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Abstract

Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA), a virulence factor involved in extrapulmonary
dissemination and a strong diagnostic antigen against tuberculosis, is both surface-associated and secreted. The role of
HBHA in macrophages during M. tuberculosis infection, however, is less well known. Here, we show that recombinant HBHA
produced by Mycobacterium smegmatis effectively induces apoptosis in murine macrophages. DNA fragmentation, nuclear
condensation, caspase activation, and poly (ADP-ribose) polymerase cleavage were observed in apoptotic macrophages
treated with HBHA. Enhanced reactive oxygen species (ROS) production and Bax activation were essential for HBHA-induced
apoptosis, as evidenced by a restoration of the viability of macrophages pretreated with N-acetylcysteine, a potent ROS
scavenger, or transfected with Bax siRNA. HBHA is targeted to the mitochondrial compartment of HBHA-treated and M.
tuberculosis-infected macrophages. Dissipation of the mitochondrial transmembrane potential (DYm) and depletion of
cytochrome c also occurred in both macrophages and isolated mitochondria treated with HBHA. Disruption of HBHA gene
led to the restoration of DYm impairment in infected macrophages, resulting in reduced apoptosis. Taken together, our
data suggest that HBHA may act as a strong pathogenic factor to cause apoptosis of professional phagocytes infected with
M. tuberculosis.
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Introduction

Tuberculosis remains a serious global problem, although many

researchers have made a persistent effort for several decades.

Mycobacterium tuberculosis, a major causative agent of pulmonary

tuberculosis, is responsible for 1.8 million deaths per year

worldwide [1]. Innate immune system plays a critical role in

antimicrobial host response during the early stage of M. tuberculosis

infection. Alveolar macrophages mediate innate immunity by

phagocytosing pathogens and are the chief defense against M.

tuberculosis, which can survive and replicate within phagocytes [2].

The course of tuberculosis rests on the outcome of the interaction

between the bacterium and host macrophage. Therefore, a better

understanding of these complex interactions is critical to

controlling mycobacterial infection.

Many bacterial and viral pathogens utilize various strategies to

manipulate host machinery to serve their own needs. Apoptotic

cell death has been regarded as an innate cellular response to limit

the multiplication of intracellular pathogens [3], although the

precise mechanism of the direct antimicrobial action in infected

macrophages undergoing apoptosis is unclear. Generally, infec-

tious intracellular pathogens tend to prevent host cell apoptosis

during an early stage of infection. However, they may also induce

host cell apoptosis with a specific aim to subvert the host attack,

such as immune and inflammatory response, at later stages [4,5].

A number of reports have indicated that M. tuberculosis does

indeed inhibit host cell apoptosis, while at the same time it induces

pro-apoptotic signals. Recent studies showed that only virulent

mycobacterial species can inhibit apoptosis induction in primary

human alveolar macrophages [6], THP-1 [7,8], and J774

macrophage cell lines [9]. Virulent M. tuberculosis reportedly

induced the apoptotic death of host cells. For example, enhanced

apoptotic response was detected in alveolar macrophages

recovered from patients with pulmonary tuberculosis [10,11].

Extensive apoptosis was also observed in caseating granulomas

from lung tissue samples obtained from patients with tuberculosis

[12,13]. Several apoptosis-inducing factors of M. tuberculosis,

such as 19-kDa glycolipoprotein (Rv3763) [14], PE_PGRS33

(Rv1818c) [15], ESAT6 (Rv3875) [16], and 38-kDa lipoprotein

(Rv0934) [17] are reported.

Heparin-binding hemagglutinin adhesin (HBHA) is a 28-kDa

multifunctional protein found on the surface and culture filtrates of

mycobacteria. It has hemagglutination activity and binds to

sulfated glycoconjugates such as heparin and dextran sulfate [18].

HBHA interacts specifically with non-phagocytic cells and is

essential for the infection of lung epithelial cells and extrapulmo-
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nary dissemination of M. tuberculosis [18,19]. Protective immunity

induced by HBHA is observed in M. tuberculosis-infected mouse

models, indicating that HBHA is a protective antigen [20]. Recent

studies suggest that HBHA is a useful diagnostic marker for

tuberculosis [21]. We also identified and characterized HBHA as a

serologically active mycobacterial antigen in a previous study,

whereby HBHA binds strongly to the immunoglobulin M of

patients with tuberculosis [22]. Although HBHA function in

mycobacterial pathogenesis has been extensively studied, the role

of HBHA on professional phagocytes, such as macrophages, is still

poorly understood.

The aim of the present study was to characterize the biological

effects of M. tuberculosis HBHA on macrophages. We found that

HBHA induced apoptosis in murine macrophages and investigat-

ed its underlying mechanism. Here, we show that HBHA

treatment caused a loss of mitochondrial transmembrane potential

(DYm) and the release of cytochrome c from purified mitochondria

in vitro, as well as mitochondria of intact cells, and HBHA was

efficiently targeted to mitochondria of macrophages.

Results

HBHA induces macrophage apoptosis via caspase
activation

We first sought to determine whether HBHA could induce

macrophage apoptosis. Apoptosis was assessed by quantifying

DNA fragmentation, which is considered a hallmark of apoptosis,

in the cytoplasmic fractions of dying cells using a commercially

available ELISA kit. The incubation of RAW 264.7 cells with

HBHA resulted in a significant increase in the release of

oligonucleosomal fragments into the cytoplasm in both dose-

and time-dependent manners as compared to compared to control

cells (Figure 1A and 1B). Cell death was significantly greater in

cells treated with HBHA as compared to buffer-treated control

cells. As lactate dehydrogenase was not detected in the cell culture

supernatant during HBHA treatment, the possibility that HBHA-

induced death is necrosis was excluded (Figure S1). We used native

antigen 85 complex (Ag85) as an unrelated control protein. The

Ag85 of M. tuberculosis is the major secreted protein and

fibronectin-binding protein, and shows strong immunoreactivity

[23,24]. Similar results were observed in bone marrow-derived

macrophages (BMDMs); like PBS-treated BMDMs DNA frag-

mentation was not detected in Ag85-treated cells, whereas

dramatic DNA fragmentation was observed in HBHA-treated

cells (Figure 1C). HBHA-induced apoptosis was further confirmed

by examining the nuclear morphology of dying cells using a

fluorescent DNA-binding agent, 49-6-diamidino-2-phenylindole

(DAPI). As shown in Figure 1D, control cells treated with buffer

had intact nuclei. In contrast, within 48 h of HBHA treatment,

RAW 264.7 cells clearly exhibited condensed or fragmented nuclei

indicative of apoptotic cell death. We further analyzed the caspase

dependency of HBHA-induced apoptosis. Western blot analysis

showed that the cleavage of caspase-3, caspase-9, and poly(ADP-

ribose) polymerase (PARP) was evident in cells incubated with

HBHA for 48 h (Figure 1E). Inhibition of caspases by a pan-

caspase inhibitor, zVAD-fmk, attenuated the HBHA-induced

DNA fragmentation, indicating that HBHA induces caspase-

dependent apoptosis (Figure 1F). These results suggest that

macrophages treated with HBHA undergo caspase-dependent

apoptosis.

HBHA causes a decrease in DYm

The mitochondrion acts as a central executioner in response to

apoptotic stimuli, allowing signals from various inputs to converge

[25]. We investigated whether HBHA treatment affected the

structural and biochemical integrity of mitochondria. Mitochon-

drial damage was assessed by examining mitochondrial DYm,

which was determined by staining cells with 3,39-Dihexyloxacar-

bocyanine (DiOC6), a dye that incorporates into mitochondria

with intact membrane potential [26], for flow cytometric analysis.

As shown in Figure 2A, a significant loss of DYm was observed in

RAW 264.7 cells incubated with HBHA as indicated by a decrease

in DiOC6 intensity. Analysis of the time course for examination of

DYm onset showed a noticeable dissipation of DYm after 18 h of

HBHA treatment, which further decreased with time. A similar

result was obtained in BMDMs incubated with HBHA (Figure 2B).

These results suggest that mitochondrial damage appears as a

subsequent event in the intracellular action of HBHA.

HBHA induces Bax translocation to mitochondria and
releases cytochrome c from mitochondria to the cytosol

Apoptosis at the mitochondrial level involves the oligomeriza-

tion of the pro-apoptotic protein Bax [27], leading to permeabi-

lization of the outer mitochondrial membrane (MOMP) and

release of cytochrome c [28]. We performed immunocytochem-

istry to detect Bax translocation and cytochrome c release. An

antibody recognizing the Bax N-terminus, which is exposed by the

activation of Bax and its insertion into the mitochondrial

membrane, was used. Figure 3A shows the translocation of Bax

distributed evenly in the cytoplasm to the mitochondria in

macrophages as evident by the colocalization of Bax with

Mitotracker, a potential-sensitive dye specific for mitochondria.

In PBS-treated cells, cytochrome c showed a punctate pattern that

colocalizes with Mitotracker, whereas the faint signal for

cytochrome c and the decreased colocalization with Mitotracker

were detected in HBHA-treated cells, indicating cytochrome c

release. These results were confirmed by performing subcellular

fractionation and Western blot analysis (Figure 3B). HBHA caused

a decrease in cytochrome c immunoreactivity in the mitochondrial

fraction with a concomitant increase in the cytosolic fraction and

vice versa for Bax immunoreactivity. Collectively, these findings

suggest that the apoptotic effect of HBHA on macrophages is

associated with cytochrome c release and Bax translocation. To

Author Summary

Cell death is a common outcome during infection with a
number of pathogenic microorganisms. Therefore, defin-
ing the factors responsible for killing of host cells is
important to uncovering mechanisms of pathogenesis.
World-wide, two billon people are latently infected with
Mycobacterium tuberculosis, which is still killing 2–3 million
people each year. Heparin-binding hemagglutinin (HBHA)
protein of M. tuberculosis is known to interact specifically
with non-phagocytic cells and to be involved in dissem-
ination from lungs to other tissues. Nevertheless, the role
of HBHA in phagocytic cells such as macrophages, which
are the first cells of the immune system to encounter
inhaled pathogens, has been unknown. In the present
study, we suggest HBHA as a critical bacterial protein for
macrophage cell death. After M. tuberculosis infection or
HBHA treatment of macrophages, HBHA targeted to
mitochondria and then caused mitochondrial damage
and oxidative stress, which eventually lead to apoptosis. A
mutant of M. tuberculosis lacking HBHA induced less
apoptosis with moderated mitochondrial damage. These
experiments provide a candidate virulence factor which
may be a novel target for tuberculosis treatment.

HBHA Targets Mitochondria
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determine whether Bax activation is necessary for HBHA-induced

apoptosis, we knocked down the level of Bax by transfecting RAW

264.7 cells with Bax siRNA. The Bax protein level was

significantly reduced in cells transfected with Bax siRNA; Bax

protein in control siRNA-transfected cells was unchanged

(Figure 3C). We then determined the effect of knockdown Bax

on HBHA-induced apoptosis in RAW 264.7 cells. As shown in

Figure 3D and 3E, HBHA-induced increase in DNA fragmenta-

tion was blocked and DYm loss was restored by Bax knockdown,

suggesting that Bax activation is required for HBHA-induced

macrophage apoptosis.

Reactive oxygen species (ROS) are required for apoptosis
induced by HBHA

Enhanced reactive oxygen species (ROS) production, charac-

teristic of early apoptotic events, can be both a cause and a

Figure 1. HBHA-induced macrophage apoptosis. (A,B) DNA fragmentation of RAW 264.7 cells incubated with the indicated concentrations (A)
or 10 mg/mL (B) of HBHA for 24 or 48 h was measured by Cell Death Detection ELISA. (C) DNA fragmentation of BMDMs incubated with HBHA (10 mg/
mL) or Ag85 (10 mg/mL) for 48 h was measured by Cell Death Detection ELISA. Values represent the mean OD405 6 SD of at least three experiments.
** P,0.01, *** P,0.001 RAW 264.7 cells treated with PBS versus those treated with HBHA. (D) RAW 264.7 cells were treated with HBHA (10 mg/mL) or
PBS for 36 h, fixed, and stained with DAPI. Fragmented nuclei are indicated by arrows, and a condensed nucleus is denoted by an arrowhead. Scale
bar, 10 mm. (E) BMDMs cell lysates exposed to HBHA for 36 h were immunoblotted against caspase-3, caspase-9, and PARP. To confirm equal protein
loading, blots were re-probed with an antibody against b-actin. (F) BMDMs were incubated with PBS or HBHA (10 mg/mL) in the presence or absence
of zVAD-fmk (50 mM). DNA fragmentation was measured as described above. Results are the mean 6 SD of three independent experiments.
** P,0.01 between cells incubated with HBHA only and those incubated with HBHA+zVAD-fmk.
doi:10.1371/journal.ppat.1002435.g001
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consequence of changes in DYm [26,29]. To examine the

involvement of ROS generation on HBHA effects in macrophag-

es, the oxidation of DCF was monitored by flow cytometry and

fluorescent microscopy (Figure 4A). Compared to PBS or Ag85,

HBHA significantly induced the increase of intracellular hydro-

peroxide in macrophages. To determine the requirement of ROS

increase in HBHA-induced apoptosis, the effect of HBHA alone or

in combination with N-acetylcysteine (NAC), a general ROS

scavenger, on DNA fragmentation was assessed. NAC pretreat-

ment effectively inhibited HBHA-induced DNA fragmentation

(Figure 4B) as well as ROS production, suggesting that ROS

increase is essential for the apoptotic response caused by HBHA.

HBHA is targeted to the mitochondria
Studies have suggested that some infectious intracellular

pathogens regulate apoptosis of their host cells by targeting

proteins to mitochondrial membranes that either induce or inhibit

MMP [30]. We addressed the question of where HBHA is

localized in mitochondria of HBHA-treated cells. Therefore, the

possibility that HBHA interacts with the mitochondrial compart-

ment was examined. Confocal microscopic analysis revealed the

presence of HBHA in the mitochondria of HBHA-treated cells, as

evidenced by a significant overlap between HBHA and Mito-

tracker (Figure 5A). Subcellular fractionation and Western blot

analysis consistently showed that large amounts of HBHA were

detected in the mitochondrial fraction, but not in the cytosolic

fraction, where little HBHA was observed (Figure 5B). In contrast,

the minimum of Ag85 were detected in cytoplasmic fraction of

macrophage treated with Ag85, suggesting that it is not able to

pass through plasma membrane. Furthermore, to determine

whether HBHA was imported into mitochondria, we isolated

mitochondria from cells treated with HBHA. The purified

mitochondria were subsequently digested with proteinase K. As

shown in Figure 5C, HBHA disappeared in mitochondria digested

with proteinase K, indicating that HBHA adheres to the outer

membrane of the mitochondria.

HBHA induces the release of cytochrome c and the loss
of DYm in isolated mitochondria

We next determined whether HBHA induced cytochrome c

release from isolated mitochondria. As shown in Figure 6A,

isolated mitochondria from RAW 264.7 cells released cytochrome

c after HBHA treatment, whereas the buffer control or Ag85 did

not stimulate this release in a cell-free assay. We also examined the

effect of HBHA on the collapse of membrane potential in purified

mitochondria. For this, mitochondria incubated with HBHA were

stained with DiOC6, and the fluorescence intensity was monitored

by flow cytometry (Figure 6B). A significant shift to a lower

intensity was observed in mitochondria treated with HBHA as

compared to buffer control or Ag85, indicating the decrease in

DYm. These data provide evidence that similar to the event that

occurs in macrophages, HBHA can solely induce mitochondrial

damage in a cell-free system, indicating that Bax translocation to

mitochondria is not essential for of DYm loss and cytochrome c

release.

HBHA partially localizes to mitochondria during M.
tuberculosis infection and impacts viability of infected
macrophages

HBHA is a secreted protein in M. tuberculosis as well as a surface-

associated protein [18]. To examine whether HBHA is also

transported to mitochondria during M. tuberculosis infection,

BMDMs were infected with H37Rv wild type and mutant

disrupted in hbhA. Immunofluorescence microscopy of infected

cells revealed that a part of HBHA colocalized with mitochondria

(Figure 7A). Purified mitochondrial fraction of these cells

contained a considerable amount of HBHA protein, although a

large portion of HBHA were observed in cytosolic fraction

(Figure 7B). These findings demonstrate that HBHA is efficiently

transported to mitochondria of infected macrophages. To analyze

the effects of HBHA on macrophages in the context of the

Figure 2. HBHA-induced the loss of DYm in macrophages. RAW
264.7 cells (A) or BMDMs (B) were incubated with PBS, Ag85 (5 mg/mL),
or HBHA (5 mg/mL) for the indicated time periods (A) or 24 h (B). Cells
were washed and stained with DiOC6 (40 nM). The fluorescence activity
of DiOC6 was determined by flow cytometry as described in the
Materials and Methods. A shift in the cell population to the left indicates
a loss of DYm. Histograms shown are representative of at least three
independent experiments. Mean 6 SD of three independent experi-
ments is shown. *** P,0.001 cells treated with PBS versus those treated
with HBHA.
doi:10.1371/journal.ppat.1002435.g002
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Figure 3. Bax translocation and cytochrome c release by HBHA treatment in macrophages. (A) RAW 264.7 cells were incubated with
HBHA (10 mg/mL) or PBS for 20 h. Bax and Cytochrome c were stained with their antibodies and then an FITC-conjugated secondary antibody (green).
Mitochondria were stained with Mitotracker Red (red). Cells were then imaged by confocal microscopy. Scale bar, 5 mm. (B) Mitochondrial and
cytosolic fractions were prepared, and aliquots containing 20 mg of protein were subjected to Western blot analysis and probed with antibodies for
Bax and cytochrome c (Cyt C) as described in the Materials and Methods. COX IV and b-tubulin were used as markers for the mitochondrial and
cytosolic fractions, respectively. Results are representative of three independent experiments. (C) Western blot analysis of expression of Bax in RAW
264.7 cells transfected with liposomes only (Mock), nonspecific siRNA (Control siRNA), or Bax-specific siRNA. Western blotting was done using an
antibody against Bax and an antibody against b-actin as a loading control. (D,E) Parental cells and Bax siRNA-transfected cells were treated with
HBHA (10 mg/mL) for 24 h or 48 h. DNA fragmentation was determined by Cell Death Detection ELISA as described in Figure 1 (D). Loss of DYm was
assessed by DiOC6 retention assay as described in Figure 2 (E). Data are the mean 6 SD from three separate experiments. ** P,0.01 between HBHA-
treated parental cells and HBHA-treated cells transfected with Bax siRNA. Flow cytometric histograms are representative of three independent
experiments.
doi:10.1371/journal.ppat.1002435.g003

HBHA Targets Mitochondria
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bacterium as a whole, we compared the relative ability of M.

tuberculosis H37Rv wild type and mutant disrupted in hbhA to

induce apoptosis and DYm collapse in macrophages. A reduced

DNA fragmentation and an increased intact mitochondria were

observed in BMDMs infected with mutant strain compared to its

parent (Figure 7C and 7D), which was noticeable when

macrophages were infected at MOIs of 5 and 10 but not at an

MOI of 25 (Figure S2A). On the other hand, there was no

significant difference in LDH release between cells infected with

two strains (Figure S2B). Similarly, more significant DNA

fragmentation and DYm loss were detected in cells infected with

M. smegmatis ectopically expressing HBHA compared to cells

infected with the M. smegmatis control.

HBHA has no influence on the viability of A549 cells
HBHA is involved in the interaction of mycobacteria with

alveolar epithelial cells [19]. To determine whether these cells

exposed to HBHA undergo apoptosis, human type II A549

pneumocytes were treated with purified HBHA for 48 h. As

shown in Figure 8A and 8B, neither DNA fragmentation nor DYm

collapse was observed in HBHA-treated A549 cells. Immunoflu-

orescent microscopy showed that a very faint green signal was

detected in A549 cells incubated with HBHA, indicating that

HBHA enters A549 cells much less efficiently (Figure 8C, upper

panels). To confirm this issue, A549 cells were infected with M.

tuberculosis wild type and hbhA deficient strains. Like experiments

conducted in macrophages, M. tuberculosis infection led to severe

DYm dissipation, accompanied by the partial presence of HBHA

in mitochondrial compartments (Figure 8B and 8C, lower panels).

In contrast, a decrease in the percentage of cells displaying loss of

DYm was observed in A549 cells infected with the hbhA deficient

strain (Figure 8B). These data suggest that cell entry and targeting

to mitochondria of HBHA are essential for DYm loss and

apoptotic response.

Discussion

Programmed cell death is emerging as a major effect of bacterial

pathogenesis. Numerous studies have shown that M. tuberculosis

infection can increase the rate of macrophage apoptosis [31,32].

Pro-apoptotic activities of a growing number of mycobacterial

components have recently been described [14–17]. Nevertheless,

data regarding the identities of the mycobacterial molecules

involved and the underlying apoptotic mechanism are still scarce.

We showed here that intracellular HBHA is targeted to

mitochondria in murine macrophages, which leads to DYm

dissipation and eventual apoptosis. Although the possibility that

HBHA may interact with cytosolic molecules or other cell

compartments cannot be ruled out completely, these connections

clearly appear to be insignificant. To our knowledge, the present

study is the first description of a mycobacteria-encoded protein

stimulating apoptotic cell death via a mitochondria-dependent

pathway in macrophages.

M. tuberculosis HBHA is a protein that is both surface-associated

and secreted. HBHA is involved in the binding of M. tuberculosis to

type II pneumocytes, but not to professional phagocytes such as

macrophages, and is required for the dissemination of tubercle

bacilli from the lungs to other tissues [19]. In this respect, its

impact on macrophages has received relatively little attention.

However, HBHA was recently demonstrated to have the capacity

to bind to complement component C3, and recombinant HBHA

was found to mediate the attachment of latex beads to murine

macrophage-like cells in both C3-dependent and -independent

manners [33]. M. tuberculosis can bind to the complement receptors

Figure 4. HBHA-induced ROS production and ROS scavenger
effect on DNA fragmentation in macrophages. (A) RAW 264.7
cells were treated with PBS, Ag85 (5 mg/mL), or HBHA (5 mg/mL) in the
presence or absence of NAC (10 mM) for 24 h. ROS levels were
measured by flow cytometry and fluorescent microscopy after DCF
treatment. The number indicated for each histogram represents the
mean DCF fluorescence from one of three independent experiments
that gave similar results. Scale bar, 100 mm. (B) RAW 264.7 cells were
incubated with HBHA (10 mg/mL) alone or pretreated with NAC in
increasing concentration (0 to 20 mM). DNA fragmentation was
measured by Cell Death Detection ELISA as described in Figure 1. All
values are the mean 6 SD of three separate sets of experiments.
** P,0.01 compared to the control treated with HBHA alone.
doi:10.1371/journal.ppat.1002435.g004

HBHA Targets Mitochondria

PLoS Pathogens | www.plospathogens.org 6 December 2011 | Volume 7 | Issue 12 | e1002435



and is subsequently introduced into the phagocytic cell [34]. These

results raise the possibility of the interaction between HBHA and

macrophages during mycobacterial infection.

Mitochondria are central organelles in which a variety of key

events in apoptosis occur, including the release of cytochrome c,

changes in electron transport, DYm collapse, altered cellular

oxidation–reduction, and participation of pro- and anti-apoptotic

Bcl-2 family proteins [26]. Presently, mitochondria are regarded as

the targets for the manipulation of many bacterial and viral

pathogens determining the fate of infected host cells [35]. Moreover,

mitochondrial damage has been suggested to play a critical role in

the outcome of macrophage infection with M. tuberculosis [36]. These

findings offer the potential of mycobacterial components for the

regulation of programmed cell death at the mitochondrial level.

MMP is regulated by endogenous molecules, including Bcl-2

family members such as Bax [37]. The Bax present in the cytosol

under normal conditions fosters the loss of DYm and releases

cytochrome c and apoptosis-inducing factor (AIF) from mitochon-

dria after its introduction into the mitochondrial compartment

[26]. Indeed, mitochondrial translocation of Bax was observed in

macrophages treated with HBHA, and the interaction of HBHA

with mitochondria resulted in cytochrome c release in murine

macrophages. However, Bax translocation may not be essential for

mitochondrial dysfunction by HBHA, as evidenced by a

mitochondrial cell-free assay in which HBHA caused DYm loss

and cytochrome c release in vitro. Not surprisingly, we observed the

activation of caspases 3 and 9 and subsequent cleavage of PARP

after incubation of macrophages with HBHA. In contrast, we

found no evidence of cytosolic or nuclear translocation of AIF

induced by HBHA (data not shown), indicating that it is not

involved in HBHA-induced cell death. ROS generation with DYm

modulation and caspase-9 activation is known to be a major

component of the mitochondrial pathway of apoptosis [38]. ROS

are predominantly produced in the mitochondria and lead to the

modulation of DYm, which finally results in apoptosis [39]. Our

results indicate that HBHA induces macrophage apoptosis

through ROS generation and DYm collapse, suggesting that these

play an essential role in HBHA-induced apoptosis.

Figure 5. Subcellular localization of HBHA in macrophages. RAW 264.7 cells were exposed to HBHA (5 mg/mL), Ag85 (5 mg/mL), or an equal
volume of PBS for 12 h. (A) Representative confocal images of HBHA (green) and Mitotracker (red) in PBS- or HBHA-treated cells. DNA was visualized
with DAPI (blue). Yellow in merged images indicates co-localization. Scale bars, 5 mm. (B) Mitochondrial and cytosolic fractions were separated from
cell lysates and examined by Western blot using specific antibodies against HBHA, VDAC, and b-tubulin. (C) Isolated mitochondria from cells exposed
to HBHA were incubated in the presence or absence of proteinase K (200 mg/mL) for 30 min on ice. Samples were subjected to Western blot for
HBHA and VDAC as described above. COX IV was used as a loading control.
doi:10.1371/journal.ppat.1002435.g005

HBHA Targets Mitochondria
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Our results indicate that cellular entry is essential for

mitochondria-mediated apoptotic effect of HBHA, although the

mechanism by which HBHA internalized by host cells remains

unresolved. In A549 cells infected with M. tuberculosis but not cells

incubated with purified HBHA, the severe DYm collapse and the

presence of intracellular HBHA in mitochondrial compartment

were observed. There was a significant increase in the percentage

of cells with intact DYm, when A549 cells were infected with the

mutant strain lacking HBHA gene. We cannot rule out that these

results might come from decreased number of mycobacteria in

cells, because invasion of A549 cells, but not macrophages, by

HBHA-deficient strain compared with parental strain was reduced

[19]. Moreover, HBHA induced DYm loss and cytochrome c

release in purified mitochondria from not only RAW 264.7 cells

but also mouse liver (data not shown). Thus, no impact on viability

of epithelial cells treated with HBHA might be due to the absence

of intracellular this protein.

What host molecules physically and functionally interact with

intracellular HBHA and how do they then induce mitochondrial

dysfunction? In the present study, proteinase K digestion in vitro

showed that intracellularly inserted HBHA is attached to the

mitochondrial surface but is not imported into mitochondria,

indicating that HBHA probably interacts with integral outer

membrane molecules. Several mitochondria-targeted proteins

encoded by pathogens interact with voltage-dependent anion

channel (VDAC). The porin B from N. meningitidis is a VDAC-

targeted protein [40]. Hepatitis B virus X protein also co-localizes

to mitochondria where it interacts with a particular VDAC

isoform, HVDAC3 [41]. Anti-apoptotic members of the Bcl-2

family, such as Bcl-2 and Bcl-xL, are located in mitochondrial

membranes where they inhibit cytochrome c release from

mitochondria and thereby prevent downstream caspase activation.

Pro-apoptotic members of the Bcl-2 family, such as Bax, can

translocate into mitochondria and induce MMP [42]. These Bcl-2-

like proteins can be prominent targets of bacterial proteins [30,43].

Recombinant HBHA used in the present study was a His-tagged

fusion protein. To determine the interaction between HBHA and

VDAC or the Bcl-2 family proteins, HBHA and interacting

molecules were purified by Ni-NTA affinity chromatography,

followed by immunoblotting against them. However, HBHA

showed no direct interaction with VDAC or Bcl-2 family members

(data not shown). In addition, the possibility of HBHA nonspecific

binding to mitochondria cannot be excluded. The C-terminal

region of HBHA contains several cationic lysine-rich repeats

where methylation can occur [44]. This region may work like

natural antibiotic peptides which form cationic residues on one

end and interact with anionic molecules such as phospholipids to

disrupt negatively charged membranes and result in apoptosis

[45].

Virulent M. tuberculosis induces necrosis of the infected

macrophages by inhibiting the repair process of plasma mem-

brane; this leads to cellular lysis and reinforces the spreading to the

adjacent infection sites [46–48]. Recent reports suggested that

high intracellular burden of virulent M. tuberculosis induces host cell

death via a new caspase-independent apoptotic pathway involved

in the bacterial escape and extracellular replication [49,50].

Because gain of function mutation in HBHA enhanced the

apoptogenic potency of M. smegmatis (Figure 7C), it is plausible that

HBHA may be the factor that allows M. tuberculosis to escape from

the infected macrophages at high intracellular burden. However,

similar levels of apoptosis were observed between macrophages

infected with M. tuberculosis H37Rv wild type and mutant disrupted

in hbhA at an MOI of 25 but not low MOIs (Figure S2A). Further,

HBHA deficiency had no influence on the macrophage necrosis

caused by M. tuberculosis at both low and high MOIs (Figure S2B),

indicating no involvement of HBHA in bacterial escape from the

macrophages at an early stage of infection.

Studies on the comparison of virulent and attenuated

mycobacterial strains have demonstrated that the latter has much

stronger apoptotic activity in macrophages. This concept is

supported by the identification of genes that inhibit apoptosis of

host cells [51–53]. In this sense, our claims that HBHA targets to

Figure 6. Effect of HBHA on cytochrome c release and DYm

dissipation in mitochondria in vitro. (A) Mitochondria were purified
from RAW 264.7 cells and treated with HBHA (5 mg/mL), Ag85 (5 mg/
mL), or an equal volume of PBS for 1 h at 37uC. The pellet (P) and the
supernatant (S) of samples were then separated by SDS-PAGE and
analyzed by Western blotting using antibodies against cytochrome c
and COX IV. Results are from one of two independent experiments. (B)
Purified mitochondria were stained with DiOC6 for 20 min at 37uC and
analyzed by flow cytometry. Data are representative histogram plots
taken from three separate experiments.
doi:10.1371/journal.ppat.1002435.g006
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Figure 7. Disruption of hbhA decreases apoptosis and DYm dissipation in macrophages infected with M. tuberculosis. (A) RAW 264.7
cells were infected with M. tuberculosis 103 wild-type (WT) and mutant (DhbhA) at a multiplicity of infection (MOI) of 1 for 12 h. Cells were double
stained with Mitotracker and HBHA-specific antiserum followed by an Alexa 488-conjugated secondary antibody. Scale bar, 5 mm. (B) BMDMs were
infected with M. tuberculosis at an MOI of 1 for 12 h. Mitochondrial and cytosolic fractions were separated from cell lysates and examined by Western
blot using specific antibodies against HBHA, Ag85, VDAC, and b-tubulin. (C,D) BMDMs were infected with M. tuberculosis wild-type (WT) and mutant
(DhbhA) or M. smegmatis ectopically expressing HBHA (HBHA) or empty plasmid (Mock) at an MOI of 5 for 24 h. DNA fragmentation (C) and DYm (D)
were measured as described in Figure 1 and 2, respectively. Data are the mean 6 SD from six separate experiments. *** P,0.001 cells infected with
M. tuberculosis WT versus with mutant strain and cells infected with M. smegmatis expressing HBHA versus with Mock transformant.
doi:10.1371/journal.ppat.1002435.g007
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the mitochondria of host cells in the induction of apoptosis may be

confusing. However, there is cumulative evidence suggesting that

virulent M. tuberculosis induces host cell apoptosis. Furthermore, the

transcriptional profiling of cells infected with virulent M. tuberculosis

showed increases in the expression of both pro- and anti-apoptotic

genes [54,55]. Collectively, it is highly likely that M. tuberculosis

infection results in pro- and anti-apoptotic response of host cells.

The final outcome may depend on the nature and activation status

of the host cell. Although the pro-apoptotic response is inarguably

beneficial to the host, it may provide a favorable circumstance for

the induction of necrotic cell death and subsequent bacterial

escape to the adjacent cells, which may provide a clue for HBHA

function during M. tuberculosis infection [46,49,50].

Taken together, the present study suggests the possibility that

the M. tuberculosis HBHA may be an apoptosis-inducing factor of

mycobacteria, although the molecular mechanism by which

HBHA causes loss of DYm remains unknown. Future work should

focus on the exploration of host targets of HBHA and the

mechanism by which HBHA modulates DYm and cytochrome c

release in detail, as well as identification of the HBHA domain

essential for its activity in mitochondrial dysfunction.

Materials and Methods

Ethics statement
All animal procedures were approved by the Institutional

Animal Care and Use Committees of Chungnam National

University (Permit Number: 2010-3-9). All animal experiments

were performed in accordance with Korean Food and Drug

Administration (KFDA) guidelines.

Reagents and antibodies
Antibodies against caspase-3, caspase-9, and VDAC were

purchased from Cell Signaling Technology Inc (Beverly, MA).

Figure 8. HBHA does not affect the viability of A549 cells. (A) DNA fragmentation of A549 cells incubated with HBHA (5 or 25 mg/mL) or PBS
for 48 h was measured by Cell Death Detection ELISA. Staurosporine (STS, 1 mM, 4 h) was used as a positive control for apoptosis. Results are the
mean 6 SD of three independent experiments. (B) A549 cells were incubated with 25 mg/mL of HBHA or infected with M. tuberculosis wild-type (WT)
and mutant (DhbhA) at an MOI of 10 or 50 for 24 h. Cells were stained with DiOC6. As described in Figure 2, the loss of DYm was evaluated by flow
cytometry. All values are the mean 6 SD of three separate sets of experiments. ** P,0.01 between cells infected with WT and mutant strains. (C)
Representative confocal images of HBHA (green) and Mitotracker (red) in A549 cells treated with HBHA (10 mg/mL) (upper) or M. tuberculosis at an
MOI of 10 (lower). Scale bar, 10 mm.
doi:10.1371/journal.ppat.1002435.g008
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The anti-PARP and anti-b-actin, anti-Bax, and anti-Tom40

antibodies were obtained from Santa Cruz Biotechnology (Santa

Cruz, CA). Antibodies against cytochrome c (for immunofluores-

cence, clone 6H2.B4; for Western blot analysis, clone 7H8.2C12)

were acquired from BD Pharmingen (San Diego, CA), and the

anti-cytochrome oxidase subunit IV (COX IV) antibody was

purchased from Abcam (Cambridge, UK). Dichlorodihydrofluor-

escein diacetate (H2DCFDA), DAPI, and DiOC6 were obtained

from Molecular Probes (Eugene, OR) and zVAD-fmk and NAC

were purchased from Calbiochem (San Diego, CA).

Recombinant HBHA protein, Native Ag85 protein, anti-
HBHA, and mycobacterial strains

Mycobacterium smegmatis strains, recombinant HBHA protein

from M. smegmatis, and antiserum to HBHA were produced and

prepared as described previously [22]. Ag85 was purified from the

culture filtrate protein of M. tuberculosis H37Rv (ATCC 27294), as

previously described by Lim et al [24]. Parental and mutant (hbhA

deletion) Mycobacterium tuberculosis 103 were kindly provided by Dr.

Camille Locht (Institut Pasteur de Lille, Lille, France) [19]. HBHA

proteins were used in experiments after lipopolysaccharide (LPS)

inactivation with polymyxin B (Invivogen, San Diego, CA), a

known pharmacological antagonist of LPS.

Cell culture
RAW 264.7 murine macrophage cell line and A549 human

alveolar epithelial cell line were cultured in Dulbecco’s modified

Eagle’s medium (DMEM; Lonza, Walkersville, MD) supplement-

ed with 10% fetal bovine serum (FBS; Hyclone, Logan, UT), 1%

HEPES, and 1% L-glutamine at 37uC with 5% CO2. BMDMs

were obtained from 6–8-week-old female C57BL/6 mice. Briefly,

bone marrow cells from the femur and tibia were cultured in

DMEM that contained 2 mM L-glutamine, 100 U/mL penicillin,

100 mg/mL streptomycin, 10% FBS, and 25 ng/mL recombinant

mouse M-CSF (R&D system, Minneapolis, MN) at 37uC with 5%

CO2. After 4 days, non-adherent cells were removed and

differentiated macrophages were incubated in antibiotic-free

DMEM until use.

Bax siRNA transfection
One day before transfection, RAW 264.7 cells were plated and

grown at 37uC to 70% confluency in complete medium without

antibiotics in 6 well plates. One micrograms of a Bax siRNA

(Bioneer, Deajeon, Korea, sense: CCGGCGAAUUGGAGAU-

GAA; anti-sense: UUCAUCUCCAAUUGGCCGG) or a non-

complementary siRNA were transiently transfected into RAW

264.7 using Lipofectamine 2000 transfection reagent (Invitrogen,

Carlsbad, CA, USA), according to the manufacturer’s instructions.

DNA fragmentation assay (Apoptosis ELISA)
Cells were seeded in 96-well flat-bottom culture plates. After

incubation with recombinant HBHA proteins, cells were collected,

washed with PBS, and processed for quantification of cytoplasmic

histone-associated DNA fragments formed during apoptosis using

an enzyme-linked immunosorbent assay (Cell Death Detection

ELISA PLUS; Roche Diagnostic) according to the manufacturer’s

instructions.

Lactate dehydrogenase (LDH) assay
The release of LDH from RAW 264.7 cells incubated with

recombinant HBHA or from BMDMs infected with M. tuberculosis was

measured using a Cytotoxicity Detection Kit plus (Roche, Indianapolis,

IN) according to the manufacturer’s protocol. Relative cytotoxicity was

calculated using the following equation: Cytotoxicity (%) = % of LDH

released from the infected cells/maximum LDH released.

Assessment of DYm

DYm was assessed by measuring retention of the lipophilic

cationic dye DiOC6 in mitochondria. Cells were harvested and

incubated in a DiOC6 solution (10 nM in fresh medium) for

20 min at 37uC in the dark. The cells were then washed and

resuspended in PBS. Immediately after PBS washing, DYm was

measured by sorting the cells using FACSCanto (BD Biosciences).

Dead cells were excluded by forward and side-scatter gating. Data

were acquired by analyzing an average population of 10 000 cells

using CELLQuest software (BD Biosciences).

Immunofluorescence microscopy
Cells were seeded onto glass coverslips in 12-well plates. Nuclear

changes were analyzed by DAPI staining. After cells were

incubated with HBHA for the indicated times, they were fixed

with 4% paraformaldehyde and incubated with DAPI (10 mg/mL)

for 10 min in the dark. The nuclei of stained cells were visualized

using an Olympus BX50 fluorescence microscope (Olympus

Optical Co., Hamburg, Germany). To determine the localization

of cytochrome c or Bax, cells treated with HBHA were incubated

in pre-warmed medium containing 100 nM of Mitotracker Red

(Molecular Probes), fixed in 4% paraformaldehyde, permeabilized

with 0.1% Triton X-100, and then stained with anti-cytochrome c

or anti-Bax and Alexa-488-conjugated secondary antibody

(Jackson Immuno Research Laboratories) before confocal micros-

copy. The subcellular localization of HBHA was analyzed using a

confocal microscope (LSM510 META; Carl Zeiss). The cells

incubated with Mitotracker Red were fixed, permeabilized, and

stained with an anti-HBHA antibody followed by a fluorophore-

conjugated antibody (anti-mouse IgG Alexa-488). After DAPI

staining, cells were imaged with a confocal microscope.

Mitochondrial and cytosolic fractionation
Subcellular fractionation was performed as previously described

[56]. Briefly, cells were incubated on ice for 5 min in 100 mL of ice

cold CLAMI buffer (200 mM sucrose, 70 mM KCl, 200 mg/mL

digitonin in PBS) and centrifuged at 1,000 6 g for 5 min at 4uC.

The supernatants (cytosolic fractions) were stored at 280uC and

the pellets were resuspended in 50 mL of IP buffer (50 mM Tris-

Cl, pH 7.4, 150 mM NaCl, 2 mM EDTA, 2 mM EGTA, 0.2%

Triton X-100, 0.3% NP-40) containing protease inhibitor cocktail

(Roche Diagnostics Corporation, Indianapolis, IN) and incubated

on ice for 10 min. The samples were centrifuged at 10 000 6g for

5 min at 4uC and the supernatants (mitochondrial fractions) were

stored at 280uC until use in further experiments.

Immunoblot analysis
Cells were detached, centrifuged, and lysed in lysis buffer

(10 mM Tris, pH 7.4, 5 mM EDTA, 150 mM NaCl, 1% Triton

X-100, 1 mM PMSF, protease inhibitor cocktail). Protein

concentrations were determined with the Bradford assay and

30 mg of protein was separated with SDS-PAGE, followed by

electrotransfer to a nitrocellulose membrane (Hybond-ECL;

Amersham Pharmacia Biotech). The blots were probed with

primary antibodies at optimized concentrations followed by

horseradish peroxidase-conjugated secondary antibodies. The

enhanced chemiluminescence system (ECL; Amersham/GE

Healthcare) followed by exposure to chemiluminescence film was

used to visualize proteins.
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Measurement of ROS
Intracellular ROS were evaluated through staining cells with

H2DCFDA. Cells were incubated in 10 mM H2DCFDA for

30 min at 37uC, washed, and detached. Resuspended cells were

washed and immediately analyzed by flow cytometry using

FACSCanto. At least 10,000 cells per sample were analyzed using

CellQuest Pro acquisition and analysis software.

Mitochondrial cell-free assay
Mitochondria were isolated from 1 6 108 RAW 264.7 cells as

described previously [57]. Briefly, cells were harvested by

centrifugation at 600 6 g and resuspended in ice-cold IB buffer

(10 mM Tris-MOPS, 200 mM sucrose, 1 mM EGTA/Tris,

pH 7.4). All subsequent centrifugations were performed at 4uC.

The cells were then homogenized with 35 strokes in a glass potter

after incubation for 10 min on ice. Cell debris was removed by

centrifugation at 6006g for 10 min, and then the supernatant was

centrifuged for 10 min at 7 000 6 g to precipitate mitochondria.

The pellet was then resuspended in EB buffer (10 mM Tris-

MOPS, 125 mM KCl, 100 mM EGTA/Tris, 1 mM KH2PO4,

pH 7.4). An aliquot of the preparation was incubated with HBHA

for 1 h at 37uC and centrifuged for 10 min at 7 000 6 g. The

pellet containing mitochondria was resuspended in the same buffer

and stained with DiOC6. An average population of 50 000

mitochondria was analyzed by flow cytometry. Alternatively, the

proteins contained in the supernatant were concentrated with by

ultrafiltration using a 3-kDa cutoff Centricon device (Amicon,

Millipore, Bellerica, MA). Immunoblot analysis for cytochrome c

was performed as described above.

Statistical analysis
The data represent the mean 6 standard deviation (SD) from at

least three independent experiments. Statistical analyses were

performed using unpaired Student’s t tests with Bonferroni

adjustment. A P-value of ,0.05 was considered significant.

Supporting Information

Figure S1 Recombinant HBHA protein did not increase LDH

release in RAW 264.7 cells. RAW 264.7 cells were incubated with

the indicated concentrations of HBHA for 48 h. And then LDH

release was measured by Cytotoxicity Detection Kit. Positive

control was generated by treating cells with 1% Triton X-100

(TX-100) for 1 h prior to the onset of the assay.

(TIF)

Figure S2 DNA fragmentation and LDH release in BMDMs

infected with M. tuberculosis H37Rv wild type and mutant disrupted

in hbhA. BMDMs were infected with M. tuberculosis wild-type (WT)

or mutant (Mu) at indicated MOIs for 24 h. DNA fragmentation

(A) and LDH release (B) were measured as described in Figure 1

and Supplemental Figure S1, respectively. *** P,0.001 cells

infected with M. tuberculosis WT versus with mutant strain at an

MOI of 5. ** P,0.01 cells infected with M. tuberculosis WT versus

with mutant strain at an MOI of 10.

(TIF)
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