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Simple Summary: Uveal melanoma is an aggressive cancer that begins in the eye, but often spreads
to distant organs when tumor cells enter the blood. Disease spreads in nearly half of uveal melanoma
patients, and is fatal. We discovered a new tumor cell population in the blood stream of cancer
patients that has combined tumor cell and white blood cell features. These cells, called circulating
hybrid cells, can develop into metastatic tumors. Recently, we detected circulating hybrid cells in the
blood of patients with uveal melanoma. In this study we determine that the number of circulating
hybrid cells in the blood at time of initial treatment of uveal melanomas predicts future development
of disease spread. Circulating hybrid cells have promise as a non-invasive and repeatable “liquid
biopsy” for uveal melanoma patients. Therefore, study of this newly discovered cancer cell will
improve understanding of the biology of disease progression in uveal melanoma.

Abstract: Background: Uveal melanoma is an aggressive cancer with high metastatic risk. Recently,
we identified a circulating cancer cell population that co-expresses neoplastic and leukocyte antigens,
termed circulating hybrid cells (CHCs). In other cancers, CHCs are more numerous and better
predict oncologic outcomes compared to circulating tumor cells (CTCs). We sought to investigate the
potential of CHCs as a prognostic biomarker in uveal melanoma. Methods: We isolated peripheral
blood monocular cells from uveal melanoma patients at the time of primary treatment and used
antibodies against leukocyte and melanoma markers to identify and enumerate CHCs and CTCs
by immunocytochemistry. Results: Using a multi-marker approach to capture the heterogeneous
disseminated tumor cell population, detection of CHCs was highly sensitive in uveal melanoma
patients regardless of disease stage. CHCs were detected in 100% of stage I-III uveal melanoma
patients (entire cohort, n = 68), whereas CTCs were detected in 58.8% of patients. CHCs were detected
at levels statically higher than CTCs across all stages (p = 0.05). Moreover, CHC levels, but not CTCs,
predicted 3 year progression-free survival (p < 0.03) and overall survival (p < 0.04). Conclusion: CHCs
are a novel and promising prognostic biomarker in uveal melanoma.
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1. Introduction

Uveal melanoma (UM) is an aggressive intraocular cancer with high risk for distant
metastasis driven by hematogenous dissemination of tumor cells [1]. Primary treatment
of the eye is highly successful, but has no clear impact on survival [2]. This is likely due
to the presence of micrometastatic disease at the time of initial diagnosis. Up to 50% of
patients progress to metastatic disease over 15 years, with the most aggressive tumors often
leading to metastases within 3–5 years [1]. While there is currently no curative therapy, the
FDA recently approved the first uveal-melanoma-specific systemic therapy, and numerous
clinical trials are underway including adjuvant treatment trials [3,4]. Increasingly, there is
clinical utility in identifying patients with high risk for progression. Molecular prognostic
testing can be used to risk stratify patients but requires tumor tissue obtained via fine
needle biopsy, which may not be feasible for all tumors, carries risk to the patient, and is not
repeatable [1,5]. Therefore, there is great interest in a non-invasive prognostic biomarker for
this disease [6,7]. Circulating tumor cells (CTCs) have been investigated; however, studies
examining traditional CTCs have yielded mixed, and mostly disappointing, results in part
due to their rarity [6,7].

We identified a novel circulating tumor cell population in human cancer patients,
including those with uveal melanoma, that outnumber conventionally defined CTCs [8,9].
These cells, termed circulating hybrid cells (CHCs), harbor characteristics of both neoplastic
cells and macrophages [8], and thus they are identified by co-expression of tumor and
leukocyte proteins. Based upon in vitro culture assays, murine models of tumorigenesis,
and human patient samples, we demonstrated that tumor-macrophage hybrids retained
genotypic and functional phenotypic properties of both parent cells [8,10]. Further, hybrid
cells were detected within both primary and metastatic tumors, as well as in the peripheral
blood [8]. CHCs harbored protein and mutational profiles that aligned with primary
tumors, highlighting their direct relationship with the primary tumor [9]. Our published
data supports a central role for tumor-immune hybrid cells in metastatic progression of
disease, with enhanced motility, invasiveness and growth at metastatic sites [8,9]. In
pancreatic ductal adenocarcinoma, CHC levels in blood correlate with AJCC staging and
high levels of CHCs predict poor survival [8].

CHCs represent a novel tumor cell population that we recently identified in uveal
melanoma patients, but have not yet extensively evaluated [9]. In the current study, we
sought to evaluate CHCs as a prognostic biomarker for uveal melanoma with potential to
predict metastatic disease progression. To do this, we analyzed peripheral blood specimens
from patients undergoing primary treatment for stage I-III uveal melanoma. Isolated
peripheral blood mononuclear cells (PBMCs) were evaluated for CHC and CTCs based
upon protein expression using immunofluorescence detection. While we initially used
gp100 to identify circulating tumor cell populations in our patients, we found that the
use of multiple uveal melanoma markers better captured the heterogeneous population of
disseminated melanoma cells present in the peripheral blood in uveal melanoma patients.
This is consistent with work demonstrating downregulation of canonical genes of the
melanocyte differentiation program including MITF, TRPM1, TYR and DCT in patients
with high risk tumors with BAP1 mutations [3,11,12]. Differential gene expression between
low risk (class 1) and high risk (class 2) tumors is the basis for molecular prognostic testing
via tissue biopsy in this cancer and these differentially expressed genes impact tumor
phenotype [13,14]. Thus, it follows that disseminated neoplastic cells would harbor protein
expression patterns that aligned with corresponding uveal melanomas, and that they
would likely be a heterogeneous population with differential expression dependent on
classification of the primary tumor.

Using both gp100 (a melanocytic marker commonly used in identification of CTCs) [14]
and the cell surface serotonin receptor, 5-hydroxytryptamine receptor 2B (HTR2B), which
is highly upregulated in high risk uveal melanoma tumors [15,16], we identified CHCs
(gp100+, HTR2B+, CD45+) and CTCs (gp100+, HTR2B+, CD45-). We determined that CHCs
significantly outnumbered CTCs in uveal melanoma patients regardless of disease stage.
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Progression-free survival (p < 0.03) and overall survival (p < 0.04) was significantly worse
for uveal melanoma patients with high levels of CHCs in the blood at the time of primary
treatment. Based upon our findings, CHCs have potential as a non-invasive biomarker in
uveal melanoma.

2. Materials and Methods
2.1. Human Specimens

All human peripheral blood and tissue samples were collected and analyzed under
approved protocols in accordance with the ethical requirements and regulations of the
Oregon Health & Science University institutional review board. Informed consent was
obtained from all subjects. Peripheral blood was obtained from cancer patients at OHSU
with uveal melanoma (n = 68) and healthy subjects (n = 18; Table 1). Primary uveal
melanoma patients were risk-stratified based upon AJCC stage and, when available, gene
expression profile (GEP) and Preferentially Expressed Antigen in Melanoma (PRAME)
status using the commercially available DecisionDX-UM test (Castle Biosciences, Inc.,
Phoenix, AZ, USA) [17]. Some patients declined fine needle biopsy for GEP testing so this
information was not available. Patients were followed longitudinally for clinical outcomes
including local recurrence, development of distant metastases, and death.

Table 1. Clinicopathologic Characteristics of Subjects Analyzed.

Uveal Melanoma Patients gp100
N = 63

HTR2B Cocktail
N = 38

Total Cohort
N = 68

Median age, years; (IQR)
67 (58–71) 60 (56–71) 63 (56–81)

Caucasian Race, N (%)
62 (98.4) 39 (100) 67 (98.5)

Gender, N (%)
F 25 (39.7) 14 (35.9) 26 (38.2)
M 38 (60.3) 25 (64.1) 42 (61.8)

T Stage, N (%)
T1 23 (36.5) 10 (25.6) 23 (33.8)
T2 0 (0) 14 (35.9) 21 (30.9)
T3 33 (52.4) 8 (20.5) 16 (23.5)
T4 7 (11.1) 7 (17.9) 8 (11.8)

AJCC Stage, N (%)
I 19 (30.2) 9 (23.1) 19 (27.9)
II 31 (49.2) 19 (48.7) 35 (51.5)
III 13 (20.6) 11 (28.2) 14 (20.6)

GEP Class, N (%)
Class 1 23 (36.5) 12 (30.7) 25 (36.8)
Class 2 21 (33.3) 18 (46.2) 24 (35.3)

Not Assessed 19 (30.2) 9 (23.1) 19 (27.9)
PRAME, N (%)

Neg 26 (41.3) 15 (38.5) 27 (39.7)
Pos 18 (28.6) 15 (38.5) 21 (30.9)

Not Assessed 19 (30.2) 9 (23.1) 20 (29.4)

Controls
gp100
N = 14

HTR2B cocktail
N = 10

Total Cohort
N = 18

Median age, years; (IQR)
69 (63–75) 73 (68–78) 71 (63–76)

Caucasian Race, N (%)
13 (92.9) 10 (100) 17 (94.4)

Gender, N (%)
F 10 (71.4) 8 (80.0) 13 (72.2)
M 4 (28.6) 2 (20.0) 5 (27.8)
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2.2. Human Peripheral Blood Preparation

Patient peripheral blood was collected in heparinized vacutainer tubes (BD Biosciences,
Franklin Lakes, NJ, USA) and diluted 1:2 with phosphate-buffered saline (PBS; 1.37 M
NaCl, 27 mM KCl, 0.1 M Sodium phosphate di basic, 18 mM KH2PO4, pH 7.4) solution.
Peripheral blood mononuclear cells (PBMCs) were isolated using density centrifugation
with Ficoll-Paque PLUS (GE Healthcare, Chicago, IL, USA) as previously published [9].
Ficoll (12 mL) was layered underneath diluted blood, then centrifuged for 20 min at 800× g
with no brake. Isolated PBMCs were resuspended in buffer, then adhered to poly-D-lysine
(1 mg/mL) coated slides (Millipore, Burlington, MA, USA; Fisher Scientific, Waltham, MA,
USA) at 37 ◦C for 15 min. Cells were fixed with 4% PFA for 5 min, permeabilized with 0.5%
Triton-X (Fisher Scientific, BP151-100) for 10 min, and fixed again with 4% PFA for 10 min.

2.3. In Situ Detection and Quantification of Circulating Hybrid Cells and Circulating Tumor Cells
from Human Peripheral Blood

Prepared patient PBMCs were incubated in blocking buffer (2.5 M CaCl2, 1% Triton-x-100,
1% bovine serum albumin (BSA) in PBS) for 30 min, and stained with a combination of
antibodies against uveal melanoma antigens gp100, tyrosinase, and/or HTR2B, a basophil
antigen (CD203c), a T-regulatory cell antigen (CD25), and the pan-leukocyte antigen CD45
(Supplemental Table S1), then counterstained with DAPI. Cells were imaged using a
ZEISS AxioObserver.Z1 light microscope, digitally scanned with a ZEISS AxioScanner. Z1,
and analyzed using ZEISS ZEN blue software version 3.5 (Carl ZEISS AG, Oberkochen,
Germany). Semi-manual quantification of CTCs and CHCs was performed as previously
described [9] for randomly selected areas in a blinded fashion. Fluorescence intensity
thresholds for each antibody was set based on histograms of unstained cells on a discrete
area of the same slide. Cells with DAPI nuclear staining were evaluated for CD45, CD25,
CD203c, and uveal melanoma protein expression. We enumerated ~50,000–75,000 cells
per patient, and normalized reported values to 50,000 nuclei. CTCs were defined as uveal
melanoma marker-positive (HTR2B, tyrosinase, and/or gp100) and CD45-negative. CHCs
were identified as uveal melanoma marker-positive (HTR2B, tyrosinase, and/or gp100),
CD45-positive, CD25-negative, and CD203c-negative. Basophils and T-regulatory cells
expressed CD45 and CD203c or CD25, respectively. Total nuclei within each quantified
region were digitally enumerated with a semi-automated analysis program using ZEISS
ZEN blue software version 3.5.

2.4. Analyses of Uveal Melanomas
2.4.1. Immunohistochemical and Histochemical Analyses of Globes

Formalin-fixed paraffin-embedded (FFPE) tissue sections (5 µm) from enucleated
globes were deparaffinized with xylene and rehydrated with graded ethanol baths. Tissue
was bleached for melanin removal in 10% H2O2 for 20 min at 65 ◦C, then subjected to
antigen retrieval. Briefly, tissue was incubated in citrate buffer (Sigma-Aldrich, St. Louis,
MO, USA, pH 6) for 30 min at 100 ◦C, Tris-HCL buffer (Invitrogen, Waltham, MA, USA,
pH 8) for 10 min at 100 ◦C, then cooled to room temperature, followed by PBS washes. For
protein expression analyses, tissue sections were incubated with unconjugated antibodies
(Supplemental Table S1) in blocking buffer for 45 min at 20 ◦C or overnight at 4 ◦C in a
humid chamber, followed by washes in 2 × SCC (Biosciences, pH 7) and detection with
species-appropriate fluorescent-conjugated secondary antibodies (ThermoFisher Scientific),
with directly conjugated fluorescent antibodies (gp100-AF647, tyrosinase-AF594) or with
Ab-oligo antibodies [18] (tyrosinase, Supplemental Table S1). All tissues were counter-
stained with DAPI, and coverslips were applied with Fluoromount-G mounting media
(Invitrogen). Stained tissues were scanned on the ZEISS AxioScan. Z1 (ZEISS, Germany)
with a Colibri 7 light source (ZEISS). The exposure time was set based upon staining
controls and images were acquired using Zen Blue image acquisition software version 3.5
(ZEISS). After image acquisition, tissues were subjected to standard hematoxylin and eosin
staining, and brightfield images acquired.
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2.4.2. Quantification of Discrete Uveal Melanoma Cell Percentages

Nuclei/cell segmentation and feature extraction were performed as previously de-
scribed [19]. The nuclei segmentation was performed using deep learning-based segmenta-
tion, Mesmer [20] based on a nuclear marker (DAPI), and cell segmentation was performed
using mathematical morphology operations such as dilation (25 pixels) to capture the
cell membrane. We first binarized each marker based on manual thresholding, with all
pixels above the set threshold considered positive. Positive pixel fractions for each cell
were extracted from the biologically relevant compartment for each marker, i.e., positive
pixel fractions for markers with known nuclear (cytoplasmic) localization were extracted
from nuclear (cytoplasmic) segmentation masks. Cytoplasmic segmentation masks were
computed by subtracting nuclear segmentation masks from full cell body segmentation
masks. We classified positive cells with a positive pixel fraction above the set threshold
(0.05) and counted positive cell numbers across patient samples.

2.5. Bioinformatics of scRNA-Seq Dataset
Differential Gene Expression Analysis, Class 2 vs. Class 1 Uveal Melanoma Tumors

scRNA-sequencing data published by Durante et al. [16] was used to evaluate the
differentially expressed genes between class 2 and class 1 uveal melanoma tumor cells. We
downloaded the original raw data from GEO [21], and loaded and normalized data using
Seurat [22] with in-house developed R scripts. To perform differential gene expression
analysis, we used the FindMarkers function with logfc.threshold equal to 0 after selecting
class 1 tumor cells from two primary class 1 tumor samples, UMM062 and UMM065 and
selecting class 2 tumor cells from 6 primary class 2 tumor samples, UMM059, UMM061,
UMM063, UMM064, UMM066, and UMM069. We randomly sampled class 2 cells so that
two groups have the same number of cells (12,513 cells each). Genes with an adjusted
p value > 0.05 and a log fold change >0.5 or <−0.5 were considered significant in differential
expression between class 2 and class 1 uveal melanoma tumor cells. Volcano plots were
generated using the EnhancedVolcano R package version 1.14.0 [23] in Rstudio (Boston,
MA, USA).

2.6. Statistical Analysis
2.6.1. Enumeration of CHCs and CTCs

Fisher’s exact test or Fisher’s one-tailed t-test was performed for comparisons of CHC
and CTC proportions for each disease stage and healthy control, with CHC and CTC levels
normalized to 50,000 nuclei. Fischer’s exact test was chosen as the primary test because
values of zero do not change with normalization. All analyses were performed using SPSS
Version 28 (IBM Corp., Armonk, NY, USA).

2.6.2. Survival Analyses

Descriptive statistics were tabulated as median and interquartile range (IQR) for
continuous variables and number (%) for categorical variables. Normalized CHC and
CTC levels from patients and healthy subjects were compared across disease state using
the Kruskal–Wallis test. Progression-free and overall survival were evaluated by Kaplan–
Meier analysis using the log-rank test between groups. In order to evaluate the robustness
of the correlation of CHC and CTC levels with outcomes of interest, receiver operating
characteristic (ROC) curves were analyzed and multiple cutoff points were tested for
significance, with the most significant threshold displayed. All patients not experiencing
the event of interest were censored at the date of last surveillance imaging follow-up (for
progression-free survival) or in-person follow-up (for overall survival). All tests were
two-sided, and all statistical operations were performed using SPSS Version 28 (IBM Corp.,
Armonk, NY, USA).
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3. Results
3.1. Proteins in the Melanogenesis Pathway Identify Circulating Hybrid Cells in Patients with
Uveal Melanoma

The melanosomal matrix protein PMEL17/gp100 [24], is a membrane-bound protein
that functions in early melanogenesis, in melanosome biogenesis and in melanin polymer-
ization and may be clinically used to identify melanoma by histopathology or cytology [1,7].
Based upon the use of gp100 to identify conventionally defined CTCs [24] we employed
antibodies against gp100 and tyrosinase, a second protein in the pathway [1,7] to detect
CHCs in patients with uveal melanoma. Whole blood was collected from uveal melanoma
patients immediately prior to their primary treatment. Peripheral blood mononuclear cells
(PBMCs) were isolated and processed onto glass slides, then stained with antibodies against
gp100 or tyrosinase (TYR) and CD45. As we previously detected [9], CHCs (gp100+/CD45+,
or TYR+/CD45+) were readily identified in all uveal melanoma peripheral blood specimens,
while CTCs (gp100+/CD45− or TYR+/CD45−) were found at low levels or absent in all
patients, (Figure 1A,B and Supplemental Figure S1A). 

2 

 

  Figure 1. Detected gp100+ circulating hybrid cells (CHCs) do not correlate with uveal melanoma
stage or predict survival outcomes. (A) Peripheral blood mononuclear cells stained with antibodies
to gp100 and CD45 facilitate identification of CHCs and circulating tumor cells (CTCs). Higher
magnification of boxed regions with individual antibody staining shown on right. (B) Enumerated
CHCs and CTCs in healthy subjects and patients across AJCC disease stage. (C) High levels of CHCs
or CTCs do not correlate with progression-free survival or (D) overall survival.
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To determine if presence of CHCs correlated with disease burden, we compared enu-
meration of CHCs and CTCs in patients presenting with uveal melanoma across disease
stage (stage I, n = 19; stage II, n = 31; stage III, n = 13). Clinical staging of uveal melanoma
patients by American Joint Committee on Cancer (AJCC) staging carries prognostic value,
where stage I patients have a lower risk for metastatic spread of their disease than stage
II or III patients [25,26]. Interestingly, the levels of CHCs or CTCs did not correlate with
advanced stage, like they have in other cancer organ sites, such as pancreatic ductal ade-
nocarcinoma (PDAC) [8] (Figure 1B). While AJCC stage correlated with progression-free
survival as anticipated based upon published studies (Supplemental Figure S2A–C) [25,26],
the levels of CHCs and CTCs defined by gp100 expression showed no correlation with
progression-free survival or overall survival (Figure 1C,D). This result suggested that either
CHCs did not have prognostic relevance in uveal melanoma, or that a population of interest
was not being captured with gp100 staining. This latter hypothesis supported the obser-
vation that some genes and proteins, such as those involved in the melanocytic pathway,
could be downregulated in more aggressive tumors and late stage disease [11,12,15,16,27].
Therefore, reliance on a single protein for biomarker detection could lead to under-detection
of CHCs or CTCs if protein expression is heterogeneous across the tumor.

3.2. Variable RNA Expression of Key Uveal Melanoma Identifiers across the Disease Spectrum

Previous reports point to significant differential gene expression in primary uveal
melanoma tumors that metastasize as compared to tumors that do not metastasize [12,16].
In order to improve detection of CHCs and CTCs in peripheral blood, we evaluated high-
expressing genes associated with metastatic progression for their appropriateness to be
included in a detection assay (Supplemental Table S2). While CTCs do not express periph-
eral blood cell antigens, CHCs, on the other hand can be generated by cell fusion between
neoplastic cells and immune cells, and thus express CD45, a pan-leukocyte antigen [8–10].
Due to the possibility of co-expression of immune cell antigens on CHCs, we evaluated
the gene list for immune cell expression and found that all top genes were co-expressed
on subsets of peripheral blood mononuclear cells (Supplemental Table S2). However,
the serotonin receptor, 5-hydroxytryptamine receptor 2B (HTR2B), displayed only low
expression on subsets of basophils and T-regulatory cells and functions independently
from the melanogenesis pathway. Therefore, we considered HTR2B as a potential candi-
date. To validate the use of HTR2B to identify disseminated uveal melanoma CHCs and
CTCs in peripheral blood, we evaluated the single-cell RNA-seq data set generated by
Durante, et.al. [16], which compared low risk (class 1) and high risk (class 2) primary uveal
melanomas. Analyses of differentially expressed genes identified 1882 highly upregulated
genes between these two classes, including HTR2B (Figure 2A). We then examined the
correlation of altered HTR2B expression on progression-free survival in primary uveal
melanomas from the TCGA database [28] and found that patients with increased HTR2B
expression correlated with development of metastasis (n = 79, p = 0.005; Figure 2B). To
validate that the differential gene expression matched changes in protein expression, we
stained enucleated globes containing uveal melanoma tumors from n = 2 low risk and
n = 2 high risk tumors for HTR2B, gp100 and TYR expression (Figure 2C, Supplemental
Figure S1B). As anticipated, both gp100 and TYR protein expression was higher in low
risk tumors and had diminished expression in high risk tumors (Figure 2D). Conversely,
HTR2B expression was increased in high risk tumors. Overall, this data indicated a level of
heterogeneity across tumors and across disease spectrum that could underlie challenges
with under-detection of disseminated tumor cells in the blood, thus complicating their use
as a prognostic biomarker.
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Figure 2. Validation of gene elevated in high risk tumors. (A) Volcano plot of differential gene
expression between class 2 and class 1 tumors from a publicly available single cell RNA-seq dataset.
(B) TCGA uveal melanoma dataset of n = 79 patients analyzed for altered expression of HTR2B
correlated with progression free survival. (C) low risk (class 1) and high risk (class 2) tumors stained
with antibodies to gp100 (yellow), TYR (blue) and HTR2B (white) merged in the image. Individual
antibody staining shown at higher magnification of the boxed region. Hematoxylin & eosin stained
image of the same region of the globe is shown. (D) Quantification of protein staining from three
regions of interest from each tumor.

3.3. Multi-Protein Antibody Cocktail Improves the Detection of CHCs in Uveal Melanoma Patients
and Reflects Aggressive Disease Status

To determine if the addition of antibodies against HTR2B could increase the sensitiv-
ity of CHC and CTC detection, we first validated the use of the HTR2B antibody in our
assay by demonstrating that co-staining with antibodies to CD203c and CD25, basophil
and T-regulatory cell antigens, permits exclusion of these peripheral blood cell popula-
tions from our analyses (Supplemental Figure S3). We then re-analyzed a subset of uveal
melanoma patients across all stages of disease using a cocktail of antibodies (gp100, HTR2B,
CD45, CD25, CD203c) for CHC and CTC detection. Whole blood was collected from
patients with stage I-III uveal melanoma prior to their treatment (stage I, n = 9; stage II,
n = 19; stage III, n = 11). Isolated peripheral blood mononuclear cells (PBMCs) were pro-
cessed on glass slides, then stained with antibodies. CHCs (gp100+,HTR2B+/CD45+/
CD25−/CD203c−) were readily identified in all uveal melanoma patients’ peripheral blood
specimens, while CTCs (gp100+,HTR2B+/CD45−/CD25−/CD203c−) were found in only
a subset (Figure 3A,B). The levels of CHCs were significantly different in stage II and III
patients compared to healthy controls using the Kruskal–Wallis analyses (p ≤ 0.007 and
p ≤ 0.001, respectively), however we did not observe significant differences between AJCC
stages (Figure 3B). Further, evaluation of protein expression heterogeneity in CHCs from a
subset of patients with different stages of disease was readily apparent (Figure 3C) with
specific variation in CHC protein expression from a class 2 patient (Figure 3D), highlighting
the extent of tumor cell heterogeneity across the disease spectrum. This emphasizes the
need to consider biologic variation to improve biomarker detection.
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3 
 

Figure 3. Circulating hybrid cells (CHCs) detected with an enhanced antibody cocktail correlate with
progression free survival and overall survival. (A) Peripheral blood mononuclear cells stained with
antibodies to gp100/HTR2B (white) and CD45 (red) facilitate identification of CHCs and circulating
tumor cells (CTCs). CHCs are distinguished from basophils and T regulatory cells (Treg) based
upon lack of expression of CD203c and CD25 (green), respectively. Higher magnification of boxed
regions with individual antibody staining shown. (B) Enumerated CHCs and CTCs in healthy
subjects and patients across stage. Asterisk indicates p < 0.05. (C) Levels of gp100+ CHCs and
gp100+/HTR2B+ CHCs from three representative patients from each evaluated stage. (D) CHCs
harboring heterogeneous protein expression identified in a class 2 patient. (E,F) High levels of CHCs
correlate with progression free survival and overall survival, whereas there is no correlation for
CTCs (G,H).
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3.4. High Levels of CHCs Predict Survival Outcomes in Early Stage Uveal Melanoma Patients

To determine if enhanced detection of disseminated tumor cells into peripheral blood
resulted in a clinically meaningful correlation with disease progression, we evaluated the
data for progression-free (PFS) and overall survival (OS) using the log-rank test between
groups for Kaplan–Meier analyses. Receiver operating characteristic (ROC) curve analysis
of CHCs detected using the multi-protein antibody cocktail showed an area under the
curve of 0.744 for PFS and 0.696 for OS, and identified a cutoff of >8 CHCs/50,000 nuclei
for both outcomes. Using this threshold, we found that high levels of CHCs prognosticated
PFS (p = 0.03) and OS (p = 0.04), whereas presence of greater than 0 CTCs/50,000 nuclei did
not (Figure 3E–H). These results highlight the exciting potential of CHC detection, using
multiple proteins to address heterogeneity attributed to disease evolution, in providing
clinically meaningful analytes for management of patients with uveal melanoma.

4. Discussion

Disseminated cancer cells drive metastatic progression and mortality in most cancer
types. In several cancer types CTCs, one population of disseminated cancer cells, have
demonstrated promise as a biomarker useful in predicting prognosis as well as monitoring
disease progression and treatment response and are now in clinical trials [17,29–32]. In
uveal melanoma conventionally defined CTCs have not demonstrated clinical utility due to
a variety of biological and methodological issues [6,7]. Chief among these is low sensitivity,
even in the metastatic setting. Recently, our group has identified a novel population of
disseminated cancer cells, circulating hybrid cells (CHCs), which share phenotypic and
genotypic identity with both cancer cells and macrophages, extending preceding hypothe-
ses and studies of tumor-derived hybrid cells [33–35]. CHCs are disseminated cancer
cells with enhanced migratory function, increased tumorigenicity, and greater metastatic
potential than CTCs [8]. In this study, we demonstrate that CHCs are present in primary
uveal melanoma patients, greatly outnumber traditional CTCs, and predict progression-free
survival. Our findings are important because they identify a novel prognostic biomarker
in uveal melanoma. Moreover, we describe a previously unexplored cell type, which may
provide insight into disease biology of uveal melanoma, a rare but aggressive cancer type
that leads to metastatic death in up to 50% of patients. Improved understanding of uveal
melanoma biology and the metastatic process is critical to increased survival.

While a number of other biomarkers have been explored in uveal melanoma, including
circulating tumor DNA and microRNA, CTCs have been of particular interest [6,7]. Multiple
groups have investigated CTCs as a biomarker in uveal melanoma using a variety of direct
and indirect methods including RT-PCR, size filtration and immunodetection [36–51]. The
rate of CTC detection in both primary and metastatic uveal melanoma is highly variable
in the literature, regardless of identification method [6,7], although sensitivity in many
studies is low, even in the metastatic setting. In our study, CHCs outperformed CTCs in a
number of regards, including sensitivity. The rate of CHC detection was far greater than
CTCs in our cohort (100% versus 58.8%). CHCs were detected at levels statistically greater
than CTCs across all stages (p = 0.05). This permits stratification of patients by CHCs levels
rather than by simply the presence or absence of CTCs as previous studies have done. This
distinction may prove particularly meaningful when monitoring patients longitudinally
with a goal of detecting early metastatic progression or monitoring treatment response
as fluctuations in CHC levels may be detectable under these circumstances. While CTC
detection was significantly lower than CHC detection in our study, utilizing two uveal
melanoma markers to detect CTCs across the clinical disease spectrum likely contributes to
our relatively high detection level of CTCs as compared with many previous studies.

Importantly, CHCs outperformed CTCs in predicting progression-free and overall sur-
vival in uveal melanoma patients. Uveal melanoma is associated with high risk for distant
metastases, often after a latency period of months to years. Undetectable micrometastases
present at the time of initial diagnosis likely drive this process, and thus successful primary
treatment of the intraocular tumor does not significantly reduce risk for distant metasta-
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sis [1]. As tissue biopsy of intraocular tumors is technically challenging, associated with
risk to vision, and cannot be repeated to monitor disease status over time, there is consider-
able interest in the development of a biomarker to assist in prognostication and disease
monitoring for uveal melanoma. CHCs are a promising new biomarker in this disease. In
our study, CHC detection from a single blood sample obtained when patients presented
for surgery for the treatment of their primary uveal melanoma predicted progression to
metastasis (p < 0.03), as well as their overall survival at 36 months (p < 0.04). Detection of
CTCs was not associated with increased risk for metastatic progression or survival in our
cohort. The majority of patients in the >8 CHCs/50,000 nuclei cohort (92%) have clinically
progressed to metastatic disease within 3 years of primary treatment.

While data have been inconsistent, evaluation of the very rare CTC population in uveal
melanoma has suggested a possible link between presence of CTCs and survival outcomes.
Likely due in part to issues with CTC detection and sensitivity, the data demonstrating a
link between CTCs and survival outcomes has been mixed, with some groups reporting a
correlation between presence of CTCs and poor clinical outcome, while others show no
such relationship [38,40,42–45,47,51]. As CHCs are detected at significantly higher rates
than CTCs, our data indicate that combining detection of CTCs with the more abundant
population of CHCs may be a more reliable approach for identifying patients at high
risk for metastasis when a biopsy is not performed. While highly predictive molecular
prognostic testing is available for patients in whom fine needle aspirate biopsy is feasible
and desired [5,52], a blood-based biomarker permits non-invasive risk stratification which
is advantageous. Repeat biopsy cannot be performed after primary treatment. Therefore,
longitudinal evaluation is not possible using existing tissue biopsy-based strategies and
temporal detection of CHCs would complement existing strategies for predicting clinical
outcome and monitoring disease status.

In addition to our primary findings, we determined that gp100, a marker used rou-
tinely for identification of CTCs [7] in uveal melanoma and the target for the recently
FDA-approved tebentafusp for metastatic disease [4], was insufficient for identification of
disseminated cancer cells in primary uveal melanoma patients with more aggressive dis-
ease. As these are the patients who stand to benefit the most from reliable non-invasive risk
stratification (e.g., for adjuvant clinical trial enrollment), and early detection of metastases,
the identification of HTR2B as a marker that enhances detection of CHCs in combina-
tion with gp100 to identify high risk uveal melanoma is important and timely. We also
found that CHC levels increase with clinical stage based upon mean CHC levels, although
there were no statistically significant differences between stages I–III. This may reflect
the small numbers in our cohort as well as the wide variability in CHC levels between
patients. Another possibility is that we may be missing a CHC population with discrete
protein expression, based upon heterogeneous expression of uveal melanoma markers
across the disease spectrum. Genetic evolution of metastatic uveal melanoma is well-
documented [16,27], however phenotypic and mechanistic behaviors have not yet been
attributed to many of the acquired alterations. While identifying and understanding these
differences are key to identifying heterogeneous disseminated CHCs in patients with uveal
melanoma, they are also key to design of effective targeted therapies. However, as the
CHC levels identified based upon dual expression of gp100 and HTR2B were predictive of
clinical outcome (progression to metastasis; overall survival), it is also possible that this
result simply reflects the insufficiency of tumor, node, metastasis staging to predict disease
progression on an individual patient basis in uveal melanoma, a cancer in which lymphatic
spread is exceptionally rare.

The finding that macrophage-melanoma hybrid cells are present in uveal melanoma
patients, greatly outnumber conventionally defined CTCs in circulation, and predict sur-
vival outcomes is novel and intriguing. While it is unclear in which setting the neoplastic
and immune cells are generated, our data support that this interaction may be occurring in
the primary tumor microenvironment. Increasingly, the tumor immune microenvironment
is appreciated as a critical factor in cancer biology, driving tumor progression and treat-
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ment response. The inflammatory subtype of primary uveal melanoma is characterized by
immunosuppressive M2 macrophages and is associated with worse survival [1,53]. While
direct immunosuppression of T-cell mediated killing likely plays a key role in the poor
prognosis associated with immune infiltration of uveal melanomas, it is also possible that
the presence of tumor-associated macrophages provide an environment rich for develop-
ment of macrophage-melanoma hybrid cells in the primary tumor. These hybrid cells,
poised to disseminate into circulation, could drive the metastatic process. Moreover, hybrid
cell phenotypes related to autophagy [54], the glycome, and glycosyltranferase expression
may provide intriguing functional insights into tumor progression. While interesting con-
ceptually, more research is needed to determine whether hybrid cells are present in primary
uveal melanomas and if so, whether there is a correlation between inflammatory tumor
subtype, hybrid cell numbers within tumors, and patient survival outcomes.

5. Conclusions

In this study, we identify circulating neoplastic-immune hybrid cells (CHCs) as a
novel and abundant disseminated tumor cell type in primary uveal melanoma patients.
For the first time, we demonstrate that CTCs are the minority of tumor cells detectable
in the peripheral blood. As identified using a multi-protein immunodetection method,
CHCs outnumbered CTCs in patients with primary uveal melanoma at the time of initial
diagnosis and treatment. Detection of CHCs was highly sensitive in patients regardless of
disease stage I-III, with CHCs detected in 100% of uveal melanoma patients compared to
conventionally defined CTCs (58.8%). Further, CHCs greatly outnumbered CTCs (p = 0.05).
Moreover, CHC levels, but not CTCs, predicted progression-free survival as well as overall
survival in patients with primary uveal melanoma based upon a single blood draw at the
time of initial treatment. In addition, our work highlights the heterogeneity of disseminated
tumor cell populations in uveal melanoma patients, particularly those with more aggressive
disease. Using multiple uveal melanoma markers, our sensitivity for CHC and CTC
detection was improved, and correlations between CHC levels in the blood and clinical
outcome became apparent. Further study of CHCs as a biomarker in uveal melanoma is
warranted.

Future planned studies include a longitudinal evaluation of CHC levels in early stage
uveal melanoma patients to determine the impact of primary treatment on CHC levels,
if any, and to evaluate serial CHC detection as a possible method for early detection of
metastatic disease prior to radiologic detection on surveillance imaging. We also plan to
expand our comparisons with existing tissue biopsy-based prognostic techniques such
as GEP and PRAME expression as we expand our patient cohort. In addition, we intend
to further evaluate CHCs in both the primary and metastatic tumor microenvironment.
As macrophage infiltration is well established as a poor prognostic indicator in uveal
melanoma, the presence of macrophage-melanoma hybrids in primary uveal melanomas
and a potential role for these cells as drivers of metastatic progression is particularly
interesting and worth further exploration.
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