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ABSTRACT Staphylococcus aureus is a major cause of prosthetic joint infection (PJI),
which is characterized by biofilm formation. S. aureus biofilm skews the host im-
mune response toward an anti-inflammatory profile by the increased recruitment of
myeloid-derived suppressor cells (MDSCs) that attenuate macrophage proinflamma-
tory activity, leading to chronic infection. A screen of the Nebraska Transposon Mu-
tant Library identified several hits in the ATP synthase operon that elicited a height-
ened inflammatory response in macrophages and MDSCs, including atpA, which
encodes the alpha subunit of ATP synthase. An atpA transposon mutant (ΔatpA) had
altered growth kinetics under both planktonic and biofilm conditions, along with a
diffuse biofilm architecture that was permissive for leukocyte infiltration, as observed
by confocal laser scanning microscopy. Coculture of MDSCs and macrophages with
ΔatpA biofilm elicited significant increases in the proinflammatory cytokines interleu-
kin 12p70 (IL-12p70), tumor necrosis factor alpha (TNF-�), and IL-6. This was attrib-
uted to increased leukocyte survival resulting from less toxin and protease produc-
tion by ΔatpA biofilm as determined by liquid chromatography with tandem mass
spectrometry (LC-MS/MS). The enhanced inflammatory response elicited by ΔatpA
biofilm was cell lysis-dependent since it was negated by polyanethole sodium sulfa-
nate treatment or deletion of the major autolysin, Atl. In a mouse model of PJI,
ΔatpA-infected mice had decreased MDSCs concomitant with increased monocyte/
macrophage infiltrates and proinflammatory cytokine production, which resulted in
biofilm clearance. These studies identify S. aureus ATP synthase as an important fac-
tor in influencing the immune response during biofilm-associated infection and bac-
terial persistence.

IMPORTANCE Medical device-associated biofilm infections are a therapeutic chal-
lenge based on their antibiotic tolerance and ability to evade immune-mediated
clearance. The virulence determinants responsible for bacterial biofilm to induce
a maladaptive immune response remain largely unknown. This study identified a
critical role for S. aureus ATP synthase in influencing the host immune response
to biofilm infection. An S. aureus ATP synthase alpha subunit mutant (ΔatpA)
elicited heightened proinflammatory cytokine production by leukocytes in vitro
and in vivo, which coincided with improved biofilm clearance in a mouse model
of prosthetic joint infection. The ability of S. aureus ΔatpA to augment host pro-
inflammatory responses was cell lysis-dependent, as inhibition of bacterial lysis
by polyanethole sodium sulfanate or a ΔatpAΔatl biofilm did not elicit height-
ened cytokine production. These studies reveal a critical role for AtpA in shaping
the host immune response to S. aureus biofilm.
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Staphylococcus aureus is an opportunistic pathogen that expresses a wide array of
virulence determinants to evade host immune responses (1–4). S. aureus can

asymptomatically colonize several sites of the human body, most often in the anterior
nares, where approximately 30% of individuals are persistent S. aureus carriers and up
to 60% of the population may be intermittent carriers (5, 6). A patient’s carrier status is
a risk factor for postsurgical S. aureus infection (7, 8). This is particularly relevant for
arthroplasty procedures, as S. aureus is a frequent cause of prosthetic joint infection
(PJI) with methicillin-resistant S. aureus (MRSA) strains responsible for up to half of
these infections (9, 10). As a result, patients who are S. aureus carriers are subjected to
decolonization protocols prior to arthroplasty as a standard of care at many medical
institutions (11, 12). Not only are PJIs often associated with bacteria that harbor genes
that encode antibiotic resistance, but they are also typified by biofilm formation, which
affords antibiotic tolerance and dampens host proinflammatory immune responses (1,
13, 14).

Biofilms are communities of bacteria encased by a self-produced matrix consist-
ing of proteins, carbohydrates, and extracellular DNA (eDNA) (15, 16). The extra-
cellular matrix provides structure to the biofilm and also allows for nutrient
distribution and the exchange of substrates (17). Additionally, there is metabolic
diversity within the biofilm, which provides rapid adaptation to stressors and
antibiotic tolerance (16). Our laboratory has previously shown in a mouse model of
PJI that S. aureus biofilm can actively suppress proinflammatory responses by the
preferential recruitment of myeloid-derived suppressor cells (MDSCs) and anti-
inflammatory monocytes/macrophages (M�s) to the site of infection (14, 18). These
MDSCs produce interleukin 10 (IL-10) to create an immunosuppressive environment
that allows for biofilm persistence (19, 20). Importantly, MDSC infiltrates are also
more pronounced in tissues from patients with PJI than with aseptic loosening,
reinforcing the findings in the mouse PJI model (21, 22).

A screen of the Nebraska Transposon Mutant Library (NTML) (23) was conducted to
identify mutations that elicited a heightened proinflammatory response from M�s and
MDSCs during coculture with mature S. aureus biofilm. Significant hits occurred in
genes within the ATP synthase operon, specifically in atpA, atpD, and atpG. These genes
encode the alpha, beta, and gamma subunits of the ATP synthase catalytic core,
respectively. ATP synthase is a central metabolic enzyme that is driven by the proton
motive force generated by the respiratory chain, and it functions to synthesize ATP (24,
25). With regard to S. aureus, a recent study identified that atpG was required for
virulence in a mouse model of skin and soft tissue infection (SSTI) (26). This was
attributed, in part, to a failure in intracellular acidification, which is required for the
optimal activity of fermentative enzymes that generate energy in the face of respira-
tion defects (26). However, the role of S. aureus ATP synthase in influencing biofilm
development and subsequent effects on host immunity has not yet been explored. In
this report, we show that atpA was essential for biofilm persistence in a mouse model
of PJI. Disruption of atpA reduced toxin and protease production, which resulted in a
heightened proinflammatory response due to enhanced leukocyte survival.

RESULTS
ATP synthase plays a critical role in dictating biofilm growth and structure. To

characterize the role of S. aureus ATP synthase in influencing MDSC and M� activation,
we focused on atpA since this gene is upstream of atpD and atpG in the operon and,
as such, was also inactivated in the NTML atpA mutant. These subunits compose the
catalytic core of ATP synthase; therefore, disruption of these genes renders the enzyme
nonfunctional. Bacterial ATP synthase is critical for energy production, homeostasis,
and maintaining the proton motive force (24). Therefore, we first characterized the
growth kinetics of ΔatpA, which was assessed in tryptic soy broth (TSB) and RPMI-1640
with 1% Casamino Acids (CAA) under both planktonic and biofilm growth conditions.
RPMI-1640 is a standard base medium for eukaryotic cells and was utilized throughout
this study for biofilm-leukocyte coculture experiments since it better models the
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mammalian tissue milieu compared to TSB. ΔatpA displayed a postexponential-phase
growth defect in both medium formulations compared to wild type (WT) (Fig. 1A).
Biofilm burden was reduced in ΔatpA during the first 3 days of growth but then reached
titers similar to WT biofilm (Fig. 1B). Biofilm architecture was notably different in ΔatpA,
with an increased maximum thickness and roughness coefficient compared to WT
(Fig. 1C to D). All the ΔatpA phenotypes were complementable (Fig. 1).

S. aureus ATP synthase attenuates MDSC and M� inflammatory responses to
biofilm. Previous studies from our laboratory have demonstrated that S. aureus biofilm
skews leukocytes to an anti-inflammatory state, which promotes bacterial persistence
(18, 19, 27). To determine if S. aureus ATP synthase-dependent pathways play a role in
this process, primary bone marrow-derived MDSCs and M�s were cocultured with
ΔatpA biofilm to quantify cytokine production. MDSCs and M�s exposed to ΔatpA
biofilm produced significantly higher levels of the proinflammatory cytokines IL-12p70,
tumor necrosis factor alpha (TNF-�), and IL-6 than WT biofilm (Fig. 2A). Although the
anti-inflammatory cytokine IL-10 was also significantly elevated in response to ΔatpA
(Fig. 2A), collectively, the increases in IL-12p70, TNF-�, and IL-6 suggest a proinflam-
matory bias in response to ΔatpA biofilm. These findings were replicated in human
monocyte-derived M�s, where TNF-�, IL-6, and IL-8 production was significantly en-
hanced in response to ΔatpA compared to WT biofilm, whereas IL-10 release was
minimal and not affected (Fig. 2B). The increased cytokine production elicited by ΔatpA

FIG 1 S. aureus ΔatpA biofilm displays early growth defects and altered structure. (A and B) The growth of S. aureus WT, ΔatpA, and ΔatpA::atpA was
characterized by OD600 in tryptic soy broth (TSB) or RPMI-1640 supplemented with 1% Casamino Acids (CAA; mean � SD of one representative experiment;
n � 6 biological replicates) (A) and CFU of in vitro biofilm at various stages of development (mean combined from 2 independent experiments; n � 6 biological
replicates) (B). (C) Representative three-dimensional (3D) images of 4-day-old biofilm acquired using confocal laser scanning microscopy. (D) Maximum thickness
and roughness coefficient measurements were calculated by Comstat 2 analysis (mean combined from 1 to 4 independent experiments; n � 3 to 15 biological
replicates). Significant differences are denoted by asterisks (*, P � 0.05, **, P � 0.01, and ****, P � 0.0001; one-way ANOVA with Tukey’s multiple-comparison
test).
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biofilm in mouse and human leukocytes was complementable (Fig. 2). Heightened
proinflammatory cytokine release was also elicited by ΔatpD and ΔatpG biofilm
(Fig. S1), highlighting the importance of ATP synthase in influencing leukocyte activa-
tion. Additionally, ΔatpA was more susceptible to killing by mouse M�s (Fig. S2),
demonstrating that functional ATP synthase renders S. aureus more resistant to M�

bactericidal activity.
We next determined if the diffuse structure of ΔatpA biofilm (Fig. 1C and D) altered

M� interactions since previous studies demonstrated that M�s are unable to invade a
WT S. aureus biofilm (28, 29). ΔatpA biofilm had more M�s contacting the biofilm
surface as visualized by confocal laser scanning microscopy, whereas M�s were ex-
cluded from WT biofilm (Fig. 3A). The diffuse structure of ΔatpA biofilm could make
pathogen-associated molecular patterns (PAMPs), such as lipoteichoic acid (LTA), pep-
tidoglycan (PGN), and eDNA, more accessible to invading leukocytes to account for
their heightened cytokine production. This possibility was further supported by the
finding that eDNA concentrations were significantly increased in ΔatpA biofilm (Fig. 3B).
S. aureus LTA and PGN are recognized by Toll-like receptor 2 (TLR2), and eDNA engages
TLR9, with both TLRs signaling through myeloid differentiation factor 88 (MyD88) (30,
31). To assess the role of PAMPs in potentiating the inflammatory response to ΔatpA
biofilm, cocultures were performed with TLR2�/� or MyD88�/� MDSCs and M�s. The
response to ΔatpA biofilm was equivalent for WT, TLR2�/�, and MyD88�/� MDSCs and
M�s, indicating that the heightened cytokine response to ΔatpA biofilm was MyD88-
and TLR2-independent (Fig. 4). MyD88�/� MDSCs and M�s were unresponsive to TLR2
(Pam3CSK4 and PGN) and TLR9 (CpG DNA) agonists, confirming defects in TLR signaling
(Fig. S3). However, leukocyte viability during the biofilm coculture period revealed
increased MDSC and M� survival with ΔatpA compared to WT biofilm (Fig. 5). There-
fore, enhanced cytokine production by leukocytes cocultured with ΔatpA biofilm likely
results, in part, from an increased number of viable cells being able to sustain cytokine
production and not from improved recognition of biofilm antigens.

To identify proteins that may contribute to the increased survival of MDSCs and
M�s in response to ΔatpA biofilm, liquid chromatography with tandem mass spec-
trometry (LC-MS/MS) was performed. This analysis revealed a significant reduction in
many virulence factors and toxins in ΔatpA biofilm supernatants, including serine

FIG 2 AtpA is critical for attenuating leukocyte cytokine production in response to S. aureus biofilm. S. aureus 4-day-old biofilms were cocultured with 5 � 104

mouse bone marrow-derived MDSCs or macrophages (A) or human monocyte-derived macrophages (B) for 2 h, whereupon cytokine production was quantified
using a mouse or human cytometric bead array inflammation kit. Results represent the mean combined from 4 independent experiments (n � 7 to 21 biological
replicates) (A) and mean of 1 experiment (n � 3 biological replicates) (B) repeated with monocytes from 3 different donors. Significant differences are denoted
by asterisks (***, P � 0.001, and ****, P � 0.0001; one-way ANOVA with Tukey’s multiple-comparison test).
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proteases, �-hemolysin, and leukocidin-like proteins that are known to induce leuko-
cyte death (2) (Table 1; Fig. S4; Data Set S1), supporting the observations of more viable
MDSCs and M�s in ΔatpA biofilm cocultures and the lack of hemolysis by ΔatpA on
blood agar (data not shown). LC-MS/MS also confirmed decreased levels of ATP
synthase subunits as well as select metabolic enzymes in ΔatpA biofilm extracts
(Table 2; Fig. S4B; Data Set S2).

S. aureus ATP synthase contributes to biofilm persistence during orthopedic
implant infection. To elucidate the role of S. aureus ATP synthase during biofilm
infection, a mouse model of PJI was utilized. To ensure an equal growth phase of WT
and ΔatpA prior to in vivo inoculation, bacteria were collected in exponential phase at
an optical density at 600 nm (OD600) of 0.25 (Fig. S5). A similar heightened inflammatory
profile was observed during PJI with ΔatpA as was seen in vitro, with significantly higher
levels of IL-6, TNF-�, IFN-�, granulocyte colony-stimulating factor (G-CSF), granulocyte-
macrophage colony-stimulating factor (GM-CSF), monocyte chemoattractant protein 5
(CCL5), and interferon-inducible protein 10 kDa (CXCL10) expression, primarily at day 7
postinfection (Fig. 6). Although IL-10 levels were also significantly elevated in response
to ΔatpA (Fig. 6D), the totality of the data suggest a proinflammatory bias in response
to ΔatpA biofilm. Additional proinflammatory mediators were also elevated in ΔatpA-
infected mice, although these did not reach statistical significance (Fig. S6). The
enhanced proinflammatory response in ΔatpA-infected mice coincided with reduced

FIG 3 S. aureus AtpA prevents macrophage biofilm invasion and regulates eDNA release. (A) Bone marrow-derived
macrophages were stained with CellTracker deep red (pseudocolored blue) and cocultured for 2 h with 6-day-old S. aureus
biofilm transduced with a GFP reporter plasmid and imaged by confocal laser scanning microscopy. Representative 3D
(left) and side view (middle) z-stack images, as well as orthogonal views (right), are shown from two independent
experiments, each with one biological replicate and 5 to 6 images per replicate. (B) S. aureus biofilms were grown in 6-well
plates, whereupon eDNA was quantified at day 6 by quantitative PCR. Results represent the mean from one experiment
(n � 3 biological replicates). Significant differences are denoted by asterisks (*, P � 0.05; one-way ANOVA with Tukey’s
multiple-comparison test).
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bacterial burden in the tissue, knee joint, and femur (Fig. 7A), concomitant with
decreased MDSC and increased monocyte and M� infiltrates in the infected tissue
(Fig. 7B) that was complementable (Fig. 7C). Furthermore, functional ATP synthase was
necessary for establishing persistent PJI, as ΔatpA-infected mice had no detectable
bacteria in implant-associated tissues at 3 months postinfection (Fig. S7).

Inhibiting cell lysis in �atpA attenuates leukocyte proinflammatory responses.
We next investigated potential mechanisms for the unique structure of ΔatpA
biofilm that may account for its ability to enhance leukocyte cytokine release. A
major component of the extracellular polymeric substance (EPS) of biofilm is eDNA,
which is released by the lysis of a subset of bacterial cells within the biofilm (32).
Since eDNA levels were significantly increased in ΔatpA biofilm (Fig. 3B), we
examined whether inhibiting biofilm lysis with polyanethole sodium sulfanate
(PAS), which blocks the major S. aureus autolysin Atl (33), would reverse the
heightened inflammatory response elicited by ΔatpA. PAS treatment of ΔatpA
biofilm significantly reduced eDNA levels (Fig. 8A), resulting in a more compact
structure (Fig. 8B and C). PAS had little effect on WT biofilm, both in terms of
morphology and eDNA release (Fig. 8). Treatment with DNase partially restored
ΔatpA biofilm structure (Fig. 8B), suggesting the involvement of other cell lysis-
dependent factors. Overall, these data suggest that enhanced eDNA release par-
tially contributes to the altered structure of ΔatpA biofilm, which can be reversed
by inhibiting cell lysis. PAS treatment also diminished the enhanced proinflamma-
tory response of MDSCs and M�s to ΔatpA biofilm (Fig. 9). Even though DNase
treatment partially restored biofilm structure, it did not attenuate cytokine produc-
tion elicited by ΔatpA biofilm (Fig. 9), revealing that leukocyte activation is driven
by cell lysis-dependent factors other than eDNA in agreement with the findings
with MyD88�/� leukocytes (Fig. 4). PAS treatment significantly reduced macro-
phage viability following coculture with ΔatpA biofilm (Fig. 9D), in agreement with

FIG 4 Enhanced proinflammatory mediator production elicited by S. aureus ΔatpA biofilm is TLR2- and MyD88-independent. WT,
MyD88�/�, and TLR2�/� bone marrow-derived MDSCs (A) and macrophages (B) were cocultured with 4-day-old WT or ΔatpA biofilm for
2 h, whereupon supernatants were analyzed using a mouse cytometric bead array inflammation kit. Results represent the mean combined
from 3 independent experiments (n � 15 biological replicates). Significant differences are denoted by asterisks (*, P � 0.05, **, P � 0.01,
***, P � 0.001, and ****, P � 0.0001, one-way ANOVA with Tukey’s multiple-comparison test).
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its ability to diminish cytokine production to levels observed with WT biofilm
(Fig. 9B). A similar trend was observed with MDSCs, although this did not reach
statistical significance (Fig. 9C). Macrophage viability was also reduced during
coculture with DNase-treated ΔatpA biofilm, but this was less dramatic than PAS
(Fig. 9D).

Deletion of the major S. aureus autolysin Atl reverses heightened proinflam-
matory cytokine release from leukocytes in response to �atpA biofilm. A main
target of PAS in staphylococci is autolysins (33), and the major S. aureus autolysin,
Atl, plays a role in cell wall turnover, division, and biofilm formation (34, 35). Since
PAS treatment attenuated leukocyte proinflammatory cytokine production in re-
sponse to ΔatpA biofilm, we constructed a double-mutant strain (ΔatpA Δatl) to
assess the role of Atl-mediated cell lysis in ΔatpA biofilm. As expected, both atpA
and atl were critical for S. aureus growth in broth and biofilm culture, and the
ΔatpAΔatl strain exhibited attenuated growth under both conditions (Fig. 10A and
B). However, the diffuse biofilm structure of ΔatpA was reversed in ΔatpAΔatl with
a significant reduction in the maximum thickness and roughness coefficients
(Fig. 10C and D). Atl-mediated lysis also contributed to the enhanced cytokine
production by MDSCs and M�s in response to ΔatpA biofilm since this was
significantly reduced in ΔatpAΔatl (Fig. 11). Taken together, our findings demon-
strate that the increased inflammatory properties of MDSCs and M�s cocultured
with ΔatpA biofilm is a lysis-dependent phenotype since the chemical inhibition of
cell lysis or Atl deletion dampens leukocyte cytokine production.

DISCUSSION

In the present study, a screen of the NTML identified a role for S. aureus ATP
synthase in attenuating MDSC and M� cytokine production, and S. aureus ΔatpA was
cleared in a mouse model of PJI, demonstrating the importance of ATP synthase in

FIG 5 S. aureus AtpA dictates leukocyte survival during biofilm coculture. Bone marrow-derived MDSCs
(A) or macrophages (B) were cocultured with 4-day-old biofilm for 2 h, whereupon cell viability was
accessed by flow cytometry using a live/dead stain. Results are presented as the percentage of live
CD45-positive (CD45�) leukocytes and represent the mean combined from 3 independent experiments
(n � 5 to 17 biological replicates). Significant differences are denoted by asterisks (****, P � 0.0001;
one-way ANOVA with Tukey’s multiple-comparison test).

S. aureus AtpA Influences Biofilm Persistence ®

September/October 2020 Volume 11 Issue 5 e01581-20 mbio.asm.org 7

https://mbio.asm.org


biofilm persistence. This report provides a link between bacterial ATP synthase activity
and host immunity during biofilm development, which is largely influenced by in-
creased bacterial cell lysis.

Previous studies have shown that the inactivation of S. aureus ATP synthase leads to
increased susceptibility to polymyxins, gentamicin, and nitric oxide (26, 36, 37). ATP
synthase is the primary energy generator for cellular respiration, so it was not unex-
pected that atpA disruption affected S. aureus growth in both planktonic and biofilm
conditions. Interestingly, ΔatpA biofilm elicited heightened proinflammatory cytokine
production in mouse MDSCs and M�s, and similar results were obtained with human
monocyte-derived M�s, demonstrating the translational relevance of these findings.

TABLE 1 Virulence factors are significantly reduced in supernatants from 	atpA biofilm

Protein Gene
Log2 difference
(�atpA/WT)a

Serine protease SplC splC �4.34
Serine protease SplE splE �3.94
Serine protease SplF splF �3.89
Serine protease SplB splB �3.85
Uncharacterized leukocidin-like protein 2 SAB1876c �2.63
Lipase 1 lip1 �2.50
Zinc metalloproteinase aureolysin aur �2.45
Alpha-hemolysin hly �2.38
Lipase 2 lip2 �2.36
Lysozyme-like protein 7 lys-7 �2.02
UPF0173 metal-dependent hydrolase SAUSA300_1653 SAUSA300_1653 �1.92
1-phosphatidylinositol phosphodiesterase plc �1.75
Uncharacterized leukocidin-like protein 1 SAOUHSC_02241 �1.53
Glutamyl-tRNA(Gln) amidotransferase subunit A gatA �1.43
Uncharacterized lipoprotein SAOUHSC_02650 SAOUHSC_02650 �1.38
Staphopain A sspP �1.37
Aspartate carbamoyltransferase pyrB �1.37
50S ribosomal protein L16 rplP �1.36
Staphylokinase sak �1.31
Elastin-binding protein EbpS ebpS �1.30
33-kDa chaperonin hslO �1.20
50S ribosomal protein L17 rplQ �1.10
Clumping factor A clfA �1.10
Serine protease SplA splA �1.03
aAll proteins were significantly different; P � 0.05.

TABLE 2 Metabolic protein expression is reduced in 	atpA biofilm extracts

Protein Gene
Log2 difference
(�atpA/WT)a

ATP synthase subunit alpha atpA �5.08
ATP synthase gamma chain atpG �3.71
ATP synthase subunit beta atpD �3.39
ATP synthase subunit b atpF �3.35
Arginine deiminase arcA �1.74
Low-molecular-weight protein-tyrosine-phosphatase ptpA �1.68
Threonine-tRNA ligase thrS �1.59
Ornithine carbamoyltransferase argF �1.47
Carbamate kinase 2 arcC2 �1.28
Alanine dehydrogenase 1 ald1 �1.27
Dihydroorotase pyrC �1.26
L-Threonine dehydratase catabolic TdcB tdcB �1.24
Alcohol dehydrogenase adh �1.23
Carbamate kinase 1 arcC1 �1.19
ATP synthase subunit delta atpH �1.13
DNA-binding protein HU hup �1.13
Argininosuccinate synthase argG �1.04
Formimidoylglutamase hutG �1.03
Clumping factor A clfA �1.02
aAll proteins were significantly different; P � 0.05.
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The increase in cytokine production likely resulted from improved leukocyte viability
based on the reductions in toxin and protease production by ΔatpA biofilm. Of note, a
prior screen of the NTML identified atpA as important for attenuating macrophage
proinflammatory cytokine production in response to planktonic S. aureus (38), revealing
the broader implications for bacterial ATP synthase-dependent mechanisms in dictat-
ing leukocyte activation.

The essential role of S. aureus ATP synthase in influencing the host inflammatory
response during biofilm formation in vivo was demonstrated by the finding that ΔatpA
was cleared in a mouse PJI model at 3 months postinfection. However, it is important
to emphasize the differential involvement of S. aureus ATP synthase during biofilm
versus nonbiofilm infections. For example, a recent study by Grosser et al. in a mouse
SSTI model demonstrated that S. aureus ΔatpG was cleared within 3 days (26), whereas
in the current study, ΔatpA was still detected at day 28 postinfection in a mouse PJI
biofilm model. This highlights the distinctions in S. aureus persistence between biofilm
versus acute tissue infection, and the metabolic state of bacteria in each setting may
explain the differential survival of S. aureus ATP synthase mutants.

S. aureus biofilms exhibit metabolic heterogeneity, with a subpopulation of meta-
bolically dormant organisms (39, 40). Therefore, it is conceivable that this population of
cells is more recalcitrant to the loss of S. aureus ATP synthase, enabling their increased
survival in the host. This is supported by a recent study demonstrating that ATP
depletion is responsible for promoting antibiotic-tolerant persister cells in S. aureus (41).
In contrast, S. aureus is metabolically active during acute tissue infection, which may
explain why bacteria are more sensitive to the loss of respiratory capacity and rapidly
cleared. Indeed, the reduced fitness of ΔatpG was attributed, in part, to a failure in
intracellular acidification, which is required for the optimal activity of fermentative
enzymes that generate energy in the face of respiration defects (26). A critical role for
S. aureus atpA in attenuating the host immune response in vivo was demonstrated by
the finding that ΔatpA elicited heightened proinflammatory mediator production in a
mouse model of S. aureus PJI. This coincided with a significant reduction in MDSCs
concomitant with increased monocyte and M� recruitment, a relationship that our
prior studies have established coincides with biofilm clearance (18, 20, 22, 27, 42).

FIG 6 S. aureus AtpA attenuates inflammatory mediator production during prosthetic joint infection (PJI). C57BL/6NCrl mice were infected with 103 CFU of S.
aureus WT or ΔatpA using a model of PJI. Implant-associated tissue was collected at days 3 or 7 postinfection, and inflammatory mediators quantified using
a multianalyte bead array. IL-6 (A), TNF-� (B), IFN-γ (interferon-gamma) (C), IL-10 (D), G-CSF (granulocyte colony-stimulating factor) (E), GM-CSF (granulocyte-
macrophage colony-stimulating factor) (F), CCL5 (regulated upon activation T cell expressed and secreted; RANTES) (G), and CXCL10 (interferon-inducible
protein 10 kDa) (H) concentrations were normalized to the protein concentration per sample and bacterial titer of each mouse to correct for differences in
infectious burden between WT and ΔatpA. Results from day 3 represent the mean combined from 2 independent experiments (n � 10 mice/group) and day
7 from one experiment (n � 5 mice/group). Significant differences are denoted by asterisks (*, P � 0.05; Student’s t test with Holm-Sidak correction).

S. aureus AtpA Influences Biofilm Persistence ®

September/October 2020 Volume 11 Issue 5 e01581-20 mbio.asm.org 9

https://mbio.asm.org


We hypothesized that the diffuse structure of ΔatpA biofilm might enable better
recognition of S. aureus PAMPs leading to increased cytokine production, which was
suggested by elevated eDNA levels in ΔatpA biofilm. However, this seems unlikely,
since cytokine levels were equivalent in MyD88�/� and WT leukocytes following
coculture with ΔatpA biofilm, although a role for MyD88-independent pathways cannot
be disregarded (i.e., nucleotide-binding and oligomerization domain [NOD] receptors).
In terms of TLR9 involvement, this was not unexpected since TLR9 is an endosomal
receptor (43) and M�s fail to phagocytose S. aureus biofilm (42), which would prevent
eDNA from triggering TLR9 intracellularly. Furthermore, treatment of ΔatpA biofilm
with DNase did not attenuate enhanced cytokine release by MDSCs or M�s.

A prior study from our laboratory revealed a critical role for bacterial lysis in blocking
M� phagocytosis in response to S. aureus biofilm (42). In the current report, we found
that inhibiting lysis of S. aureus ΔatpA using two independent approaches, namely, PAS

FIG 7 S. aureus AtpA is critical for regulating leukocyte influx and biofilm persistence. (A) C57BL/6NCrl mice were infected with 103 CFU of S. aureus WT or ΔatpA
using a model of prosthetic joint infection. Animals were sacrificed at the indicated intervals, whereupon bacterial burden in the implant-associated tissue, joint,
femur, and implant was quantified with results expressed as log10-transformed values from 3 independent experiments (n � 13 to 16 mice/group). (B) Flow
cytometry was performed on implant-associated tissue to quantify infiltrating leukocyte populations. (C) Bacterial burden and (D) leukocyte influx are shown
for complementation studies at day 14 postinfection combined from 2 independent experiments (n � 9 to 10 mice/group). Significant differences are denoted
by asterisks (*, P � 0.05, **, P � 0.01, ***, P � 0.001, and ****, P � 0.0001; one-way ANOVA with Tukey’s multiple-comparison test).
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treatment or a ΔatpA	atl strain, negated the enhanced proinflammatory cytokine
response by MDSCs and M�s. This finding suggests that factors released following
ΔatpA biofilm lysis are responsible for promoting leukocyte proinflammatory activity.
Additionally, LC-MS/MS analysis revealed a significant reduction in numerous toxins
and proteases in ΔatpA compared to WT biofilm. Among the proteins that were
significantly reduced in ΔatpA biofilm were serine proteases of the Spl family (SplB,
SplC, SplE, and SplF) and aureolysin, in addition to several toxins, such as Hla and
leukocidin-like proteins. It is well established that Hla and leukocidins induce leukocyte
lysis by binding to specific immune receptors (2, 44–46), which suggested that the
reduction in these virulence factors in ΔatpA biofilm may be responsible for the
increased viability of MDSCs and M�s. Indeed, this was observed and suggested that
the increase in proinflammatory cytokines in response to ΔatpA biofilm resulted from
a larger number of viable leukocytes that continued to produce cytokines. This high-
lights the critical role of toxins targeting leukocyte survival, in agreement with earlier
reports (47). Our recent study identified many of the same proteins to be responsible
for inhibiting M� phagocytosis in response to S. aureus biofilm (42).

FIG 8 Inhibiting bacterial lysis negates the aberrant morphology and eDNA levels of S. aureus ΔatpA biofilm. (A) Biofilms were grown
in 6-well plates in the presence of PAS (10 �g/ml), and eDNA concentrations were quantified at day 3 (n � 2 to 3 biological replicates).
(B) GFP-expressing WT or ΔatpA were grown in 8-well chamber slides and treated with DNase (100 U/ml) or PAS (10 �g/ml) at the time
of biofilm inoculation and throughout the 4-day maturation period, whereupon images were acquired by confocal laser scanning
microscopy. (C) Maximum thickness of biofilms was calculated using Comstat 2 combined from 1 to 3 independent experiments (n � 3
to 9 biological replicates). Significant differences are denoted by asterisks (****, P � 0.0001; two-way ANOVA with Tukey’s multiple-
comparison test).
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It remains unclear what combination of factors is responsible for inhibiting leuko-
cyte proinflammatory responses to WT biofilm as demonstrated in this study. The
metabolic deficit following the loss of ATP synthase in S. aureus likely impinges on
multiple pathways, making the ability to pinpoint the phenotypes to one factor
unlikely. Nevertheless, this study highlights a previously unappreciated role for ATP
synthase in modulating the host immune response to S. aureus biofilm and infection
persistence.

MATERIALS AND METHODS
Animals. C57BL/6NCrl (RRID IMSR_CRL:27), MyD88�/� (RRID IMSR_JAX:009088), and TLR2�/� mice

(RRID IMSR_JAX:022507) were bred in-house at the University of Nebraska Medical Center (UNMC), and
mice of the same sex were randomized into standard-density cages upon weaning (n � 5 animals per
cage). Mice were housed in a restricted-access biosafety level 2 (BSL2) room equipped with ventilated
microisolator cages and maintained at 21°C under a 12-h light:12-h dark cycle with ad libitum access to
water and chow with nestlets provided for enrichment. This study was conducted in strict accordance
with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health. The protocol was approved by the UNMC Institutional Animal Care and Use
Committee (18-013-03).

S. aureus strains. The strains used in this study are described in Table S1. The S. aureus clinical isolate
USA300 LAC 13C was cured of the LAC-p03 erythromycin (erm) resistance plasmid (23, 48) and is referred
to as WT. The USA300 JE2 NTML strain 	atpA was moved to the LAC USA300 13C background via �11
transduction as previously described (23). Strain background was validated by plasmid purification, and
ΔatpA was confirmed by growth on erm plates and PCR using atpA_fwd and atpA_rev primers (Table S1).

Chromosomal complementation of ΔatpA was performed by replacing the transposon for the native
gene using the allelic exchange plasmid pJB38 as previously described (49). Briefly, the atpA gene flanked
with 1-kb arms was amplified using ATPase_alpha_C_fwd and ATPase_alpha_C_rev primers, and the
shuttle vector was amplified using pJB38_fwd and pJB38_rev primers (Table S1). The resulting fragments
were assembled using the NEBuilder HiFi DNA assembly cloning kit (New England Biolabs) to generate
the pAQ67 plasmid that was electroporated into E. coli E10B. Subsequently, pAQ67 was electroporated
into S. aureus RN4220 followed by transduction into ΔatpA using �11 to perform the allelic exchange
process (49, 50). The ΔatpAΔatl strain was constructed by �11 transduction of the NTML atpA mutation
into a USA300 LAC 13C atl clean deletion mutant (Δatl) (51), with atpA and atl loss verified by PCR. To

FIG 9 AtpA-dependent inhibition of leukocyte cytokine production is cell lysis-dependent. Bone marrow-derived MDSCs (A) or macrophages (B) were
cocultured for 2 h with biofilm treated with DNase (100 U/ml) or PAS (10 �g/ml), whereupon supernatants were analyzed using a mouse cytometric bead array
inflammation kit (results represent the mean combined from 3 independent experiments; n � 13 to 16 biological replicates). Viability of MDSCs (C) and
macrophages (D) following PAS or DNase treatment with results presented as the percentage of live CD45� leukocytes (n � 5 to 6 biological replicates from
2 independent experiments). Significant differences are denoted by asterisks (**, P � 0.01, ***, P � 0.001, and ****, P � 0.0001; two-way ANOVA with Tukey’s
multiple-comparison test).
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visualize biofilm development, bacterial strains were transduced with pCM29-green fluorescent protein
(GFP) (52) using �11 and confirmed by chloramphenicol resistance.

S. aureus planktonic and biofilm growth. S. aureus strains were grown on Trypticase soy agar (TSA)
with 5% sheep blood 1 day prior to the inoculation of broth cultures. For in vitro biofilm experiments,
single colonies were added to 5 ml of RPMI-1640 supplemented with 1% CAA, 1% L-glutamine, and 1%
HEPES (referred to as biofilm medium) and grown overnight at 37°C with constant shaking at 250 rpm
for 16 to 18 h prior to use. Overnight cultures were diluted to an OD600 of 0.05 for inoculation into 96-well
and 12-well plates, or 8-well glass-bottom chamber slides (Thermo Fisher Nunc) that were previously
coated with 20% human plasma in carbonate-bicarbonate buffer overnight at 4°C. Chloramphenicol
(5 �g/ml) was added to biofilm medium for maintenance of the pCM29-GFP plasmid. Static biofilms were
grown at 37°C with approximately 50% of medium replaced every 24 h. Where indicated, biofilms were
treated with 100 U DNase or 10 �g/ml of PAS beginning at the time of biofilm inoculation to assess the
role of extracellular DNA or cell lysis, respectively, on MDSC and M� inflammatory properties.

Growth rates of S. aureus strains in liquid medium were determined using an Infinite Pro 200 (Tecan).
Static biofilms were visualized using a Zeiss 710 META laser scanning confocal microscope (Carl Zeiss) at
�40 magnification. To obtain a representation of biofilm development and structure, z-stack images
(0.88-�m sections) were collected from 2 to 3 biological replicates (wells) for each strain, with results
confirmed in 2 to 3 independent experiments. Maximum thickness and the dimensionless roughness
coefficient of biofilms was determined using Comstat 2 (ImageJ) (53–55).

MDSC and M� cultures. Primary bone marrow-derived MDSCs and M�s were prepared from
C57BL/6, MyD88�/�, or TLR2�/� mice as previously described (19, 22, 56). MDSCs were expanded for
4 days in RPMI-1640 supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine, 1% HEPES, 1%
antibiotic-antimitotic, 50 �M beta-mercaptoethanol, 40 ng/ml GM-CSF, and 40 ng/ml G-CSF with
40 ng/ml IL-6 added at day 3 of culture. Following expansion, MDSCs were purified using an anti-Ly6G
microbead kit (Miltenyi Biotec). M�s were propagated for 7 days in RPMI-1640 supplemented with 10%

FIG 10 Atl deletion reverses the aberrant morphology of S. aureus ΔatpA biofilm. (A) OD600 measurements of S. aureus strains in tryptic soy broth (TSB) or
RPMI-1640 supplemented with 1% Casamino Acids (CAA) (n � 6 biological replicates). (B) CFU of in vitro biofilms at various stages of maturation (n � 3 to 6
biological replicates). (C) Representative 3D images of 4-day-old biofilm acquired using confocal laser scanning microscopy. (D) Maximum thickness and
roughness coefficient measurements were calculated by Comstat 2 analysis combined from 2 independent experiments (n � 12 biological replicates).
Significant differences are denoted by asterisks (**, P � 0.01, ***, P � 0.001, and ****, P � 0.0001; one-way ANOVA with Dunnett’s multiple-comparison test with
WT control [B] or one-way ANOVA with Tukey’s multiple-comparison test [D]).
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FBS, 1% L-glutamine, 1% HEPES, 1% antibiotic-antimitotic, 50 �M beta-mercaptoethanol, and 10%
conditioned medium from L929 fibroblasts as a source of macrophage colony-stimulating factor (M-CSF)
(28, 57). For visualizing M� invasion into biofilm by confocal microscopy, M�s were stained with
CellTracker deep red (1 �M; Invitrogen) according to the manufacturer’s instructions.

Human monocytes were obtained from healthy human donors by the UNMC Elutriation Core
Facility by countercurrent centrifugal elutriation, in full compliance and with approval of the
Institutional Review Board (IRB). Cells were cultured at 1 � 106 cells/ml in RPMI-1640 supplemented
with recombinant human M-CSF, 10% human serum, and 1% antibiotic-antimitotic for 7 days until
harvest for experiments.

Quantification of cytokine production by leukocytes following biofilm coculture. MDSCs and
M�s (5 � 104/well) were cocultured with biofilm for 2 h at 37°C in a 96-well plate, whereupon plates
were centrifuged and supernatants stored at �20°C until analysis. Cytokine production was quantified
using BD cytometric bead array mouse (catalog no. 552364) and human (catalog no. 551811) inflam-
mation kits (both from BD Biosciences) according to the manufacturer’s instructions and analyzed by flow
cytometry using a BD LSR II.

Gentamicin protection assay. To determine whether S. aureus ΔatpA was more susceptible to M�
killing, a gentamicin protection assay was utilized. Overnight cultures of WT, ΔatpA, and ΔatpA::atpA were
washed 1 time with PBS and incubated with M�s at a multiplicity of infection (MOI) of 1:1, 5:1, and 10:1
(bacteria:M�) in a 96-well plate for 1 h at 37°C to allow for phagocytosis. After 1 h, plates were
centrifuged, and fresh medium containing 100 �g/ml gentamicin was added for 30 min at 37°C to kill
residual extracellular bacteria. Next, fresh medium containing low-dose gentamicin (1 �g/ml) was added,
and M�s were incubated for various intervals over a 24-h period. At the indicated time points, M�s were
lysed with 100 �l sterile H2O followed by serial dilution on blood agar plates to quantify intracellular
bacterial burden.

Orthopedic implant model. To evaluate the importance of atpA during biofilm development in vivo,
a mouse model of S. aureus PJI was used as previously described (58). Since ΔatpA had a postexponential-
phase growth defect in TSB compared to WT, cultures were grown overnight at 37°C at 250 rpm and
reinoculated at a starting OD600 of 0.05 the following day and allowed to replicate for 4 h. There was no
significant difference in the growth rate or number of viable bacteria following the 4-h subculture
(Fig. S5). Sex- and age-matched C57BL/6NCrl mice (8 to 10 weeks old) were anesthetized with a
ketamine/xylazine cocktail, and a medial parapatellar arthrotomy was performed to expose the distal
femur. A burr hole was created in the femoral intercondylar notch using a 26-gauge needle, whereupon
a 0.8-cm-long orthopedic-grade Kirschner wire (0.6 mm diameter, Nitinol [nickel-titanium]; Custom Wire

FIG 11 Atl deletion prevents the enhanced cytokine response elicited by S. aureus ΔatpA biofilm. Bone marrow-derived MDSCs
or macrophages were cocultured with biofilm for 2 h, whereupon supernatants were analyzed using a mouse cytometric bead
array inflammation kit. Results represent the mean combined from 2 independent experiments (n � 6 biological replicates).
Significant differences are denoted by asterisks (**, P � 0.01, ***, P � 0.001, and ****, P � 0.0001; one-way ANOVA with Tukey’s
multiple-comparison test).
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Technologies) was inserted into the intramedullary canal, leaving approximately 1 mm of the wire
protruding into the joint space. Approximately 103 CFU of either WT, ΔatpA, or ΔatpA::atpA was
inoculated into the joint cavity, with inocula verified the following day after growth on blood agar. The
surgical site was sutured closed, and Buprenex (Reckitt Benckiser Health Care) was administered
immediately following surgery and 24 h later for pain relief. Animals did not display any ambulatory
defects or pain behaviors after this period and exhibited normal activity.

Flow cytometry. Leukocyte infiltrates into the surrounding soft tissue following S. aureus PJI were
characterized using flow cytometry as previously described (59). Briefly, the soft tissue surrounding the
knee joint was excised, disrupted using the blunt end of a 3-ml syringe plunger in PBS containing
protease inhibitor (Thermo Scientific, Rockford, IL), and passed through a 70-�m filter. Red blood cells
(RBCs) were lysed using RBC lysis buffer (BioLegend, San Diego, CA), and the single-cell suspension was
stained with CD11b-fluorescein isothiocyanate (FITC), CD45-allophycocyanin (APC), Ly6G-phycoerythrin
(PE), Ly6C-peridinin chlorophyll protein (PerCP)-Cy5.5, F4/80-PE-Cy7 (BioLegend and BD Biosciences, San
Diego, CA), and a Live/Dead fixable blue dead cell stain kit (Invitrogen, Eugene, OR) according to the
manufacturers’ instructions. Cell populations were analyzed using a BD LSR II and FACSDiva software (BD
Bioscience, San Jose, CA), where MDSCs (CD11bhigh Ly6G� Ly6C� F4/80�), neutrophils (CD11blow Ly6G�

Ly6C� F4/80�), monocytes (Ly6G� Ly6C� F4/80�), and M�s (Ly6G� Ly6C� F4/80�) are reported as the
percentage of live CD45� cells.

Multianalyte microbead array. To quantify inflammatory mediator expression associated with WT
and ΔatpA PJI, homogenates prepared from the soft tissue surrounding the infected joint were analyzed
using a Milliplex MAP mouse cytokine/chemokine magnetic bead panel (catalog no. MCYTMAG-70K-
PX32; Millipore Sigma, Billerica, MA). Results were normalized to the total protein concentration per
sample and bacterial burden to adjust for the differences in titer between WT and ΔatpA-infected
animals.

Mass spectrometry. The conditioned medium and cell extracts from WT and ΔatpA biofilm were
evaluated by LC-MS/MS to compare changes in the extracellular and intracellular proteome,
respectively. WT and ΔatpA biofilm were grown in 6-well plates as described above, whereupon
supernatants were collected, centrifuged at 14,000 rpm for 10 min, and passed through a 0.2-�m
filter to remove any bacterial cells, followed by vacuum centrifugation to concentrate extracellular
proteins. Biofilms were disrupted in cell lysis buffer (1� PBS supplemented with 1� protease
inhibitor and one-half phosphatase inhibitor tablet [both from Thermo Fisher Scientific]) and lysed
using a bead beater (Bullet Blender, Next Advance), and cell membranes were removed by
centrifugation at 14,000 rpm for 10 min.

The protein concentration for each sample was determined using a bicinchoninic acid (BCA) protein
assay kit (Pierce). Protein digestion for mass spectrometry and tandem mass tag (TMT) labeling of
peptides were conducted following the manufacturer’s recommendations. Briefly, 100 �g of protein from
each sample was reconstituted to 100 �l with 100 mM triethylammonium bicarbonate (TEAB). Proteins
were next reduced with 5 �l of 200 mM tris (2-carboxyethyl) phosphine (TCEP) (1 h incubation at 55°C)
and alkylated with 5 �l of 375 mM iodoacetamide (IAA) for 30 min in the dark at room temperature (RT).
The reduced and alkylated proteins were purified with acetone precipitation at �20°C overnight. The
protein precipitates were collected by centrifugation at 8,000 � g for 10 min at 4°C, and the pellets were
air-dried and resuspended in 100 �l of 50 mM TEAB. Next, proteins were digested for 24 h at 37°C using
2.5 �g of trypsin per sample. The amount of peptide yield in each sample was determined using a Pierce
colorimetric peptide assay kit. The amounts of peptides to be tagged were normalized and mixed with
41 �l of TMT reagent (TMTsixplex; Thermo Fisher Scientific) freshly dissolved in acetonitrile (ACN,
20 �g/�l) for 1 h at RT, and the reaction was quenched with 8 �l of 5% hydroxylamine (15 min incubation
at RT). Tagged tryptic peptides were pooled and concentrated to 
20 �l by vacuum centrifugation and
analyzed using a high-resolution mass spectrometry nano-LC-MS/MS Tribrid system (Orbitrap Fusion
Lumos coupled with an UltiMate 3000 high-performance liquid chromatography (HPLC) system; Thermo
Scientific).

Approximately 800 ng of peptides were run on pre- (Acclaim PepMap 100, 75 �m by 2 cm;
nanoViper) and analytical columns (Acclaim PepMap RSLC, 75 �m by 50 cm, nanoViper; both from
Thermo Scientific). Peptides were eluted using a 125-min linear gradient of ACN (4 to 45%) in 0.1%
fluorescent antibody (FA) and introduced to the mass spectrometer with a nanospray source. The MS
scan was performed using the following detector settings: Orbitrap resolution, 120,000; scan range,
375 to 1,500 m/z; replicative-form (RF) lens, 60%; automatic gain control (AGC) target, 5.0E5; and
maximum injection time, 150 ms. Ions with an intensity higher than 5.0E3 and a charge state of 2 to
7 were selected in the MS scan for further fragmentation. MS2 scan parameters included collision-
induced dissociation (CID) collision energy, 35%; activation Q, 0.25; AGC target, 1.0E4; and maximum
injection time, 150 ms. MS3 scan parameters were high-energy collisional dissociation (HCD) colli-
sion energy, 65%; Orbitrap resolution, 50,000; scan range, 100 to 500 m/z; AGC target, 1.0E5, and
maximum injection time, 200 ms.

All MS- and sequential mass spectrometry (MSn)-collected spectra were analyzed using a Protein
Discoverer pipeline (version 2.1; Thermo Fisher Scientific). SEQUEST HT was used to search the Swiss-Prot
database (selected for S. aureus, 2019_03; 11,082 entries) using the following parameters: enzyme,
trypsin; maximum missed cleavage, 2; precursor mass tolerance, 10 ppm; peptide tolerance, �0.02 Da;
fixed modifications (carbamidomethyl [C] and TMTsixplex [any N terminus]); and dynamic modifications
(oxidation [M] and TMTsixplex [K]). The parameters for reporter ions quantifier were assigned as follows:
integration tolerance, 20 ppm; integration method, most confident centroid; mass analyzer, FTMS
(Fourier transform mass spectrometry); MS order, MS3; activation type, HCD; minimum collision energy,
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0; and maximum collision energy, 1,000. A percolator was used to calculate the false discovery rate (FDR)
for the peptide spectral matches using the following parameters: target FDR (strict), 0.01; target FDR
(relaxed), 0.05; and validation based on q value. Quantification parameters were set as follows: peptides
to use, unique; and normalization mode, total peptide amount. The complete set of differentially
expressed proteins is presented in Data Set S1 and S2 in the supplemental material. Proteomaps (60) was
used to generate Voronoi treemaps to visualize differentially expressed proteins in biofilm supernatant
and extracts (Fig. S4).

Extracellular DNA quantification. eDNA isolation from static biofilms grown in 6-well plates was
performed as described previously (61). Briefly, after 6 days of growth, biofilms were chilled to 4°C, 50 mM
EDTA was added to the supernatant, and biofilms were mechanically disrupted in TES Buffer (Tris-HCl, pH
8.0, with 500 mM NaCl). Samples were subjected to subsequent phenol:chloroform:isoamyl alcohol
(25:24:1) and chloroform:isoamyl alcohol (24:1) extractions and stored overnight at �20°C in 10% 3 M
sodium acetate in EtOH. The next day, eDNA was pelleted by centrifugation and washed prior to
resuspension in Tris-EDTA (TE) buffer. For eDNA quantification, qPCR for gyrA was performed using
LightCycler DNA Master SYBR Green I (Roche).

Statistics. Significant differences were determined using a one- or two-way analysis of variance
(ANOVA) with Tukey’s or Dunnett’s multiple comparisons, apart from the in vivo studies and gentamicin
protection assay where significance between two groups was determined by a Student’s t test with
Holm-Sidak correction using GraphPad Prism version 6.04. Outliers were identified using a ROUT test
(Q � 1%) in Prism. For all analyses, P � 0.05 was considered statistically significant.
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