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Abstract

Identifying a whole-brain connectome-based predictive model in drug-naïve patients

with Parkinson's disease and verifying its predictions on drug-managed patients

would be useful in determining the intrinsic functional underpinnings of motor

impairment and establishing general brain–behavior associations. In this study, we

constructed a predictive model from the resting-state functional data of 47 drug-

naïve patients by using a connectome-based approach. This model was subsequently

validated in 115 drug-managed patients. The severity of motor impairment was

assessed by calculating Unified Parkinson's Disease Rating Scale Part III scores. The

predictive performance of model was evaluated using the correlation coefficient

(rtrue) between predicted and observed scores. As a result, a connectome-based

model for predicting individual motor impairment in drug-naïve patients was identi-

fied with significant performance (rtrue = .845, p < .001, ppermu = .002). Two patterns

of connection were identified according to correlations between connection strength

and the severity of motor impairment. The negative motor-impairment-related net-

work contained more within-network connections in the motor, visual-related, and

default mode networks, whereas the positive motor-impairment-related network was

constructed mostly with between-network connections coupling the motor-visual,

motor-limbic, and motor-basal ganglia networks. Finally, this predictive model con-

structed around drug-naïve patients was confirmed with significant predictive effi-

cacy on drug-managed patients (r = .209, p = .025), suggesting a generalizability in

Parkinson's disease patients under long-term drug influence. In conclusion, this study

identified a whole-brain connectome-based model that could predict the severity of

motor impairment in Parkinson's patients and furthers our understanding of the func-

tional underpinnings of the disease.

Abbreviations: CPM, connectome-based predictive model; FD, frame-wise displacement; H–Y stage, Hoehn and Yahr stage; LEDD, levodopa equivalent daily dose; LOOCV, leave-one-out cross-

validation; MMSE, Mini-Mental State Examination; MSE, mean squared error; PD, Parkinson's disease; rs-fMRI, resting-state functional magnetic resonance imaging; UPDRS III, Unified

Parkinson's Disease Rating Scale Part III.
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1 | INTRODUCTION

Parkinson's disease (PD) is the second most common neurodegenera-

tive disease in aging populations (Hayes, 2019). In its most classical

manifestation, PD is characterized by progressive motor impairment

(Kalia & Lang, 2015), which results from abnormalities of the basal

ganglia circuits due to the death of dopaminergic neurons in the pars

compacta of the substantia nigra (Kalia, Brotchie, & Fox, 2013). How-

ever, pathophysiological changes outside of the basal ganglia are

widely acknowledged to also have significant roles in modulating

motor loops (Bartels & Leenders, 2009; Guan et al., 2019; Kalia

et al., 2013). Moreover, complex within-network segregation and

between-network coupling might significantly contribute to motor

disorder, but in such a large-scale brain network view, the potential

network underpinning for PD is not well investigated, and little is

known about the intricate interactions between or within distinct

networks.

Resting-state functional magnetic resonance imaging (rs-fMRI)

has provided an approach to studying the central processing of motor

impairment in vivo. In numerous studies, rs-fMRI has been used to

identify associations between motor impairment and functional con-

nections in classical motor regions such as the basal ganglia and motor

cortex (Hacker, Perlmutter, Criswell, Ances, & Snyder, 2012; Nachev,

Kennard, & Husain, 2008), as well as in non-motor regions including

the frontoparietal and visual networks and the limbic system (Gilat

et al., 2018; Kann, Chang, Manza, & Leung, 2020; Tessitore

et al., 2012; Vervoort et al., 2016). However, the findings vary greatly.

One of the main concerns is that PD patients recruited into these

studies have already been exposed to dopaminergic medication, which

would lead to heterogeneous reorganizations of brain function in

order to preserve motor behavior (Krismer & Seppi, 2021; Tahmasian

et al., 2015). This important influence has been widely ignored. There-

fore, we hypothesized that studies in drug-naïve patients are a priority

for investigating the intrinsic and complex interactions between/

within district networks that relate to motor impairment, and might

provide a robust prediction of motor impairment when the influence

of medication is subsequently taken into consideration.

Moreover, because the neurodegenerative process acting on the

human brain has little consensus between individuals, progresses

along different trajectories, and is complicated by various patho-

physiological factors, more attention has been paid to personal brain

organization. Finding a link between an individual functional

connectome and behavioral measurements can maximally reduce

the bias inherent in population variation, and the resulting

brain–behavior associations observed would be more robust and

generalized (Tessitore, Cirillo, & De Micco, 2019). Thus, a

connectome-based predictive modeling (CPM) approach has been

newly introduced to predict behavior at the individual level by using

large-scale network functional connectivity in a machine-learning

framework. This has been used to investigate the complex mecha-

nisms underlying mental and cognitive disorders (Gao et al., 2020;

Ren et al., 2021; Yu et al., 2020), as well as in predicting outcomes

after deep brain stimulation in PD patients (Shang, He, Ma, Ma, &

Li, 2020). Therefore, by taking advantage of a CPM framework built

on informative large-scale network connections, a novel predictive

model would be constructed for identifying intrinsic network pat-

terns for drug-naïve patients, which might have robust performance

in predicting motor impairment.

Hence, this study aimed to construct a whole-brain connectome

model that can predict motor impairment in PD patients. In order to

reveal the disease-intrinsic functional underpinnings free of the

effects of dopaminergic medication, we constructed a predictive

model on drug-naïve patients and tested its performance in an inde-

pendent group of drug-managed PD patients to check its reliability.

2 | METHODS

2.1 | Participant enrollment and evaluation

All patients signed informed consent forms in accordance with the

approval of the Medical Ethics Committee of the Second Affiliated

Hospital of Zhejiang University School of Medicine.

Two hundred PD patients were initially recruited to this study.

The diagnosis of PD was made by a senior neurologist (B. R. Z.)

according to the United Kingdom Parkinson's Disease Society Brain

Bank criteria (Hughes, Daniel, Kilford, & Lees, 1992). Twenty-four

patients were excluded on the basis of having either

(a) cerebrovascular disorders, including previous stroke, history of

head injury, or other neurological diseases (N = 14); or (b) cognitive

impairment based on the Mini-Mental State Examination (MMSE),

estimated by the criteria applicable to the Chinese population (MMSE

score ≤ 17 for illiterate patients, ≤20 for grade-school literates, and

≤23 for junior high school and higher education literates [N = 10])

(Katzman et al., 1988; M. Y. Zhang et al., 1990). A final total of

176 PD patients were enrolled in this study, comprising 49 drug-naïve

and 127 drug-managed patients. Drug-managed PD patients under-

went clinical assessment on the morning after all dopamine replace-

ment therapy was withdrawn overnight (at least 12 hr into their

“drug-off status”). Basic demographic information, including age, gen-

der, level of education, and duration of disease, and neurological and

psychiatric scales including Unified Parkinson's Disease Rating Scale

Part III (UPDRS III) score, Hoehn and Yahr stage (H–Y stage), and

MMSE score were obtained for all patients. The total levodopa
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equivalent daily dose (LEDD) (Tomlinson et al., 2010) and duration of

treatment were recorded for drug-managed patients.

2.2 | Image acquisition and preprocessing

2.2.1 | Image acquisition

All imaging data were acquired on a 3.0 T magnetic resonance imaging

(MRI) scanner (Discovery MR750, GE Healthcare). MRI scanning of

each drug-managed patient was carried out in the drug-off status. The

head of each participant was stabilized with foam pads, and earplugs

were provided to reduce audible noise during scanning.

rs-fMRI data were acquired using gradient recalled echo–echo

planar imaging sequence: echo time = 30 ms; repetition

time = 2,000 ms; flip angle = 77�; field of view = 240 � 240 mm2;

matrix = 64 � 64; slice thickness = 4 mm; slice gap = 0 mm; number

of slices = 38 (axial); time points = 205. Structural T1-weighted

images were acquired using a fast-spoiled gradient-recalled sequence:

echo time = 3.036 ms; repetition time = 7.336 ms; inversion

time = 450 ms; flip angle = 11�; field of view = 260 � 260 mm2;

matrix = 256 � 256; slice thickness = 1.2 mm; number of slices = 196

(sagittal). All the sequence fields of view covered the whole brain,

including the cerebrum, cerebellum, and brain stem.

2.2.2 | Image preprocessing

Rs-fMRI data processing was carried out using Statistical Parametric

Mapping (SPM 12, https://www.fil.ion.ucl.ac.uk/spm/) and Data

Processing Assistant for Resting State fMRI (DPABI_V3.1_180801,

http://www.rfmri.org/) (Yan, Wang, Zuo, & Zang, 2016). In an initial

step, the first 10 volumes of the functional time series were deleted

to utilize the MRI signal at equilibrium. The remaining images under-

went slice timing for interval scanning, realignment, and normalization

to the standard MNI space through T1 image segmentation. Next,

spatial smoothing with a Gaussian kernel of 6 � 6 � 6 mm full width

at half-maximum, detrending, covariate regression (Friston 24-motion

parameters, mean signals of white matter and cerebrospinal fluid), and

band-pass temporal filtering (0.01–0.1 Hz) were sequentially applied

to the remaining volumes.

2.2.3 | Control of head motion

To account for the effect of head motion on the rs-fMRI analysis, vol-

umes with mean frame-wise displacement (FD) ≥ 0.2 mm were

removed, and the remaining volumes were used for network construc-

tion. Then, 14 individuals—2 drug-naïve and 12 drug-managed

patients—having <4 min (120 volumes) of data after scrubbing were

excluded from the following analysis (Jenkinson, Bannister, Brady, &

Smith, 2002; Parkes, Fulcher, Yücel, & Fornito, 2018). Consequently, a

total of 162 PD patients were enrolled in this study, comprising

47 drug-naïve and 115 drug-managed patients. To verify that neither

the observed nor the predicted scores were correlated with head-

motion, correlation coefficients were calculated between the mean

FD and observed and predicted scores, respectively. To further con-

trol for possible head-motion effects, we also applied a prediction

analysis with the mean FD as an additional nuisance variable within

the candidate connection selection process described in Section 2.3.1.

2.2.4 | Functional network construction

Consistent with previous CPM-based studies, network nodes were

defined using the 268-region-of-interest functional brain atlas

(Shen, Tokoglu, Papademetris, & Constable, 2013). This atlas covers

the whole brain, including cortical, subcortical, and brainstem struc-

tures. The whole-brain functional connection matrix was con-

structed for each patient in the MNI space. The mean time series of

each node was extracted by averaging the time series of all voxels

in each defined node. The functional connection was then calcu-

lated as the Pearson correlation coefficient (r) between the mean

time series of each pair of nodes. Both positive and negative corre-

lation coefficients were included to construct the connection

matrix. A Fisher's r-to-z transformation was then used to normalize

the correlation coefficients, and the resulting 268 � 268 matrix for

each participant was utilized for the subsequent CPM analysis.

Each element of the matrix represented the strength of connection

between two nodes.

2.3 | Connectome-based model construction and
evaluation in drug-naïve patients

A flowchart for the construction of the connectome-based model and

its evaluation is shown in Figure 1. All processes were performed by

applying free scripts in MATLAB (R2020b for Windows,

MathWorks). These scripts are available at https://www.nitrc.org/

projects/bioimagesuite/.

2.3.1 | Selection of candidate connections by using
a leave-one-out cross-validation procedure

Acknowledging the relatively small number of drug-naïve patients

(N = 47), a leave-one-out cross-validation (LOOCV) procedure was

used to select candidate connections (Rosenberg et al., 2016;

Scheinost et al., 2019). The LOOCV procedure was repeated itera-

tively. In each iteration, one patient was removed from the training

set and data for the remaining N � 1 patients were used for testing

according to the following steps. First, the correlation between the

strength of each connection and the observed UPDRS III score was

assessed. In this step, Spearman's analysis was applied since the
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observed scores in this study were not normally distributed

(Kolmogorov–Smirnov test, p < .05) (Shen et al., 2017). A partial corre-

lation analysis was also conducted to ensure that the constructed

model captured meaningful connection alternation associated with

motor impairment (Scheinost et al., 2019). Three nuisance variables

correlating with the phenotypic measure or neuroimaging data were

included: age (significantly correlated with UPDRS III scores), duration

(significantly correlated with UPDRS III scores), and gender (shown by

Zhang, Dougherty, Baum, White, and Michael (2018) to affect func-

tional connections). Next, the connections were selected based on the

significance of the correlation between the connection strength and

UPDRS III score. The significance threshold of p value was optimized

to afford the best predictive performance (detailed in Section 2.3.4).

Finally, all selected connections were categorized as either positive

connections (connections for which strength indexed with higher

UPDRS III score and severe motor impairment) or negative connec-

tions (the strength of which indexed with lower UPDRS III score and

milder motor impairment) according to their correlation coefficients

with observed scores. The above-mentioned steps were repeated

N times (N = 47) until all patients had been excluded.

2.3.2 | Model construction with consensus
connections and prediction evaluation

After the LOOCV procedure was performed, 47 sets of candidate

connections were obtained. Owing to the nature of cross-validation, a

slightly different set of candidate connections can be selected in dif-

ferent iterations. To reduce potential variation, the connections finally

utilized for model construction should be selected in each iteration,

and are termed “consensus connections.” These connections had the

highest reliability among all candidate connections. All positive con-

sensus connections and negative consensus connections were marked

to construct respective binary masks. These two masks were then

applied to each patient's own matrix to calculate the sum strengths of

the positive and negative consensus connections. Summed strengths

of positive and negative consensus connections were then fit with

general linear regression to build a relationship with the observed

score. The predicted score of each patient could be calculated by

applying the constructed linear model with the following formula:

predicted score¼ a1�x1þa2�x2þb

where x1 is the sum of the strengths of positive consensus connec-

tions and x2 is the sum of the strengths of negative consensus

connections.

The performance of the constructed model was evaluated by cal-

culating the Spearman correlation coefficient (rtrue) and the mean

squared error (MSE) between observed and predicted UPDRS III

scores. The values of a correlation coefficient and the MSE are usually

dependent, that is, a higher correlation implies lower MSE and vice

versa. A lower MSE value means that the difference between the

predicted and observed scores is smaller (Shen et al., 2017). The sig-

nificance of the constructed model was further tested by applying the

1,000-permutation test (Ren et al., 2021), which involved randomly

shuffling the UPDRS III score and repeating the above processes

1,000 times. The significance of the permutation test was analyzed by

calculating the percentage of sampled permutations that were greater

or equal to the rtrue value (ppermu); ppermu < .05 was considered statisti-

cally significant.

F IGURE 1 Workflow for identifying a whole-brain connectome-based model for predicting motor impairment in PD. Model M was first
constructed and evaluated among drug-naïve PD patients. Its predictive performance was further validated among drug-managed PD patients for
reliability checking. LOOCV, leave-one-out cross-validation; PD, Parkinson's disease; UPDRS III, the Unified Parkinson's Disease Rating Scale
Part III
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2.3.3 | Prediction comparison among connectome-
based models constructed using different methods

We sought to determine (a) whether a model constructed with a combi-

nation of positive and negative connections performs better than a

model constructed with only positive or negative connections, and

(b) whether models constructedwith consensus connections selected in

all iterations (representing highest reliability) perform better than

models constructed with candidate connections in each iteration (rep-

resenting less reliability). To these ends, the predictive power of model

M was compared with other three models: model M1 constructed with

positive consensus connections, model M2 constructed with negative

consensus connections, and model M3 in which predicted scores were

generated from each LOOCV iteration. Optimization of the threshold

and permutation testing were also applied during the construction of

M1, M2, and M3. Thus, the thresholds of these four models can vary.

The processes for constructing models M1, M2, and M3 are detailed in

the supporting information. To determinewhether the predictive power

of these models was significantly different from model M, Steiger's

Z test was used to compare the rtrue value of model M with those of the

other three (Rosenberg et al., 2016).

2.3.4 | Optimal threshold value

For selection of candidate connections, rather than applying an arbi-

trary p value threshold as did a previous study (Rosenberg

et al., 2016), predictive ability was compared using different p value

cutoffs. These thresholds were evaluated by repeating the above pro-

cess 50 times using p values ranging from .05 to .001, with intervals

of .001. The p value that afforded the highest rtrue value (the correla-

tion coefficient between predicted and observed UPDRS III scores)

was selected and used in construction of the model.

2.4 | Model validation in drug-managed patients

Finally, the model with the best predictive ability among the above-

mentioned four was further validated in drug-managed patients. Cor-

relation coefficient r and the MSE between observed and predicted

scores were also calculated. The significance of r was calculated using

standard parametric conversion, and p < .05 was considered statisti-

cally significant.

2.5 | Functional network anatomy of the
constructed connectome model

2.5.1 | Grouping nodes into seven functional
networks

The 268 nodes were divided into seven canonical functional networks

according to anatomical order and previous studies (Lake et al., 2019;

Shen et al., 2013), which were: frontoparietal (63 nodes), default

mode (20 nodes), motor (50 nodes), visual-related (45 nodes), limbic

(30 nodes), basal ganglia (29 nodes), and cerebellum (31 nodes) net-

works. The visual-related network comprised visual I, visual II, and

visual association networks. A map of these seven networks is shown

in the supporting information (Figure S1). Connections within each

network (“within-network connections”) were calculated by summa-

rizing the number of connections between nodes of that same net-

work. Connections between two distinct networks (“between-

network connections”) were calculated by summarizing the number of

connections between nodes from different networks.

2.5.2 | Contribution of each functional network

We weighted each functional network's contribution by calculating

the sum of positive consensus and negative consensus connections

belonging to it; a greater number of connections indicate a greater

contribution. To further assess the importance of each functional net-

work to the prediction of motor impairment, we computationally

“lesioned” the model to exclude connections from it. Accordingly, in

an iterative analysis, we masked the connection matrix to exclude

connections that appeared in one of the seven functional networks.

For example, after excluding connections in the frontoparietal net-

works, which contained 63 nodes, a 205 � 205 matrix rather than a

268 � 268 matrix was submitted for analysis. Models with lesioned

matrices, termed “lesioned models,” were first constructed and evalu-

ated among drug-naïve patients and then validated with drug-

managed patients. The predictive ability of each lesioned model was

evaluated according to the correlation between the predicted and

observed UPDRS III scores, and the significance of the prediction was

confirmed by permutation test in drug-naïve patients. The predictive

ability of the lesioned model was compared with the original model by

using Steiger's test. All p values were adjusted using a 14-comparison

Bonferroni correction.

2.5.3 | Two connection patterns from the
connectome model

To better understand the relationships between motor impairment in

PD and various within- and between-functional connections, we

divided the connectome model into two connection patterns. One

pattern that contained all the negative consensus connections was

called the “negative motor-impairment-related network.” The other

pattern, containing all the positive consensus connections, was called

the “positive motor-impairment-related network.” The characteristics

of within- and between-network connections were analyzed by sum-

ming the consensus connections using the above-mentioned seven

canonical functional networks in the positive and negative motor-

impairment-related networks. To control the effect of variation in net-

work size, the proportion of the connections within and between net-

works was also calculated by dividing the actual number of
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connections by the total number of possible connections (Gao

et al., 2020).

2.6 | Statistical analyses

The clinical characteristics of drug-naïve and drug-managed patients

were analyzed by using SPSS software (version 25). A Kolmogorov–

Smirnov test was applied to identify the normal distribution of contin-

uous variables. Differences in normally distributed variables between

the two groups were evaluated with the two-sample t test; otherwise,

the Mann–Whitney test was conducted. Differences for qualitative

variables were compared using the chi-square test. Statistical analyses

of model construction, validation, and evaluation were performed in

MATLAB (R2020b, MathWorks); details are given in the respective

sections above. Unless stated otherwise, a two-sided p value <.05

was considered significant.

3 | RESULTS

3.1 | Characteristics of enrolled patients

A total of 162 PD patients were enrolled in this study, including

47 drug-naïve and 115 drug-managed patients. The characteristics of

the patients in these two groups are summarized in Table 1. With the

exception of treatment status (LEDD and duration of treatment),

drug-managed patients had a significantly longer duration of disease

(p = .005), higher H–Y stage (p < .001), and higher UPDRS III score

(p = .002) compared with drug-naïve patients. No significant differ-

ences in age, gender, MMSE score, and level of education were

observed between the two groups. Spearman correlation analysis

demonstrated that UPDRS III scores of drug-naïve patients were sig-

nificantly associated with age (r = .404, p = .004) and disease dura-

tion (r = .527, p < .001), which had been controlled by partial analysis

in the process of candidate connection selection.

3.2 | Constructing and evaluating models in drug-
naïve patients

3.2.1 | Optimal threshold for selecting connections

The optimal threshold for maximizing the rtrue values of models M,

M1, M2, and M3 was identified after repeating the model construc-

tion process with connection-selection thresholds of p values ranging

from .05 to .001. In addition, the MSE value under each threshold

within these four models was calculated to further evaluate the pre-

dictive accuracy. The optimal p value thresholds of M, M1, M2, and

M3 were .009, .008, .001, and .001, respectively. In general, there

appeared to be a consistent inverse relationship between rtrue and the

MSE, which meant that the p value associated with the highest rtrue

value was highly similar to that associated with a low MSE value. The

rtrue and MSE values across the tested range of p values are shown in

Figure S2.

3.2.2 | Prediction evaluation and model comparison

There were 115 consensus connections selected to construct

model M, including 58 negative consensus connections and

57 positive consensus connections (Figure 2). The strengths of

positive and negative consensus connections significantly corre-

lated with UPDRS III scores (positive connections: r = .712,

p < .001; negative connections: r = �.661, p < .001; Figure S3).

The highest sum of selected connections was obtained for

model M, representing 0.32% of the sum (35,778) of whole-brain

connections. The significant correlation between the observed

and predicted UPDRS III scores demonstrated that the con-

structed model could predict the severity of motor impairment in

individual drug-naïve PD patients (rtrue = .845, p < .001,

ppermu = .002, MSE = 137.57; Figure 3, drug-naïve group). After

controlling for clinical characteristics (including age, gender, dis-

ease duration, H–Y stage) within a partial correlation analysis, the

TABLE 1 Patients' characteristics

Patient characteristic Drug-naïve group (N = 47) Drug-managed group (N = 115) p-Value

Gender (male:female) 22:25 65:50 .061

Age (years, mean ± SD) 57.72 ± 10.085 60.44 ± 9.581 .109

Duration of disease (years, median (range)) 1.82 (0.08–10.25) 3.47 (0.08–26.37) .005*

UPDRS III score (median (range)) 18 (4–68) 19 (3–66) .002*

H–Y stage (median (range)) 2 (1–3) 2.5 (1–5) <.001*

LEED (median (range)) — 425 (25–1,300) NA

Duration of treatment (years, median (range)) — 2.04 (0.04–26.37) NA

MMSE (median (range)) 28 (19–30) 28 (17–30) .497

Education (median (range)) 9 (0–18) 9 (0–18) .459

Note: p < .05 was considered statistically significant (annotated with *).

Abbreviations: H–Y stage, Hoehn and Yahr stage; LEDD, levodopa equivalent daily dose; MMSE, Mini-Mental State Examination; NA, not available;

UPDRS III, the Unified Parkinson's Disease Rating Scale Part III.
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predicted scores remained significantly associated with the

observed scores (r = .763, p < .001).

Compared with models M1, M2, and M3, model M had a

significantly higher rtrue value (Table 2 and Figure S4). Fur-

thermore, model M contained all consensus connections

selected by M1 and M2. These results suggest that model M

contained reliable and valuable information reflecting the core

functional underpinnings associated with motor impairment,

which afford the best predictive performance in the drug-

naïve group.

F IGURE 2 The constructed model M contained 57 positive consensus connections (pink) and 58 negative consensus connections (blue).
Connectivity figures were created using the tool available at http://bisweb.yale.edu/connviewer/

F IGURE 3 The constructed model M could predict individual motor impairment severity of drug-naïve and drug-managed patients. Both
predicted and observed scores were standardized for visualization. UPDRS III, the Unified Parkinson's Disease Rating Scale Part III

1990 WU ET AL.
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3.2.3 | Head motion control

The head motion of each patient, which was evaluated by calculating

mean FD, was not significantly associated with either observed scores

(r = .031, p = .837) or the predicted scores generated with model M

(r = .045, p = .762). Furthermore, in combining the mean FD as an

additional nuisance variable when selecting candidate connections,

the constructed model remained predictive for drug-naïve patients

(rtrue = .835, p < .001, ppermu = .001, MSE = 135.73). The predictive

performance of this model was not significantly different from the

original (Steiger's Z value = 1.936, p = .053). In addition, the common

connections were highly overlapped with the network of model M

after controlling for head motion (percentage overlap: higher-UPDRS

III score network 94.7%, lower-UPDRS III score 91.4%). These results

suggest that head motion did not have significant confounding effects

on our principal results.

3.3 | Validating the constructed model in drug-
managed patients

Model M significantly predicted UPDRS III score in the independent

drug-managed group (r = .209, p = .025, MSE = 182.96; Figure 3).

This result remained stable after introducing head motion as a nui-

sance variable in the candidate connection selection process

(r = .219, p = .019, MSE = 182.17) and did not significantly differ

from the original (Steiger's Z value = 0.626, p = .535). These results

demonstrated that head motion did not significantly affect the predic-

tions of model M in drug-managed patients. Furthermore, after con-

trolling clinical characteristics (including age, gender, disease duration,

H–Y stage, LEDD, and duration of treatment) within partial correlation

analysis, the predicted scores generated with model M remained sig-

nificantly associated with the observed scores (r = .214, p = .025).

3.4 | A hybrid model combining clinical factors
with the constructed model M

The value of using the clinical factors age, gender, disease duration,

and H–Y stage for prediction were evaluated by adding them into

model M. By combining the sum of positive consensus connections

and the sum of negative consensus connections with these four

clinical factors, the hybrid model successfully predicted UPDRS III

score in both drug-naïve (rtrue = .961, p < .001, ppermu < .001) and

drug-managed groups (rtrue = .459, p < .001). The significant improve-

ment of predictions detected in both groups demonstrated the value

added by including clinical factors (drug-naïve group: 0.845 vs. 0.961,

p < .001, drug-managed: 0.209 vs. 0.459, p < .001).

3.5 | Analysis of functional network anatomy

3.5.1 | Contribution of each functional network to
prediction of motor impairment

By summing positive and negative consensus connections together,

we found that the motor network contributed predominantly,

followed by the frontoparietal and limbic networks. After controlling

for network size, the results consistently showed that the motor, lim-

bic, the frontoparietal networks were the top three contributors to

the connectome model (Figure S5). Next, we tested the importance of

each individual functional network for predicting motor impairment

by constructing lesioned models (Table 3). Compared with the whole-

brain connectome model, in the drug-naïve group, the predictive

power of the lesioned model was reduced after excluding visual-

related (Steiger's Z value = 2.246, p = .025) and frontoparietal

(Steiger's Z value = 2.149, p = .032) networks. In the drug-managed

group, the predictive power was reduced after excluding the basal

ganglia network (Steiger's Z value = 2.232, p = .026). The results of

the Steiger's test did not remain significant after Bonferroni correc-

tion. These results demonstrate that the constructed model did not

rely on the strength of a single functional network, but rather it incor-

porates information related to motor impairment from various neural

networks throughout the brain.

3.5.2 | Investigating connection patterns of the
constructed model

We then examined the connection patterns within and between the

seven functional networks in the positive and negative motor-impair-

ment-related networks by taking network size into consideration and

obtaining the proportion of connections that each network contrib-

utes (Figure 4).

TABLE 2 Comparison of predictions from connectome-based models

Model rtrue (p, ppermu) MSE Steiger's Z value p-Value

M .845 (<.001, .002) 137.57 — —

M1 .712 (<.001, .014) 182.83 2.63 .008*

M2 .711 (<.001, .012) 159.95 2.39 .017*

M3 .528 (<.001, .002) 248.69 4.44 <.001*

Note: rtrue is the true predictive correlation coefficient between observed and predict scores; ppermu is the p value obtained from permutation test (1,000

times); *p < .05 was considered statistically significant.

Abbreviation: MSE, mean squared error.
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Results showed that, in the negative motor-impairment-related

network, the motor, visual-related, and default mode networks were

the top three contributors of within-network connections to this pat-

tern. This reflected the more segregated pattern for this network,

which contained more within-network connections (26.35‰) than

between-network connections (20.57‰; Table S1). By contrast, in

the positive motor-impairment-related networks, connections

between motor-frontoparietal, motor-basal ganglia, and motor-limbic

networks were the highest contributions. This indicates a more inte-

grated pattern for the positive motor-impairment-related network,

involving more between-network connections (28.62 vs. 5.02‰ for

within-network connections; Table S1).

These results demonstrate that more within-network connections

among motor, visual, and default mode networks were indicative of

lower UPDRS III scores and mild PD motor impairment, whereas more

between-network connections among motor-frontoparietal, motor-

basal ganglia, and motor-limbic networks were associated with higher

UPDRS III scores and severe PD motor impairment.

4 | DISCUSSION

By applying a data-driven CPM method, a resting-state functional-

connectome-based model was constructed to predict the severity of

TABLE 3 Predictions from lesioned
models constructed from drug-naïve
patients and validated on drug-managed
patients

Drug-naïve group Drug-managed group

r, ppermu Z, p r, p Z, p

Whole brain .845, .002 — .209, .025 —

Lesioned model �FP .811, .001 2.149, .032 .202, .031 0.205, .837

�DM .845, .001 0, 1.0 .202, .030 0.535, .592

�Mot .809, .002 1.426, .154 .147, .117 1.110, .267

�Vis .819, .003 2.246, .025 .209, .024 0.961, .049

�Lim .836, .001 0.587, .557 .195, .036 0.639, .523

�BG .845, .001 0, 1.0 .192, .039 2.232, .026

�Cer .843, .001 0.695, .392 .203, .029 0.838, .402

Note: Predictability of models constructed from drug-naïve patients were generated with consensus

connections and remained significant by using the optimal threshold of model M (p = .009). Predictability

was assessed by calculating Spearman correlation coefficients (r) between observed and predicted scores.

The significance of the prediction was confirmed by permutation testing in drug-naïve patients (ppermu).

Predictability from whole-brain matrix is included in the first row for comparison. Results of Steiger's

tests did not remain significant after Bonferroni correction.

Abbreviations: BG, basal ganglia network; Cer, cerebellum network; DMN, default mode network; FP,

frontoparietal network; Lim, limbic network; Mot, motor network; Vis, visual-related network.

F IGURE 4 Negative (left, blue) and positive motor-impairment-related networks (right, pink). To control for the possible effects of network
size, the proportions of the within- and between-network connections were obtained by dividing the actual number of connections by the total
number of all possible connections. Each solid circle represents a functional network; thicker circles and lines represent a greater proportion of
connectivity. BG, basal ganglia network; Cer, cerebellum network; DMN, default mode network; FP, frontoparietal network; Lim, limbic network;
Mot, motor network; Vis, visual-related network
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motor impairment in drug-naive patients and to characterize PD

motor impairment in terms of coordinated functional activity across

distinct networks. Moreover, this model, constructed from data on

drug-naïve patients, could predict motor impairment in drug-managed

patients.

According to the correlation between the connection strength

and the UPDRS III scores, we assigned all selected connections into

one of two patterns: negative and positive motor-impairment-related

networks. In the negative motor-impairment-related network, the

strength of each connection was inversely associated with UPDRS III

score, that is, higher UPDRS III scores (more severe motor impair-

ment) were correlated with a lower sum of strength in this network.

On the contrary, more severe motor impairment also correlated with

a higher sum of strength in the positive motor-impairment-related

network. By comparing the connection patterns in these two net-

works, we found that the negative motor-impairment-related network

was predominantly constructed by within-network connections, a

reflection of the higher segregation in distinct networks. Conversely,

the positive motor-impairment-related network was principally char-

acterized by between-network connections, which suggests highly

integrated communication across different distinct networks

(Damoiseaux, 2017; King et al., 2018). Thus, these results show that

motor impairment in PD is related to two different connection pat-

terns: mild impairment is associated with a more segregated pattern,

whereas severe impairment is linked to a more integrated pattern.

Our findings are consistent with those of Kim et al. (2017), who, by

employing dynamic functional connectivity, found that PD patients

exhibited two states. State I is characterized predominantly by func-

tional connectivity within regions belonging to a specific network, and

in State II functional connectivity is principally between regions

belonging to different networks. Furthermore, the severity of motor

impairment was positively correlated with loss of segregation and

enhanced interactions between distinct networks (Kim et al., 2017;

Nieuwhof & Helmich, 2017). Therefore, alongside previous findings, it

can be suggested that the decreased functional segregation and

increased functional integration are critical in modulating motor

impairment in PD.

Next, we investigated the predictive contribution of each func-

tional network in the negative motor-impairment-related network,

which was mainly composed of connections within the motor, visual,

and default mode networks. Thus, dysfunction within these three net-

works might accelerate motor impairment in PD. Furthermore, of

these connections, those in the motor network were the most impor-

tant. Similarly, a number of previous studies also suggested that intrin-

sic dysfunction of the motor network had a close relationship with

motor deterioration in PD (Lewis & Byblow, 2002; Tessitore,

Giordano, De Micco, Russo, & Tedeschi, 2014; Wu et al., 2009), even

in patients at different stages of the disease (Tessitore et al., 2019). In

addition to the motor network, the visual-related and default mode

networks were shown to contribute significantly to the negative

motor-impairment-related network. Visual dysfunction is a major

symptom of PD, manifesting as loss of visual acuity and color vision as

well as higher-order visual deficits (Weil et al., 2016). The interaction

between the visual and motor networks is important for learning and

controlling movements (Glickstein, 2000) and is known to be impaired

in PD patients (Inzelberg, Schechtman, & Hocherman, 2008). Further-

more, a significant negative correlation between connection strength

within the visual network and the severity of motor symptoms had

been demonstrated among PD patients with freezing of gait

(Tessitore et al., 2012). The default mode network is the most studied

network, and has the highest number of network connections, and

exhibits complex neural modulations (Mohan et al., 2016). Specifically,

two studies demonstrated that the default mode network participates

in motor coordination and cognitive function, both of which are

closely related with motor modulation (Fox & Raichle, 2007; Greicius,

Krasnow, Reiss, & Menon, 2003). Pathologically, α-synuclein deposi-

tion, along with the disruption of dopaminergic pathway, might affect

the modulation between default mode network activity and other net-

works, leading to motor impairment (Christopher et al., 2015). Taken

together, this negative motor-impairment-related network, composed

mostly of within-network connections of the motor, visual, and

default mode networks, provides insightful evidence that motor

impairment in PD is caused by dysfunction of these networks, which

could not be simply ascribed to the motor network.

Conversely, the positive motor-impairment-related network was

mainly composed of connections between the motor-frontoparietal,

motor-basal ganglia, and motor-limbic networks. Therefore, based on

the disruption of the motor network in PD as mentioned above, the

increased connection between the motor network and other net-

works, for example, the frontoparietal, basal ganglia, and limbic net-

works might indicate their enhanced activation to protect the motor

network from pathophysiological dysfunction, leading to an amplified

motor modulation. Other than the enhanced connection between the

motor and basal ganglia networks that have been associated with the

severity of motor impairment (Kwak et al., 2010; Tessitore

et al., 2019), this study has also identified a potential compensation

mechanism that the brain uses to overcome motor impairment by

increasing the communication between the motor-frontoparietal and

motor-limbic networks. Increased functional activity within the

frontoparietal and limbic networks has been reported to be related to

PD motor symptoms such as hypokinesia/akinesia (Martin

et al., 2019), freezing of gait (Bartels & Leenders, 2008; Shine

et al., 2013), and “masked face” syndrome (Rizzo et al., 2018). The

frontoparietal network is considered to be one of the top-down con-

trol networks involved in initiating and adjusting control (Dosenbach,

Fair, Cohen, Schlaggar, & Petersen, 2008). Meanwhile, the limbic-

motor connections were also found to be involved in the emotional

adjustment of complex functions such as spatial perception and

movement computation (Rizzo et al., 2018). The enhanced functional

communication of motor-frontoparietal networks and motor-limbic

networks detected in the positive motor-impairment-related network

supports the observation that PD patients may rely on more atten-

tional and emotional resources to overcome their motor dysfunction

due to a loss of automaticity.

Because PD is clinically heterogeneous and drug uptake can influ-

ence the organization of the brain, the constructed CPM model should
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be validated in drug-managed patients. Accordingly, the significant

prediction was validated after translating the CPM model constructed

with drug-naïve patients to drug-managed patients. Although all drug-

managed patients were required to be free of drugs for 12 hr, the

long-duration response to levodopa can persist for several days after

drug cessation; this has been demonstrated to affect cortical function

involving motor control (Cilia et al., 2020; Donzuso et al., 2021). The

successful validation in drug-managed patients demonstrated that this

selected functional connectome representing the intrinsic organiza-

tion in PD is preserved after chronic levodopa treatment. Although

within-subject comparisons between pretreatment and posttreatment

status would be a stronger test of this hypothesis, the current results

provide compelling evidence that these generalizable brain–behavior

associations were independent of the effect of dopamine.

In summary, our findings suggest that these disease-intrinsic

connectome characteristics identified in drug-naïve patients at the

individual level have the potential to be a stable biomarker for the

severity of motor impairment in PD. The reduced predictive power in

the drug-managed group compared with drug-naïve patients also

demonstrated that chronic levodopa treatment might influence the

connection patterns detected, thus affecting prediction performance.

Further study is needed to determine the alterations in connectivity

caused by chronic levodopa treatment.

This study has several limitations that should be acknowledged.

First, most patients enrolled in this study were at a relatively early

stage of disease, and therefore the model is still to be validated in

patients with advanced PD. Second, the current results were obtained

from a cross-sectional study; a longitudinal study is needed to validate

the repeatability of the connectome as the disease progresses.

Third, as a previous study suggested, the application of multimodal

brain data might improve the predictive performance (Helmich,

Vaillancourt, & Brooks, 2018).

5 | CONCLUSION

This study identified a whole-brain connectome-based model that

could predict the severity of motor impairment among drug-naïve

patients; this was further applied in an independent drug-managed

group. The connectivity patterns generated with our model suggest

that functional segregation of motor, default mode, and visual-related

networks plays an important role in motor impairment in PD and that

the higher coupling of motor-frontoparietal, motor-basal ganglia, and

motor-limbic networks might represent a compensatory mechanism

to overcome motor dysfunction. This generalizable brain–behavior

association can be detected in relation to pretreatment and post-

treatments, indicating a relatively stable estimation of motor impair-

ment severity in PD.
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