be used in image
classification.

Another interesting comparison to look into is
the experiments V3 and V6. Both are executed on
the mini dataset. Although in the V3 experiment a
supervised transfer learning approach is taken, in the
V6 experiment the semisupervised learning is applied
with merely 10% labeled data. The accuracy results
achieved by the two experiments are very close, 0.8363
and 0.8435 for the supervised and semisupervised
approaches, respectively. It can be also seen that not
only the accuracy but also the other evaluation perfor-
mancemetrics are alike. This suggests that bothmodels,
V3 and V6, developed identical learning capabili-
ties even though the semisupervised-based network
is provided 90% less labeled data. The same perfor-
mance trend is observed by V2 and V4 experiments
as discussed earlier. The obtained results illustrate
that the semisupervised models have a huge potential
to be capable of extracting information and learning
distinguishable features from an insufficient amount of
labeled inputs.

The experiments done on the limited dataset with
1% labeled data (V5) and the mini dataset with 10%
(V6) accomplished similar results. In both experiments,
the models are trained on a very limited number
of labeled samples. Although the labeled data repre-
sented a different ratio of the total data provided in
the two experiments (1% and 10% labeled samples,
respectively), the actual number of labeled inputs is
similar and so are the results. This leads to the assump-
tion that the number of provided unlabeled samples
does not contribute highly to the learning process of
the models. The same trend is demonstrated in the

experiments on the limited dataset with 1% and 10%
labeled samples where the model trained on more
labeled images acquired better generalization abilities.
The experiment on the mini dataset also shows that the
amount of labeled data plays a vital role in the learning
process of a neural network.

In summary, the semisupervised learning-based
experiments demonstrated that the semisupervised
networks are equally performant to fully-supervised
ones. Although, semisupervised models are provided
with substantially fewer labeled samples, they are
capable of learning distinct data features and develop
competitive generalization abilities. Some of the limita-
tions of this study are related to the diversity of the
data. The models are trained on a dataset consists of
images acquired via the Heidelberg Spectralis (Heidel-
berg Engineering, Heidelberg, Germany) imaging
platform12; however, other OCT scanner manufac-
turers also exist (e.g., Zeiss, Oberkochen, Germany,
and Optovue, Fremont, CA, USA). Although differ-
ent producers have made the resulted OCT scans
reasonably consistent, it will be beneficial to collect
a dataset comprising of scans of various imaging
platform manufacturers to validate the abilities of the
neural networks and further improve their generaliza-
tion abilities.

Another limitation of the work is that it has not
addressed the availability of OCT volumes. In essence,
the OCT scans represent 3D volumes. It will be inter-
esting to explore which of the slices in the volume gives
the most substantial information to the model regard-
ing the category and if there are particular scans that
the algorithms are more interested in (e.g. the frontest
scan of the volume, the most back scan, or some in
the middle of the volume). For this idea to be further
explored, a dataset containing patients’ volume scans
needs to be collected.

In the medical domain, data are often imbalanced
with the minority classes in most cases being the
ones of interest. Because the undersampling technique
has been already explored as part of this work when
constructing the limited dataset, it will be interesting
to apply the oversampling strategy. The application of
Generative Adversarial Networks to generate synthetic
data samples is another limitation of this study that it
will be beneficial to explore. The effect of the synthetic
data on the classification abilities of the models can
be analyzed and compared to the results that were
obtained without the addition of the synthetic data.

Interpretability

Another big challenge in the deep learning field is
to provide the interpretability of the models. Machine
learning algorithms are often treated as black boxes
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because of the limited insight behind their decision
making. This leads to a low acceptance rate by the
general public and criticism regarding their deployment
in production and use in important fields. Further-
more, the adoption of machine learning systems in
critical fields such as medical diagnosis requires well
defined and precise measures which state how the
systems will be held accountable and interpretable.
This section of the study aims to explore methods of
explaining and interpreting the developed models.

Local interpretable model-agnostic explanation
(LIME)16 is a model-agnostic technique that imple-
ments a local surrogates model. Local surrogate models
are interpretable models such as linear regression and
decision trees. The aim of the surrogate models is
to approximate the underlying model’s prediction.
LIME focuses on explaining individual predictions
by training local surrogate models rather than global
ones. LIME helps to understand which region of the
image contributed the most to the model classification
decision and how different superpixels (set of pixels)
of the image affect the final predictions. LIME creates
explanations for individual samples from the dataset.
First, LIME constructs a dataset from randomly
permuted samples of a particular image by turning
on and off superpixels. Then, each of the permuted
images is assigned a classification label by using the
trained machine learning model. Next, the samples in
the newly generated dataset are weighted based on the
data sample that is being explained. The final step is to
fit a local surrogate model to explain the predictions
of the classifier.

LIME is applied to explain the predictions of two
of the main models developed as part of this study,

namely the supervised EfficientNet-B4 model and the
semisupervised SimCLR trained on 10% labeled data
corresponding to experiment versions V1 and V4 as
per Table 7. Both models are developed on the same
limited dataset as explained in detail in the Discussion
section.

Another explainability technique applied in this
work is the class activation maps (CAM). Class activa-
tion maps (CAM) are a simple yet effective technique
to retrieve the image regions which a neural network
uses to detect a particular class.17 To generate the class
activation maps, the global average pooling layer in the
classifier is used. CAM depicts the region in the image
used by CNN to assign a certain label to an image.
Before the final layer of the neural network, which is
often a SoftMax layer in the case of classification, a
global average pooling is performed on the convolu-
tional feature maps and these features are fed into the
fully connected layer. This way the important regions
of the image can be detected by projecting back the
weights of the output layer to the convolutional feature
maps acquired by the last convolutional layer. In other
words, CAM reveals the category-specific discrimina-
tive region. CAM is particularly beneficial to interpret
the prediction decisionmade by the neural network and
gaining insight into the decision process of the neural
network.

Drusen is an eye disorder belonging to AMD same
as CNV. Drusen represents tiny irregularities built
between the retinal pigment epithelium and Bruch
membrane layers of the retina. In Figure 4 are depicted
scans of class drusen, the corresponding confidence
scores of the models for the top 1 feature explanation
fromLIME and the class activationmaps. Both V1 and

Figure 4. LIME and CAM visualizations for drusen category for (A) EfficientNet-B4 (V1) and (B) SimCLR (V4).
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Figure 5. LIME and CAM visualizations for CNV category for (A) EfficientNet-B4 (V1) and (B) SimCLR (V4).

Figure 6. LIME and CAM Visualizations for DME category for (A) EfficientNet-B4 (V1) and (B) SimCLR (V4).

V4 models focus on the extracellular material accumu-
lated between retinal layers, which indicates that the
models learned correctly how to discriminate drusen
disorder. Also, as can be seen, the two models show
practically the same images’ segments, which is proof
that the semisupervised model has accurately learned
the features of the category.

When abnormal blood vessels grow inside the retina
and begin leaking fluid, then age-related macular
degeneration (AMD) has progressed into wet AMD,
which is also referred to as choroidal neovasculariza-
tion or CNV. Figure 5 illustrates the superpixels that
LIME found to be of the greatest importance for the
models for classification prediction and the regions that
CAM detected to have contributed to the classification

label themost. The LIME segmentsmatch precisely the
visibly grown blood vessels associated with CNV. This
demonstrates that the neural networks have learned the
feature characteristics of the CNV category.

DME is another eye disorder associated with
patients with underlying diabetes. It is associated with
fluid accumulation in the macula and retinal thick-
ening. DME can be recognized on a scan by an
accumulated subretinal fluid. Figure 6 presents the
corresponding LIME segments and CAM visualiza-
tions that are clearly around the regions of the images
that represent accumulated fluid between the layers.
This is a confirmation that the network developed the
ability to recognize DME and to discriminate its prime
features.
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Conclusion

Medical domains are generally associated with
limited data samples. It is particularly difficult to
acquire a sufficient amount of verified and labeled
data in the medical field because it requires domain-
specific expertise. Professional knowledge comes at
high expenses and is a very lengthy process. In numer-
ous cases, datasets consist of more unlabeled samples
than labeled. Limited labeled data are often one of
the main obstacles to developing machine learning
solutions in the health sector. Therefore the promises
of semisupervised learning in the field are huge.
In this work, we proposed two machine learning
solutions—one based on supervised transfer learn-
ing and another one based on semisupervised learn-
ing. We compared the developed supervised transfer
learning models to the semisupervised classifiers to
assess the performance. This helped to validate the
potential of using semisupervised learning in domains
with scarce amounts of labeled data. The experi-
ments demonstrated that the semisupervised machine
learning solution for medical diagnosis is capable to
gain in-depth knowledge through limited labeled data
and minimum supervision. The applied interpretabil-
ity techniques further explained the effectiveness of the
proposed solutions.
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