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Abstract

post-translationally regulated modes of action.

Background: Analysis of high-throughput multi-‘omics interactions across the hierarchy of expression has wide
interest in making inferences with regard to biological function and biomarker discovery. Expression levels across
different scales are determined by robust synthesis, regulation and degradation processes, and hence transcript
(mRNA) measurements made by microarray/RNA-Seq only show modest correlation with corresponding protein levels.

Results: In this work we are interested in quantitative modelling of correlation across such gene products. Building
on recent work, we develop computational models spanning transcript, translation and protein levels at different
stages of the H. sapiens cell cycle. We enhance this analysis by incorporating 25+ sequence-derived features which are
likely determinants of cellular protein concentration and quantitatively select for relevant features, producing a vast
dataset with thousands of genes. We reveal insights into the complex interplay between expression levels across time,
using machine learning methods to highlight outliers with respect to such models as proteins associated with

Conclusions: We uncover quantitative separation between modified and degraded proteins that have roles in cell
cycle regulation, chromatin remodelling and protein catabolism according to Gene Ontology; and highlight the
opportunities for providing biological insights in future model systems.
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Background

The expression of proteins within a cell characterises its
behaviour and function, with the mechanism of infor-
mation flow from DNA template to protein degradation
being an area of profound interest. This process involves
multiple regulated steps from transcription, RNA pro-
cessing and translation to post-translational modifications
and degradation. Through estimating mRNA abundance
by microarray or RNA Sequencing (RNA-Seq) in cells,
we can profile gene expression assuming that mRNA and
protein abundances are correlated [1, 2] and through-
out literature mRNA abundance has been taken as an
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effective proxy for protein expression [3—5] where steady-
state protein abundance has been difficult to obtain.
Recent advances in RNA-Seq [6] and proteomics [7] have
allowed analysis on a system-wide scale and have high-
lighted complex interactions between mRNA and protein
previously not understood, due to transcriptomic mea-
surements being only able to provide a distant approxi-
mation to modelling cellular behaviour, as protein abun-
dance determines cell state. This has cast doubt on the
reliability of mRNA abundance as a proxy for protein
function, due to complex post-transcriptional and post-
translational interactions regulating protein levels across
the cell cycle.

To fully explore the regulatory interactions across the
cell cycle, a multi-omics approach must be adopted that
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quantifies the stages surrounding translation, in addi-
tion to mRNA and protein abundance. Indeed several
studies have explored relationships to protein beyond
mRNA level already, using features derived from the DNA
sequence (Vogel et al. [2]), and mRNA/protein halflives
(Schwanhéusser et al. [35]). Notably, these studies demon-
strate the use of a multi’-omics approach as both sequence
features and halflives contributed significantly to deter-
mining protein abundance. Novel system-wide translation
methods have been introduced recently, that in conjunc-
tion with mRNA and protein quantification have begun
to unravel the complex interplay across the ‘omic scales.
One of these methods is PUromycin-associated Nascent
CHain Proteomics [8, 9] (PUNCH-P), which globally
labels newly synthesized proteins and estimates quan-
tity using mass-spectrometric (MS) analysis, leading to
a ’snapshot’ of the translatome. Zur et al. [10] describes
experimental comparisons between PUNCH-P and the
more familiar Ribosome Profiling (Ribo-Seq) technique
which arrests translation and sequences protected mRNA
fragments. Using both mRNA and translation abundance,
this provides a basis for powerful statistical analysis for
protein abundance prediction, by accounting for post-
transcriptional modifications. Previous studies [8] have
explored the interplay between mRNA, translation and
protein at different time steps within the cell cycle,
but prediction of protein abundance using multi-'omics
expression data across the cell cycle has not been explored
in significant detail.

Various authors have considered probabilistic
approaches such as Bayesian modelling [11] and coupled-
mixture modelling [12] to investigate the relationship
between transcriptome and proteome measurements.
However we integrate novelty detection using outliers
instead as done previously [13]; by building a powerful
statistical model where inputs are carefully selected,
examples of predicted outputs where accuracy is weak
are informative. Here, we extend work previously done
[8] by integrating expression data from multiple stages
in the protein development pathway with information
contained within the known primary DNA/RNA/amino-
acid sequence of said related expression data. By selecting
features that occur/describe events before the protein
is created, we hypothesize that any proteins with a
large predicted-to-actual protein abundance ratio, will
bear significant post-translational modification and/or
degradation functionality, as first proposed by [13].
Tuller et al.[15, 25] and Gunawardana et al. [13, 14]
have developed data-driven models to predict protein
abundance in S. cerevisiaze and prokaryotic organisms.
Using various feature selection methods such as Greedy
Forward/Backward and /i-norm sparsity-induced reg-
ularization (LASSO), previous studies have identified
sequence-derived features such as tRNA Adaptation
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(tAI), Codon Adaptation (CAI) and evolutionary rate (ER)
[2, 13, 15] among others as relevant predictive features,
in conjunction with mRNA expression levels. Indeed,
some of these models have been relatively successful in
achieving very-high correlations between predicted and
actual protein abundance (R?> = 0.76, 0.86).

Post-translational modifications (PTMs) following pro-
tein biosynthesis are fairly common to many proteins, in
particular phosphorylation; and are known to promote
an array of functions including cell signalling, protein
folding and ubiquitination [16]. In particular, PTMs are
known triggers of proteolytic degradation either through
cause or by consequence of oxidative stress, due to the
modification of specific amino-acid sites to alter the pro-
tein’s tertiary/quaternary structure [17, 18]. This can lead
to compromised in vivo protein stability at a local level
(such as protein methylation) or at the C/N-terminal
regions. A number of PTMs involve covalent bonding
with members of the ubiquitin family through ubiquity-
lation/sumoylation. In addition to this, phosphorylation
(the most frequent PTM) has been shown to bear complex
cross-talk with ubiquitin-like factors [19].

The focus of this work is the merging of high-quality
multi-omics measurements with rigorous machine-
learning technique for dynamic-system/time-series pro-
tein prediction. Combining this approach with first-
principle novelty detection theory leads to a powerful
iterative approach to understanding outlier effects in pro-
teins. We have one of the highest correlations (R? = 0.64)
across multiple timesteps for human proteome prediction
(most studies do not explore across time). We assembled
a modest dataset with over 3500 rows with no miss-
ing data, across 30 different features; which is accessible
for public use and will provide a benchmark for future
human proteome prediction studies. In addition, we have
unpacked some of the complex separation between post-
translational modification and degradation signalling in
proteins difficult to predict that reveal insight into key
mechanisms across the cell cycle.

Results

To develop a protein abundance predictor across the
cell cycle, we take data collected from Aviner et al. [8]
containing triplicative measurements of transcriptome
(microarray), translatome (PUNCH-P) [9] and proteome
(Mass Spectrometry; MS) at stage G1 growth phase (2h),
S phase (8h) and G2/M phase (14h) from synchronized
HeLa cells used in the same study [20]. This provides a
base set of multi-'omics measurements for 6785 transcript
levels, with around 4700 non-missing protein/translation
abundances. In order to allow comparison across the
gene product hierarchy, mRNA and protein were exper-
imentally normalized by analyzing the same quantities
of biological material at each phase, and translation
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measurements were normalized by the number of trans-
lating ribosomes at each phase.

Translation rates have significantly higher predictive
power for protein abundance than transcript levels alone
Since multiple copies of a protein are often produced
from a single mRNA strand, we expect translation/protein
abundance and variance to be greater than mRNA levels.
Indeed, we see translation and protein levels to be sev-
eral orders of magnitude larger than mRNA (Fig. 1a), with
a larger span indicative of higher variance. Hierarchical
clustering of Spearman-rank correlations between trip-
licative measurements of gene products (Fig. 1b) shows
high intra-correlations across the ‘'omic scale, with transla-
tion clustering closer to protein than mRNA. This demon-
strates the apparent invariance across the three cell cycle
phases in preference to differences between gene prod-
ucts, with mild correlation between transcript and protein
levels (rs = 0.47-0.49) across all phases, as demonstrated
in the original work and by other authors for mammalian
cells [3, 8, 21]. Correlations of translation against pro-
tein are significantly higher (r; = 0.66-0.67) at all time
points, which is not due to the technical similarity in mea-
surement technique. This is likely due to translation level
accounting for robust post-transcriptional mechanisms
applied across the transcriptome, such as alternative
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splicing and mRNA degradation [22]. Visualisation of cor-
relation (Fig. 1¢,d) shows an consistent left skew in mRNA
versus protein plots, contributing to a reduction in posi-
tive correlation compared to translation. To see whether
this artefact is due to the reduction in sample size 7 alone
(5500 to 4000), we separated mRNA measurements by
whether they had missing translation level data or not, and
calculated rg for each sub sample (Additional file 1). We
do see a drop in correlation (r; = 0.23-0.24) in samples
with missing translation data versus samples with data
(maintained at stated level), this may be due to experi-
mental issues with measuring low levels of translation in
these genes, and since protein stability can be inferred
from translation level (as shown previously [8]), these pro-
teins may not be sufficiently steady-state. Alternatively,
due to the low resolution of only having three time points
(G1, S and G2/M), these labile proteins may be below the
detection threshold at the time of measurement.

Further to this, we developed a naive protein abundance
predictor with a bias term using just mRNA and transla-
tion levels as input to a linear model (Additional file 2).
This illustrates that once translation is known, mRNA
levels become mostly redundant in protein abundance
prediction as there is a negligible increase in correla-
tion. Therefore, we extracted new sequence-based and
frequency-based features known before protein synthesis
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to use as inputs for a machine learning predictor model.
Our downstream analysis develops this to expand the
original dataset to discover new insights across the cell
cycle.

Sequence-based features cumulatively improve
prediction, but individually correlate weakly

We mined for features primarily from curated RefSeq
mRNA transcripts and associated amino-acid sequences
(beginning with NM_ or NP_) from the NCBI Entrez
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database [23] using HGNC gene names [24]. Sequence-
derived features were extracted from the underly-
ing mRNA or coding sequence (CDS), in addition to
frequency-based features that are identified in the Gen-
bank feature table, and are described here (Additional
file 8). The resulting dataset is fully available to all read-
ers in (Additional file 10). Next, we explore pairwise
correlations between all the features, as well as their
correlations to the target protein concentrations as a clus-
tered intensity plot (Fig. 2), with translation, mRNA levels,
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sequence-length/protein molecular weight (PMw) and
CUB with the largest absolute Spearman-rank correla-
tions to protein level (r; = 0.66, 0.47, —0.4, 0.37 respec-
tively). Interestingly the negative correlation between
Length/PMw to protein level would suggest that larger
proteins are more likely to have lower abundance across
all phases. Indeed we would expect enzymatic proteins,
known to be smaller; to be higher in abundance than
larger proteins which predominantly involve structural
interactions.

Further to this, the comparatively small correlation of
tAl and CAI with respect to protein with regards to pre-
vious authors [2, 13, 25] may be due to differences in gene
regulation complexity between humans/yeast. However,
the correlation matrix does not inform on how features
will cumulatively interact with each other in any sub-
sequent models, therefore making it difficult to identify
redundant features. To examine this effect, we performed
principle component analysis (PCA) on the input matrix
(i.e all the features minus protein) to see how much
explained variance can be in the largest eigenvalues (Addi-
tional file 3). Whilst there is noticeable dominance within
the first six principle components, there is not a clear
exponential decay in feature importance, indicating that
there are small, cumulative factors at play in these features
that may contribute independently useful information. In
addition, the assumption of linearity required for PCA
transformation use may not hold true in the biological
system due to complex interactions between mRNA and
protein in vivo. Further to this, we examined the scatter-
plots from t-distributed stochastic neighbor embedding
(t-SNE) and observed uniform scattering/little structure
in reduced dimensions. Due to these reasons, we used
feature selection instead of PCA in downstream analyses.

Differences across the cell cycle begin to emerge when
selecting important features

To examine the potential of different computational meth-
ods on this dataset, we performed 10-fold cross valida-
tion on different regressors across all phases (Additional
file 3), with gradient-boosted regression trees (GBRT)
consistently providing marginally higher accuracy on out-
of-sample data (R?=0.64 % 0.06) than other methods, and
performing significantly better than using just mRNA
and translation as inputs (R>=0.49 + 0.02). We note that
GBRT is non-linear in it’s approach, and fairly robust
to overfitting due to averaging over base tree estima-
tors. It is interesting to observe the surprisingly good
performance of simpler algorithms like Ordinary Least
Squares (OLS) still achieving reasonable out-of-sample
accuracies (R?=0.61 + 0.06), confirming the robustness
of the dataset and highlighting it's case for contin-
ued use in future studies in protein prediction. Indeed,
both Gunawardana [13] and Tuller [15] found non-linear
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models (such as neural networks) brought little ben-
efit and even reduced correlations. In addition, both
Gunawardana and Tuller got larger correlations from lin-
ear models (R*> = 0.86,0.76 respectively) but both devel-
oped models for steady-state yeast, not dynamic human
cells. We do however observe marginal non-linearity in
scatterplots (Fig. 1c,d) at extrema thus supporting the
use of a non-linear method. However in the interests of
reducing overestimation from correlations within related
features, we deployed three different methods of feature
selection as no method is known to be optimum:

1 Recursive Feature Elimination (RFE)
2 L; sparsity-inducing regularization (LASSO)
3 Selecting k-Best (ANOVA)

For inducing an appropriate amount of sparsity into the
input matrix using L; regularization, selecting the regu-
larizing term « is crucial. We observe a dramatic increase
in mean-squared error (MSE) rate with @ > 0.1 (Fig. 3a)
across all cell cycle phases, while the number of fea-
tures remaining p falls linearly as o increases (Fig. 3b),
showing strong redundancy with at least half (14) of all
features. Using the optimized o, we created a GBRT model
(with 10-fold cross validation (CV)) using the regular-
ized feature matrix generated from CV Lasso models, and
describe the model coefficients as feature importances
(Fig. 3¢). Unsurprisingly, translation level dominates as the
most important feature across all phases, but the remain-
ing features mostly appear to have similar importance
(5-8%), with amino-acid derived features such as PMw and
pl, on average, performing better than traditionally used
mRNA-based metrics like tAl or CAIL All 3 of the fea-
ture selectors reduced the most number of features from
G2/M phase compared to G1 (Fig. 3d), which may suggest
G1 and S proteins may be affected by post-translational
regulations. To view the details of the feature selection
procedure, see Additional file 11.

Here we see divergence from work done on other model
organisms (such as yeast and E. coli), which have shown
strong correlation contributions from codon bias met-
rics like tAI and CAI [13, 15]. We suspect this is due
to the increased presence of post-translational modifi-
cations (PTMs) within higher-order organisms like H.
sapiens, causing fluctuations on protein abundance that
act as noise to the correlation with these mRNA-based
metrics. It’s also a possible factor that tAI/CAI informa-
tion value is simply absorbed into translation/PUNCH-P
measurements rendering their contributions somewhat
smaller when combined with translation. We note the
increased skew of feature importances within S phase (sig-
nificantly larger translation, PMw;, pl), possibly indicating
that these features are more active in predicting DNA
replication/repair mechanisms associated with this phase.
In the original work, Aviner et al. [8] also explored S phase
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regulation in more detail in their further analysis in rela-
tion to fold changes, therefore complexities in S phase may
indicate more frequent post-translational modifications.
However exploring the importance of each feature only
begins to provide biological interpretation into the com-
plex interplay between features - our primary interest is
novelty detection in outliers with respect to a predictive
model.

Overestimation in majority of protein outliers indicates
post translational modification or degradation

Using feature selection, we incorporated reduced input
from L; regularizer sets into GBRT models for GI1, S
and G2/M cell cycle phases, using Leave-One-Out Cross
Validation (LOOCYV) for each predicted gene (Fig. 4a),
with significantly stronger Pearson product correlations
(rp=0.82, R%=0.67) across all cell cycle phases than a naive
predictor with just mRNA and translation inputs, there-
fore explaining two-thirds of protein variation. Vogel et
al. [2] found similar findings, with features that focused
on individual amino-acid frequencies, additional exper-
imental data (such as mRNA decay rate) and codon-
related features. They too found polyadenylation, GC
content and codon bias index to be insignificant features,

with strong negative correlations in coding sequence and
3’-UTR sequence length (refer back to Fig. 2). Previous
work has demonstrated that short mRNAs tend to be
more stable than long mRNAs [26] and are more effi-
ciently translated; with the addition that resulting short
amino-acid chains may fold into their tertiary struc-
ture faster than their longer counterparts. Other argu-
ments stem from decreased translation initiation in long
sequences [27], due to an increase in mRNA secondary
structures found in longer 5-UTR regions.

With perfect prediction lying on the y=x line (black),
outliers signify difficult-to-predict proteins that accord-
ing to our hypothesis are involved in post-translational
modifications/processes, which we characterise using dif-
ferent percentiles with respect to the squared-error (e,
red). Indeed across all phases and feature selectors, we
notice at least a 2:1 ratio of outliers lying above the regres-
sion line to below, indicating that the global model trained
on all proteins tends to overestimate the abundance of
some proteins when in fact they should be lower. This
ratio is lower than Gunawardana [13] where the ratio
was 23:1 above/below conducted using steady-state yeast
models, therefore for this pattern to follow in a dynamic
experiment is supportive of using novelty detection as a
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powerful theoretical principle. This would strongly sug-
gest that post-translational modifications or degradation
is taking place in these proteins which are not accounted
for in our model input parameters. For proteins underesti-
mated in abundance, this may be due to lack of resolution
in only having three timesteps (six hours apart), detecting
proteins without steady-state abundance, or time-lag con-
centration effects. Outlier overlap between feature selec-
tors is reasonable (see Fig. 4b), with roughly two-thirds of
proteins identified as 90th percentile outliers across RFE,
L; and K-Best feature selectors, to improve robust iden-
tification of outlier proteins. In addition to this, there is
surprising overlap between cell cycle phases (Fig. 4c), with
roughly one-quarter of proteins found to act as outliers
across all 3 phases, with roughly double S-G2/M outliers
compared to G1-S or G2/M-G1 outliers, across multiple
percentiles.

Across 90th percentile outlier proteins, ZNF687 and
CTNNBI1 (both above prediction line) occur in the top
5 outliers with highest € across all 3 phases, with many
proteins not fluctuating much in terms of € across the
cell cycle. In addition to choosing 90th percentile out-
liers, we examined the outlier overlap of 95th, 97.5th and
99th percentiles which demonstrate a similar pattern to
Fig. 4c, although there is a gradual drop in proportion of
shared proteins in all 3 phases due to the decrease in sam-
ple size (see Additional file 4). We contrasted this to 5th

percentile proteins (most accurately predicted), where
there is very little overlap in outlier proteins across all
3 cell cycle phases (one in 100), as one would expect if
proteins were randomly sampled.

Evidence of post-translational modification/degradation in
outliers reveals new insights

To contrast our hypothesis of post-translational modifi-
cation (PTM) in outlier proteins, we generated structural
site predictions of Acetylation, Methylation, Palmitoyla-
tion, Phosphorylation and Sumoylation for each amino-
acid sequence. We then calculated the total number of
PTMs for each protein and compared the outlier mean
total PTM to 10000 mean total PTMs from randomly
sub-sampled protein sets of the same size (Fig. 5a). In
all upper 90th percentile sets we examined, we found
the vast majority of outlier sets to have a mean PTM
score greater than the mean of the distribution, with
S phase consistently lying furthest from the mean (see
Additional file 5); thus indicating that outliers found in
our regressors are more likely to have significantly more
post-translational modification sites. Despite this, paired
t-tests between outlier and random-sampled sets revealed
that only around 15-20% of tests yielded a p-value <
0.05, meaning we could not reject the null hypthesis. To
explore differences between outliers above and below the
prediction line, we split the dataset as we would expect
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Fig. 5 Coarse and Fine PTM analysis reveals protein modification/degradation as outliers. a Histogram of 10000 bootstrap subsamples of mean total
post-translational modification (PTM) prediction sites versus sample outlier sets (lines), using 90th percentile. b Boxplot distributions of 10000
bootstrap subsamples of total mean PTM versus 90th percentile outliers (black star) above and below predictor line. ¢ Hierarchical clustering of
selected Gene Ontology Biological Process (GOBP) terms using (log1o) p-value FDR with Benjamini correction (p < 0.01), in 90th percentile

these groups to differ in functionality. Interestingly, pro-
teins below the regression line consistently have a higher
mean total PTM value than outlier proteins above the
regression line, with some passing the 95th-confidence
threshold (Fig. 5b). These are proteins that are underes-
timated by our predictor, thus these modifications likely
play a role in protein stability and post-transcriptional
regulation, and indeed acetylation is known to stabilise
proteins post-translation. It is interesting that significant
PTMs are not seen in outliers that overestimate protein
levels; this would suggest that most PTMs are not mark-
ing their respective protein for degradation but modifying
the protein role in it’s interaction to the external environ-
ment. Given that the most frequent PTM site found is
Phosphorylation, which is known to have a vast array of
roles, causing degradation [28] in some proteins, and acti-
vation/promotion [29, 30] such as p53 phosphorylation
in others; this makes inferring function from PTM sites
alone difficult.

To consider deeper functional roles than just explor-
ing the counts of PTM sites (considered our ‘coarse level
analysis’), we perform Gene Ontology Biological Process
(GOBP) enrichment analysis on 90th percentile outliers
for each cell cycle phase (see Additional file 9) and clus-
tered them in terms of their term significance/occurrence
(Fig. 5¢). We filtered for GOBP terms that had an FDR

value < 0.01 across at least 2 cell stages. G2/M phase
contained the largest number of significant terms identi-
fied, with strong evidence for post-translation degradation
pathways found in protein catabolic process/ubiquitin-
dependent catabolic process terms (bottom of clus-
ter), across all 3 cell cycle stages. Alongside this, we
also found strong significance in (negative regulation
of) chromosome organization across all phases, sug-
gesting a strong relationship between chromatin mod-
elling and post-translational modifications/degradation
with associated proteins. Indeed, we found strong pre-
sense of helicases (HEL-), ATAD2 and E2F4/5 in all outlier
sets, known to have roles in DNA repair/chromatin-
modifying proteins [31]. Further to this, the presense
of many (regulation of) cell-cycle related terms between
G2/M-to-G1 stages indicates that post-translational mod-
ification/degradation contributes significantly in robust
control of cell cycle factors; perhaps more than previously
expected. The gene regulation network within the yeast
cell cycle have already been explored in detail [32], and
highlights the fact that although over 800 yeast genes are
involved in the process, a significantly smaller portion are
responsible for regulating the cell cycle.

We performed further enrichment analysis on outliers
found above and below the regression line, wherein with
above outliers; protein catabolic/proteolysis terms to exist




Parkes and Niranjan BMC Bioinformatics (2019) 20:536

only in M-G1 stages, with cell cycle/division/chromosome
segregation across all 3 stages, with DNA repair/response
to DNA damage found shared between G1-S. Con-
trasted to below outliers; we found dominance of
post-transcriptional regulation terms and translational
frameshifting across all 3 stages, with RNA/mRNA sta-
bility found in S-G2/M groups, and RNA process-
ing/regulation of RNA splicing found in GI1-S (see
Additional file 6).

Whilst there is strong support for post-translational reg-
ulation independent of time, there may be bias from time-
lagged mRNA /translation expression that was transcribed
at a previous timestep unaccounting for the change in sub-
sequent protein expression, as explored by other authors
[33] using systems biology simulations. To account for
this we developed predictive models which incorporated
mRNA/translation expression at a previous timestep in
the cell cycle rather than at current time. Changes in cor-
relation between normal (mRNA and translation at time )
and lagged (¢ — 1) expression are minimal (see Additional
file 7). Further to this, roughly 90% of outlier proteins
overlap across all three phases between mRNA at time ¢
and time ¢ — 1, demonstrating a small but insignificant
change in predictions generated from mRNA time-lag.

Discussion

Analysis of time-series concentration with
sequence-derived features

In this work we have collated time-series concentrations
of mRNA, translation and protein from Aviner [8] and
sequence-derived features from other sources [23, 38].
Consistent with previous authors, our data shows that
mRNA and translation go some way in explaining protein
variation (R?=0.23 and 0.45). This diverges from previous
similar work by Schwanhéusser et al. [35], where protein
translation is calculated using a mathematical model of
mRNA and protein rates, rather than measured directly;
and where sequence derived features are not factored in
their analysis. Our data establishes the redundancy of
using mRNA level as a proxy to protein level with the
introduction of translation measurements via PUNCH-P
[9], likely due to factoring in post-transcriptional con-
trols as translation occurs after mRNA processing. The
remaining discordance in correlation between transla-
tion and protein is therefore mostly associated with
post-translational regulation of protein abundance once
synthesised.

To improve predictive power, we extracted features
about physical properties associated with the underlying
mRNA/amino acid sequence such as CAI tAl and gene
length. Clustered inter-correlation analysis between fea-
tures showed groupings of features usually by function
(i.e strong correlation between mRNA and amino-acid
length). Negative correlations between sequence length
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and protein level have been similarly reported in stud-
ies of other organisms [2], and is theoretically supported.
However codon bias correlations (CAI tAl) to protein are
noticeably smaller than in previous studies [13, 43], which
may be due to further robustness of the gene regulatory
framework in H. sapiens compared to S. cerevisiae, or due
to recording dynamic time-series nature of the data rather
than a steady snapshot.

To simplify the model (and prevent overfitting), we
considered unsupervised learning techniques, particularly
PCA and t-SNE which underperformed, due to the com-
plex interactions occurring between the features. Whilst
other applications for dimensionality reduction often have
significantly higher dimensions p, such as image or nat-
ural language processing; we found many features con-
tributing a small but significantly cumulative reduction
in model error. This highlights the diverse low-impact
optimizations that exist in the cellular framework for
self-modulation, whether by sequence length, codon bias,
translational efficiency or other pre-translational methods
in each associated mRNA.

Predicted outliers indicate post-translational regulation
Supervised learning on the input features enabled a lin-
ear comparison between actual and predicted protein
concentrations, where we inferred that proteins furthest
from the linear model are involved in biological processes
which are primarily regulated post-translation. Choosing
the most appropriate percentile to identify outliers is not
clear; Gunawardana et al. [13] chose a 2.5% cutoff, but had
a small number of outliers (<= 50). We chose a 10% (90th)
cutoff in order to improve the significance of subsequent
GO analyses, at the cost of possibly including proteins
that may not be deemed as outliers. Modest overlap (25-
40%) between outlier proteins across the cell cycle shows
a core group of proteins that the model fails to predict
consistently, which is enriched for catabolic processes.

In relation to effects from time-delayed mRNA expres-
sion, we found that it partially affects 10-12% of proteins
we've sampled by bootstrapping, but due to low time-
resolution with only three steps in the cell cycle, this
conclusion is drawn with caution as a 6-h time delay win-
dow is more than sufficient for mRNA expression levels to
change aberrantly.

Conclusions

This work has expanded on previous multi-'omic expres-
sion data and integrated the concept of novelty detec-
tion by outliers to provide insights into post-translational
modification and degradation through data-driven mod-
elling of the human cell cycle, with potential applica-
tions in more completely predicting protein abundance
at certain timesteps in normalcy. This lends to a pow-
erful preprocessed dataset being made publicly available
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forming a benchmark for predictive proteomic studies.
Of particular interest is the separation between exten-
sive protein modification found to be underestimated, and
protein degradation overestimated by our model. We have
explored the practicalities with selecting powerful fea-
tures in protein prediction, and we have reduced the space
over which experimental exploration is needed and pro-
vided evidence of biological functionality to be confirmed
experimentally.

Materials and methods

Data retrieval

Human HeLa cell cycle data was taken from Aviner et al.
[8], with triplicative measurements for mRNA, translation
and protein, for which the empirical mean is taken. nRNA
data is pre-normalized using robust multi-array average
(RMA) [34], whereas translation and protein are pre-
normalized using intensity-based absolute quantification
(iBAQ) [35]. These experiments were normalized at the
experimental level by analysing the same amounts of bio-
logical material at each cell cycle phase. Messenger-RNA
transcript variants and related meta-information were
extracted from NCBI Entrez Direct [23, 36] via Biopy-
thon v1.7 [37] package in Python 3.6. Unique Gene names
(HGNC) [24] from the cell cycle dataset were mapped to
NCBI Accession Numbers from RefSeq curated dataset
(beginning with NM_), obtaining GenBank files [38] for
all mRNA transcripts associated with HGNC gene names.
Exon data and elements from the feature table were
extracted and counted. In addition to this, we retrieved
the associated curated protein transcripts (NP_) to each
translated mRNA product found in the coding-sequence
section of the feature table.

Feature extraction

The coding sequence (CDS) is derived using mRNA
sequence and exon range information, we filter out tran-
scripts where the calculated coding sequence (in terms
of mRNA) when translated does not match the amino-
acid sequence found in the GenBank file. We count the
number of exons, sequence-tagged sites (STS), miscallae-
nous features, regulatory regions and poly-adenylated tails
in the mRNA transcript feature table; in addition to the
number of protein sites, regions and predicted molecu-
lar weight (PMw), per protein product (NP_) linked to
transcript files. We used Biopython [37] to derive mRNA
GC content and handle DNA/amino acid sequences. We
extracted CAI and ’the effective number of codons’ (Nc)
using CAlcal [39] server (http://genomes.urv.es/CAlcal/),
using CDS sequence as input in conjunction with the
Human Codon Usage table as frequencies per thousand
(http://genomes.urv.es/CAlcal/CU_human_nature) from
the Ensembl database (Release 57). We used ExPASy’s
ProtParam [40] module in Biopython to predict pI,
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Aromaticity, Instability Index, GRAVY and protein sec-
ondary structure features (helix, sheet, coil). tAl values
are calculated using stAlcalc [41], using the offline ver-
sion with human tRNA gene copy numbers taken from
GtRNAdb [42] for hgl9 (NCBI build 37.1 Feb 2009).
CUB (relative codon usage) is calculated following the
method in [43], which does not require a reference
codon usage table. The change in Gibbs Free folding
energy AG in the 5-untranslated region, indicating the
amount of mRNA secondary structure features, is pre-
dicted using the offline RNAstructure EnsembleEnergy
algorithm [44]. Predictions for post-translational modi-
fication sites for phosphorylation, methylation, sumoy-
lation, palmitoylation and acetylation are made using
the PTMs Peptide Scanner (PPS 1.0) [45], using the
batched offline tool with the amino-acid sequence
as input.

Preprocessing

Due to a protein being encoded possibly by more than
one mRNA transcript (transcript variants), to effectively
map mRNA sequence-derived features to the cell cycle, we
select the longest mRNA transcript for each protein, and
merge this into the cell cycle dataset leading to a dataset
of 6592 proteins; with roughly 3500 proteins containing
no missing values. We scaled the count features such as
the number of exons by the mRNA sequence length (or
equivalent for amino-acid count data) to obtain a relative
frequency mitigating sequence-length bias. PTMs from
PPS 1.0 are grouped by the type of PTM per protein and
integrated into the cell cycle set by NCBI accession protein
number (NP_), with missing values assumed to be zero
(filled).

Feature and model selection

All of the machine learning algorithms/feature selec-
tors are encapsulated in Scikit-Learn [46] within Python.
Feature selection is an important preprocessing step in
removing redundant features that could negatively impact
the coefficients of any downstream model produced,
and to reduce the dimensionality of the problem. We
used RFE [47], L;-induced regularization [48] and Selec-
tKBest/ ANOVA as three separate methods, but we will
only cover L here as it is the primary selector for all of the
figures in this paper. LASSO is an extension to ordinary
least squares (OLS) in that it applies an L;-norm penalty
to the objective minimization function [48], as shown here
in matrix notation:

min {||Xw — 12+ Ol||W||1}

where X € R™” refers to the input matrix (with bias
term), y € R™ refers to the target vector, with w € R? as
weights of unknowns. & controls the level of regulariza-
tion and L;-norm tends to produce sparse solutions of w
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when «o is large. The selection of « is described in Fig. 3
and is mostly a hyperparameter to be tuned according to
the level of sparsity you wish to induce. Gradient-boosting
(GBRT) is a non-linear tree-based method for combining
many weaker decision tree learners into a single strong
learner and is described in detail here [49]. We use a large
number of base estimators (1000) for all GBRT models,
with a relatively small learning rate (0.01) which in gen-
eral trades off computational power for higher accuracy.
GBRTs are also known to be fairly robust to overfitting,
and for protein prediction we use leave-one-out cross val-
idation (LOOCYV) for deterministic out-of-sample testing.
We selected outliers with respect to our model by looking
at the squared-residuals:

& = (i =)’

where y; represents our actual protein level and y; is our
predicted level. We explored the 5th, 90th, 95th, 97.5th
and 99th percentiles within €.

Bioinformatic analysis

Statistical analysis of the pairwise monotonic relation-
ship (rs) between features uses Scipy 1.0 [50] and we use
Spearman-rank correlation between features as we do not
assume a linear relationship. For comparisons between
measured and predicted protein abundance, we use
Pearson’s product moment correlation (r,) as we assume
a linear relationship between variables that are (meant
to be) the same. We use (Rf,) when we wish to com-

pare to other studies that have also used R? to describe
model accuracy. Measurements for mRNA, translation
and protein are presented as means across triplicative
measurements, with £SD where indicated. Paired t-tests
used in checking for significance in PTM outlier samples
was conducted using Scipy. Hierarchical clustering was
done automatically to matrix inputs using Seaborn 0.8.1,
using clustermap. For Gene Ontology Enrichment analy-
sis, we used the ToppGene suite [51], using FDR< 0.01.
For clustermaps of GO analysis, we filtered for terms that
were found in 2 or more cell cycle phases.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512859-019-3150-5.

Additional file 1: mRNA comparison between genes with and without
missing translation measurements. Points with (blue circle, ry = 0.23-0.24)
and without (red triangle, r; = 0.46-0.48) missing translation data. Linear
model (black) with mean centre of cluster (shape refers to group).

Additional file 2: Naive linear predictor of protein using mRNA and
translation. Scatterplots of measured (y) versus predicted (y) protein across
G1,S and G2/M cell cycle phases, with Spearman-rank correlation rs,
sample size n and number of parameters p.
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Additional file 3: Selecting algorithm with highest correlation using
GridSearch 10-fold cross validation. Barplot representation of different
algorithms for training score (right) and testing score (left).
Gradient-boosted regression trees (GBRT) performed best across all phases.
+SD indicate cross-validation scores.

Additional file 4: Outlier overlap for all feature selectors across g5, 490,
095, q97.5 and q99. Venn diagrams across RFE (left), L; (middle) and KBest
(right) feature selectors, with vertical representing n-th percentiles g5, 90,
095, q97.5,q99 respectively (venn-phase-95.png).

Additional file 5: Distributions of random-subsampled PTM sites versus.
outlier PTM sites. Histogram of 10000 bootstrap subsamples of mean total
post-translational modification (PTM) prediction sites versus sample outlier
sets (vertical lines), using 90th, 95th, 97.5th and 99th percentiles.

Additional file 6: Hierarchical Clustering of GOBP Terms above (left) and
below (right) the regression line (see Fig. 4c). using (logo) p-value FDR with
Benjamini correction (p < 0.01). Annotated circles (orange) pseudo-group
regions of interest for each plot. Dendrograms aside each plot identify
grouped-distance.

Additional file 7: Scatterplots of protein levels against predicted protein
p generated from different mRNA/translation measurement inputs. a)
MRNA; b) mRNA:_1 ¢) translation;_y or d) mRNA:_1, translation;_+ . From
top: S, G2/M, G1 cell cycle phase. Yellow plots refer to the normal model
(see Fig. 4a). Cell cycle terms are annotated for using Gene Ontology and
overlaid with correlation. t refers to the cell cycle step (G1, S or G2/M).

Additional file 8: Table of expanded feature names with abbrievations.
Includes input feature abbrievations used in Fig. 2.

Additional file 9: Complete GO Analysis for 90th percentile outliers. We
only make use of Biological Process and FDR < 0.01, but many other
categories are included with this analysis. Tabs include All 9 (3 selection
features * 3 cell phases), G1, S and G2/M.

Additional file 10: Combined dataset. Dataset of Aviner's work (log2
mRNA, translation and protein abundance for G1-S-G2/M) with gene,
mMRNA and amino-acid sequence derived features and associated labels.

Additional file 11: Feature Selection procedure. Description of the
feature selection process for RFE, L1 and Select k-Best, including parameter
choices in this pdf.
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