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Abstract: Life on earth has evolved under the influence of regularly recurring changes in the environ-
ment, such as the 24 h light/dark cycle. Consequently, organisms have developed endogenous clocks,
generating 24 h (circadian) rhythms that serve to anticipate these rhythmic changes. In addition to
these circadian rhythms, which persist in constant conditions and can be entrained to environmental
rhythms, light drives rhythmic behavior and brain function, especially in nocturnal laboratory rodents.
In recent decades, research has made great advances in the elucidation of the molecular circadian
clockwork and circadian light perception. This review summarizes the role of light and the circadian
clock in rhythmic brain function, with a focus on the complex interaction between the different
components of the mammalian circadian system. Furthermore, chronodisruption as a consequence of
light at night, genetic manipulation, and neurodegenerative diseases is briefly discussed.
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1. Introduction

Life on earth has evolved under the influence of rhythmic changes in the environment,
such as the 24 h light/dark cycle. Living organisms have developed internal circadian
clocks, which allow them to anticipate these rhythmic changes and adapt their behavior and
physiology accordingly. This is most obvious for plants in which the anticipation of the time
window for photosynthesis, the light phase, provides a selection advantage over plants that
simply react to the onset of the light phase. Moreover, for the early cold-blooded terrestrial
animals, anticipating the light phase and, thus, the time with higher ambient temperature
and better availability of visual cues has been a selection advantage. In contrast, for the
early (warm-blooded) mammals, which developed in the Mesozoic (about 250 million
years ago), anticipating the twilight and the dark phase, thus the time window for avoiding
the diurnal predatory dinosaurs was crucial. Presumably, the early mammals gradually
extended their behavior from the nocturnal towards the twilight phases of the day, resulting
in activation of both cone- and rod-based vision [1]. Consequently, the neocortex, a brain
region characteristic for mammals, which is responsible for higher-order brain functions,
such as sensory perception, cognition, as well as the planning, control, and execution
of voluntary movement, initially developed in nocturnal/crepuscular species. Only in
the Cenozoic, when many species, including the non-avian dinosaurs, became extinct,
mammals were released from this predatory pressure and diurnality developed among
mammals [2]. Primates are among the earliest mammals to exhibit strict diurnal activity,
approximately 52–33 million years ago [2]. Hence, mammals are by default nocturnal, and
diurnalty as in humans is a relatively new invention and more or less an exception among
the mammalian species. However, the visual system in primates is highly flexible and can
function under bright and dim light conditions, hence allows evolutionary switching of
lineages from one activity pattern to the other, according to the selective pressure [3]. About
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40% of all mammal species are rodents. Among them there are very few diurnal species,
such as Arvicanthis, Psammomys, and Ictidomys (formerly Spermophilus) [4]. Importantly,
most rodents, including Mus musculus and Rattus norwegicus, the most commonly used
mammals in the laboratory, are nocturnal. However, the aspect of different temporal
niches is often not sufficiently taken into consideration when translating basic research
in rodents into human applications. The aim of this broad review article is to highlight
the role of light on rhythms in physiology and behavior, especially in nocturnal rodents
from a neuroanatomical point of view, and to emphasize the important distinction between
light-driven/time-of-day-dependent and endogenously driven/circadian rhythms.

2. The Role of Light and the Circadian Clock for Rhythmic Brain Function
2.1. The Mammalian Circadian System

In mammals, the circadian clock is hierarchically organized in a circadian system. The
central circadian rhythm generator is located in the suprachiasmatic nucleus (SCN) of the
hypothalamus. Rhythmic output of the SCN governs subsidiary circadian oscillators in
the brain and the periphery. The SCN and the subsidiary oscillators consist of more or less
strongly coupled cellular oscillators, each comprising a molecular clockwork composed
of transcriptional/translational feedback loops of clock genes (reviewed in [5]). The SCN
controls subsidiary circadian oscillators in the brain primarily via neuronal connections
while peripheral oscillators are regulated via the rhythmic function of the autonomous
nervous system [6] and the endocrine system [7]. The hormone of darkness, melatonin,
and the stress hormone glucocorticoid [8] (see below) are important rhythmic signals for
subsidiary circadian oscillators in the brain and in the periphery. The light input into the
circadian system is provided by a subset of intrinsically photosensitive retinal ganglion
cells (ipRGCs). There is increasing evidence that rhythmic light information is not only
provided to the SCN but also directly or indirectly to many other brain regions, thus driving
time-of day-dependent rhythmic brain function (Figure 1).
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Figure 1. The mammalian circadian system is highly complex and hierarchically organized. Almost
all brain regions and organs comprise a molecular clockwork (clocks) which controls rhythmic cell
function. Rhythmic light information is provided directly and indirectly to many brain regions (green
arrows) and drives time-of-day-dependent rhythms in brain and periphery. The central circadian
rhythm generator which is located in the suprachiasmatic nucleus (SCN) of the hypothalamus is
entrained by light. SCN lesion results in loss of circadian rhythms. Rhythmic output of the SCN
governs subsidiary circadian oscillators in the brain (red arrows). Different nuclei in the hypothalamus
(hyp) control rhythmic physiology and behavior via neuronal connections including the autonomous
nervous system (blue solid arrows) and endocrine signals (blue dashed arrows) via the pituitary
(pit). Rhythmic endocrine signal from the pineal gland and the periphery (blue dashed lines) provide
additional rhythmic signals for the brain. The liver is depicted exemplarily for the gastrointestinal
system. Monoamines and catecholamines from the brain stem provide important rhythmic drive for
alertness and motivation at the level of the forebrain. Based on [9–11].
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2.2. Light Input into the Circadian System—Entrainment and Masking

Two main mechanisms help to specialize in a nocturnal or a diurnal niche [12]. In
the mechanism called entrainment, light serves as a signal for the SCN, to match the
period and the phase to the environmental oscillator, the light/dark regime. Adjusting the
period is necessary, as the endogenous rhythm, persisting in constant darkness, is close
to but not exact 24 h. The SCN in turn helps to anticipate the rhythmic changes in the
environment and controls activity during the dark or the light phase. This is important, as
many nocturnal mammals live in dark burrows and experience the environmental light
conditions only when leaving the safe surrounding of the nest. Entrainment is adaptive, as
the lengths of the light and dark phase change according to the seasons, depending on the
latitude. In the mechanism called masking, light directly affects behavior obscuring the
control from the circadian clock [13]. Masking is especially prominent in nocturnal species,
and, here, light can have two opposite effects on activity depending on irradiance levels. In
dim light, activity is increased compared to complete darkness. This enhancing effect of
dim light, which is presumably due to increased confidence based on visual input [14], is
called positive masking [12]. However, in complete darkness, activity is higher, despite
the absence of visual cues, than under standard (bright) light conditions. This suppressive
effect of bright light on activity is called negative masking [12]. Similarly, nocturnal animals
prefer dark or dimly illuminated areas over brightly illuminated areas. This light aversion is
strong enough to counteract the natural tendency to explore a novel environment, as shown
by the light–dark test [15], a paradigm extensively used for tests on classic anxiolytics
(benzodiazepines) [15], as well as anxiolytic-like compounds, such as serotonergic drugs or
drugs acting on neuropeptide receptors (reviewed in [16]). In both diurnal and nocturnal
mammals, light at night also elicits acute effects on physiological parameters, such as core
body temperature and heart rate, as well as hormone secretion (see below). Importantly,
the detection of visual information in the mammalian retina is conveyed by two parallel
pathways, the rod–cone system for image-forming-vision and the melanopsin-based system
of the ipRGCs for non-image-forming irradiance detection. Although ipRGCs are essential
for the adaptive physiological responses to light, such as the pupillary light reflex [17],
as well as circadian entrainment [18,19], and contribute to scotopic vision [20], both the
rod–cone system and the ipRGCs seem to contribute to masking and light aversion [21].
Importantly, many commonly used laboratory mouse strains carry mutations that affect
visual and/or non-visual physiology (reviewed in [22]).

Under natural conditions, entrainment and masking work in a complementary fash-
ion [23]. However, in the laboratory, the two mechanisms can be segregated. As mentioned
above, entrainment is highly adaptive to different photoperiods. In most animal facilities,
the standard photoperiod is 12 h light and 12 h dark (LD 12:12), although some animal
facilities have opted for different light conditions (e.g., LD 16:8), as the photoperiod has
a high impact on reproduction in some species. The circadian clock also rapidly entrains
to a phase shift one experiences when travelling across time zones or if the LD cycle is
inverted. The re-entrainment capacity after jet lag is dependent on intrinsic factors, such as
the robustness of the circadian clock or the signaling of hormones, such as melatonin [24].
Furthermore, the speed of re-entrainment to a phase shift depends on the direction; entrain-
ment is usually faster in response to a phase delay than a phase advance [25]. Interestingly,
this is the same in the diurnal human [26]. However, in nocturnal animals, brief light pulses
during the early and late night are strong resetting cues for phase delays and advances
of the circadian clock, respectively [27]. At the cellular level, photic resetting of the SCN
molecular clockwork involves activation of the p44/42 mitogen-activated protein kinase
(MAPK) signaling cascade, phosphorylation/activation of the transcription factor cAMP-
response-element-binding protein (CREB) [28], the induction of the marker of neuronal
activity c-Fos [29], inhibitors of DNA binding proteins [30], and expression of the clock
gene Per1 [31]. In order to study entrainment in the absence of the interfering masking
effects of light, nocturnal animals can be housed under a so-called skeleton photoperiod,
consisting of two discrete pulses of light during the early (dawn) and the late (dusk) light
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phase [32]. For entrainment to this lighting schedule, the intergeniculate leaflet is essential,
which receives direct photic information from the ipRGCs [33].

2.3. The Brain Molecular Clockwork

Various brain functions, such as sleep, wake, foraging, food intake, alertness, emotion,
motivation, and cognitive performance, controlled by different brain regions, show circa-
dian rhythms. Moreover, any information is processed in a temporal context. Consistently,
many brain regions harbour circadian oscillators, which are governed by the SCN [34]. At
the cellular level, these oscillators are composed of single cells each harbouring a molecular
clockwork composed of transcriptional/translational feedback loops of clock genes. The
clock genes encode for activators of transcription, such as CLOCK and its forebrain-specific
analog NPAS2 [35], BMAL1, and ROR, as well as the repressors of transcription PER1 and
PER2, CRY1, CRY2, and REV-ERBα [5].

The molecular clockwork drives the rhythmic expression of clock controlled gene (see
below) and posttranscriptional processes (reviewed in [36]) and modulates the chromatin
landscape [37], thus regulating rhythmic cell function at multiple levels. The molecular
clockwork in the SCN and subordinate extra-SCN brain circadian oscillators drives various
rhythms in neuron and glia function including ATP concentration [38], neuronal electrical
activity (reviewed in [39]), metabolism [40], redox homeostasis (reviewed in [41]), tyrosine
hydroxylase expression in dopaminergic neurons [42], dopamine receptor signalling in the
hippocampus [43], and extracellular glutamate homeostasis [44]. In addition, some rhythms
in the SCN are time-of day-dependent and do not persist in constant darkness, such as
rhythmic expression of connexion 30 [45], which contribute to astrocyte gap junctions
and hemichannels (reviewed in [46]), as well as the stability of circadian rhythms and
re-entrainment under challenging conditions [45]. Circadian clock gene expression in
the SCN and the hippocampus persists with high robustness in vitro, indicating a strong
coupling of single cell oscillators, while it damps rapidly in other brain regions, indicating
a weak coupling [47–49]. Mice with a targeted deletion of the essential clock gene Bmal1 are
arrhythmic under constant environmental conditions [50], so a loss of function in a single
gene strongly affects circadian rhythmicity. In mouse models for compromised molecular
clockwork function, such as Bmal1-deficient mice, Per1/2 double mutants, and Cry1/Cry2
double mutants, circadian rhythms are abolished, while various parameters of physiology
and behaviour are rhythmic under the LD 12:12 conditions due to masking [50–52]. This
emphasizes the strong impact of the environmental light/dark conditions on rhythmic
brain function. In this context, it is important to note that Cry1/Cry2 double mutants and
Bmal1-deficient mice show deficits in retinal visual physiology [53] and, consequently,
impaired visual input into the circadian system [54,55]. Nevertheless, even under LD 12:12
conditions, many brain functions, such as spatial memory consolidation and contextual
fear [56,57], adult neurogenesis [58], and sleep architecture [59] are affected in Bmal1-
deficient mice, indicating the importance of this clock gene/transcription factor for general
brain function.

2.4. Rhythmic Gene and Protein Expression in the Brain

About 43% of all coding genes and about 1000 noncoding RNAs show circadian
rhythms in transcription somewhere in the body, largely in an organ/tissue-specific man-
ner [60–62]. The rhythmic transcriptome in peripheral organs is dependent on the SCN [62]
but continues to oscillate in vitro for a few cycles [63]. Only 22% of circadian rhythmic
mRNA is driven by de novo transcription, indicating that the molecular clock drives
transcription and posttranslational modification [37]. Moreover, the epigenetic landscape
is modulated in a circadian manner [37]. A comparable number of transcripts show a
circadian oscillation in the SCN and the liver, while only about 10% of them show an
overlap [61]. The core clock genes Arntl (encoding for Bmal1), Dbp, Nr1d1 and Nr1d2
(encoding for Rev-Erb alpha and beta, respectively), Per1, Per2, and Per3, as well as the
clock controlled genes Usp2, Tsc22d3, and Tspan4 oscillate in many organs and parts of the
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brain [60]. Importantly, many commonly used drugs target the products of the circadian
genes, so the timed application of these drugs, chronotherapy, might maximize efficacy,
and minimize side effects [60]. In accordance with the important role of the brain stem
in the regulation of autonomous and vital functions, more than 30% of the drug-target
circadian genes listed in the study by Zhang et al. (2014) are rhythmically expressed in
this part of the brain. In the retina, about 277 genes show a circadian rhythm, implicated
in a variety of functions, including synaptic transmission, photoreceptor signalling, in-
tracellular communication, cytoskeleton reorganization, and chromatin remodelling [64].
Intriguingly, in LD 12:12, about 10 times as many genes oscillate, indicating that the LD
cycle drives the rhythmic expression of a large number of genes in the retina [64]. In the
forebrain synapses, a comparable amount of genes (2085, thus 67% of synaptic RNAs) show
a time-of-day-dependent rhythm, and a high percentage of these genes remain rhythmic
in constant darkness (circadian) [65]. Interestingly, the rhythmic genes in the forebrain
synapses can be segregated into two temporal domains, predusk and predawn, relating to
distinct functions; predusk mRNAs relate to synapse organization, synaptic transmission,
cognition, and behaviour, while predawn mRNAs relate to metabolism, translation, and cell
proliferation or development [65]. The oscillation of the synaptic proteome resembles those
of the transcriptome [65] and a high percentage show an oscillation in the phosphorylation
state [66].

Sleep Deprivation, Epilepsy, and Glucocorticoids Affect Gene and Protein Expression in
the Brain

Sleep deprivation induced by gentle handling, cage tapping, and the introduction of
novel objects during the light/inactive phase affects clock gene expression in the cerebral
cortex [67] and leads to a reduction in transcript oscillation in the entire brain to about
20% [68]. This indicates that the sleep disruption itself, and/or the manipulation, as well
as the associated additional light exposure, which mice usually do not experience while
sleeping, strongly affects rhythmic transcription. On the other hand, it shows that only 20%
of the rhythmic transcriptome in the brain is resilient to sleep deprivation, manipulation,
and light exposure during the light/inactive phase. In forebrain synapses, sleep deprivation
has a higher impact on the proteome and on rhythmic protein phosphorylation than on
the transcriptome [65,66]. In this context, it is important to note that traditional sleep
deprivation protocols using sensory-motor stimulation induces stress associated with a rise
in circulating corticosterone [69], an important temporal signal within the circadian system
(see below). Corticosterone strongly contributes to the sleep-deprivation-induced forebrain
transcriptome [70]. Among the genes assigned to the corticosterone surge are clock genes,
as well as genes implicated in sleep homeostasis, cell metabolism, and protein synthesis,
while the transcripts that respond to sleep loss independent of corticosterone relate to
neuroprotection [70]. The time-of-day-dependent oscillation in hippocampal transcriptome
and proteome is affected by temporal lobe epilepsy [71]. Although epilepsy could be
considered a chronic stress model [72], little is known on the contribution of glucocorticoids
in these alterations. More research avoiding stress as a confounder is needed to explore the
effect of sleep and neurological disorders on rhythmic brain function.

2.5. Circadian and Light-Driven Brain Function
2.5.1. Rhythmic Hormone Release

The circadian rhythm of melatonin synthesis in the epithalamic pineal gland is one of
the best characterized functions of the mammalian circadian system. The control of rhyth-
mic melatonin synthesis comprises the rhythmic activation of the sympathetic nervous
system by GABAergic neurons in the SCN projecting to pre-autonomous nerve cells in
the paraventricular nucleus (PVN), and these neurons, in turn, project to preganglionic
sympathetic neurons in the intermediolateral column of the spinal cord. The pineal gland is
activated by postganglionic fibres from the superior cervical ganglia. Remarkably, in both
nocturnal and diurnal species, the release of norepinephrine during the dark phase drives
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rhythmic melatonin synthesis and release. As rhythmic melatonin synthesis is governed by
the circadian clock, it persists in constant darkness and can entrain to the environmental
light/dark conditions. The duration of the melatonin signal increases with the length of
the night, so melatonin provides a systemic signal not only for the phase of the night but
also for anticipation and adaptation to seasonal changes in the photoperiod (reviewed
in [10]), which is particularly relevant for seasonal breeders. Light, especially at a lower
wavelength (<555 nm), during the dark phase acutely inhibits melatonin synthesis. The
melatonin receptors MT1 and MT2, which belong to the superfamily of G-protein-coupled
receptors, are widely distributed within the brain, including the SCN, and the periphery.
Melatonin provides an important systemic time cue not only during adulthood but also
during prenatal and early postnatal development when the components of the circadian
system are not yet fully matured. During aging, the decrease in melatonin production and
sensitivity is associated with an increasing deterioration of circadian rhythms. Interesting,
many mouse strains, including those of the widely used C57BL/6 mice, do not produce
melatonin as a result of spontaneous mutations [73], indicating that melatonin signalling is
dispensable for living under laboratory conditions. In humans, melatonin has effects on
sleep propensity, temperature regulation, and alertness and may modulate pain sensation,
immune function, and metabolic function, such as insulin production (reviewed in [10]).
Melatonin and melatonin receptor agonists are used for the treatment of jet lag symptoms,
the entrainment of circadian rhythms in blind people, and major depression and insomnia,
diseases considered to be associated with circadian dysfunction, as mentioned above.

The circadian rhythm in glucocorticoid secretion from the adrenal provides an impor-
tant systemic signal within the mammalian circadian system. Both the secretion in response
to stress and the rhythmic basal secretion are regulated by the hypothalamo-pituitary-
adrenal (HPA) axis. This comprises the release of corticotropine releasing hormone (CRH)
from parvocellular neuroendocrine neurons in the PVN, which controls the secretion of
adrenocorticotropic hormone (ACTH) from the anterior lobe of the pituitary into the sys-
temic circulation and ACTH activates the release of glucocorticoids. The circadian rhythm
of glucocorticoid is controlled by a vasopressinergic SCN projection to the PVN. In both
diurnal and nocturnal animals, glucocorticoid levels start to rise in the second part of the
inactive phase and reach peak values around wake time. Importantly, in nocturnal animals,
brief light pulses during the subjective night leads to an increase in glucocorticoid levels
comparable to those induced by a strong stressor [74]. Glucocorticoid receptors are widely
distributed in the brain (except the SCN) and the body. Glucocorticoids are essential for life
and regulate a variety of important cardiovascular, respiratory, metabolic, immunologic,
and homeostatic functions. Interestingly, glucocorticoid signalling in utero is presumably a
key mediator of prenatal stress and affects neurodevelopment and foetal epigenetic land-
scape [75]. Glucocorticoids have been shown to control various subsidiary clocks in the
periphery, such as the liver, kidney, and heart [8] (reviewed in [76]). In addition, glucocorti-
coid signalling affects rhythmic gene expression in the brain regions implicated in emotions
and cognition, such as the raphe nuclei, the amygdala, and the hippocampus [77–80].

2.5.2. Rhythms in Food Intake

Although the regulation of food intake/foraging and energy metabolism strongly
rely on homeostatic feedback signals, the circadian clock provides temporal organization
(reviewed in [81]). It facilitates the temporal occurrence of related functions, such as food
intake and glycogenesis, separates conflicting functions and behaviours, such as eating
and sleep, and allows for the anticipation of rhythmic changes in the environment, such as
the light/dark cycle of limited food availability (reviewed in [81]). An important homeo-
static signal is the hormone ghrelin, released from gastric cells under fasting conditions,
mediating the release of the neuropeptides neuropeptide Y and Agouti-related peptide
from the arcuate nucleus of the hypothalamus. These neuropeptides, in turn, activate the
release of orexin from the lateral hypothalamus (LH) and melanin-concentrating hormone.
Orexin seems to play a major role in linking feeding behaviour and activity [82] (for the
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role of orexin in activity, see below). Anorexigenic humoral signals involve insulin and
leptin, released from the pancreas and adipose tissue, respectively. Both signals converge
on pro-opiomelanocortin expressing Acr neurons, and the α-melanocyte-stimulating hor-
mone mediates hypophagic effects and increases in energy expenditure via the PVN, the
dorsomedial hypothalamus (DMH), and the ventromedial hypothalamus (VMH) (reviewed
in [81]). The homeostatic regulation of food intake and energy expenditure involves addi-
tional modulators, such as endocannabinoids and structures in the brain stem (reviewed
in [81]). The SCN plays a major role for circadian rhythms in food intake [83]. In noctur-
nal animals, restricting the availability of food to the light phase affects many circadian
rhythms: the animals show an increase in body temperature and glucocorticoid levels
and become active a few hours in advance of the time of limited food availability. This
rhythmic food anticipatory activity persists even under food deprivation for a couple of
days, indicating an intrinsic time-keeping mechanism (reviewed in [84]). Curiously, this
time-keeping mechanism of food anticipatory activity persists even if the SCN is disabled.
However, the anatomical location of the so-called food entrainable oscillator is still un-
known, and it might be a neuronal network rather than a single location (reviewed in [85]).
Importantly, mistimed food intake has a variety of negative metabolic consequences, such
as predisposition to obesity [86,87].

2.5.3. The Sleep Wake Cycle

The sleep/wake cycle is the most prominent behavioural circadian rhythm. Sleep
is also critically regulated by a homeostatic drive that increases with extended waking
and dissipates by sleep (reviewed in [88]) and a complex process involving many brain
regions and a network of wake- and sleep-promoting neurons (reviewed in [89], see below).
During sleep, changes in cortical electrical activity, detectable by electroencephalography
(EEG), occur and are classified as rapid eye movement (REM) sleep and non-REM sleep.
The EEG during REM sleep is similar to the awake state, but with a loss of muscle tone,
REMs, and active dreams. Non-REM sleep is divided into four stages representing a
continuum of relative depth characterized by distinct EEG patterns and physiology. Stage
1 plays a role in the transition from wake to sleep, and stage 2 is characterized by mixed-
frequency cortical activity and the presence of sleep spindles, which might be important for
memory consolidation [90]. Stages 3 and 4 are collectively referred to as slow-wave sleep
(SWS) because of the amplitude slow-wave cortical activity (reviewed in [91]). SWS plays
an important role in the consolidation of hippocampus-dependent spatial memory [92].
During a sleep episode, REM sleep and non-REM sleep alternate in cycles (reviewed
in [91]). Sleep has multiple functions besides memory consolidation and regeneration,
including metabolite clearance (reviewed in [93]). In the current model, the major purpose
of sleep is to restore structural and functional synapse homeostasis [94,95]. Moreover, the
clearance of interstitial solutes in the brain, provided by the glial-lymphatic (=glymphatic)
system, correlates with the prevalence of slow-wave sleep [96,97]. Importantly, glymphatic
clearance might provide a link in the causal relationship between sleep disturbances
and symptomatic progression in neurodegenerative diseases (reviewed in [98]). Sleep
deprivation and insomnia have many negative consequences, including increased anxiety,
decreased attention, and impaired executive function and cognitive performance [99,100].
Light has different effects on sleep and alertness in diurnal and nocturnal species (reviewed
in [101]). In diurnal species, light increases arousal and alertness. In nocturnal species,
the response also depends on the wavelength: blue light (470 nm) results in delayed sleep
onset, light aversion, and elevated plasma corticosterone (see above), while green light
(530 nm) of the same intensity leads to reduced arousal and sleep induction [102].

The brain circuitry that governs sleep and wakefulness/arousal include cell groups in
the brain stem, hypothalamus, thalamus, and basal forebrain (reviewed in [103]) (Figure 2).
The ascending reticular activating system (ARAS) in the brain stem is responsible for
the control of wakefulness and sleep–wake transition. Cholinergic neurons of the ARAS
activate the unspecific thalamus, which controls general cortical activity, and the specific
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thalamus, which controls the transmission of sensory information to the cortex. In addition,
cortical activity is directly and indirectly modulated by a variety of brain stem nuclei,
which employ different neurotransmitters, including the noradrenergic locus coeruleus, the
dopaminergic ventral tegmental area, and the serotoninergic raphe nuclei. By interacting
with other brain stem nuclei, the ARAS also modulates muscle tone, as well as autonomic
functions, such as breathing, heart rate, and blood pressure during wake and sleep. Sound
REM sleep is associated with a silencing of the locus coeruleus promoting synaptic plas-
ticity (reviewed in [100]). Sleep- and wake-inducing hypothalamic nuclei control ARAS
activity. During sleep, the ARAS is inhibited by a system of GABAergic neurons in which
the ventrolateral preoptic nucleus (VLPO) of the hypothalamic preoptic region plays a key
role [104]. Consistently, the largest class of sleep-promoting drugs/anaesthetics, includ-
ing barbiturates, benzodiazepines, and chloral hydrate, enhances the activity of GABA
receptors (reviewed in [103]). Orexin neurons in the lateral hypothalamus and histamine
neurons in the tuberomamillary nucleus are mutually connected with the VLPO and the
ARAS and synergistically regulate different aspects of the waking stage (reviewed in [105]).
Orexin neurons project widely into other nuclei in the hypothalamus and into the forebrain,
the thalamus, and the brain stem [106,107], indicating the complex role of the neuropeptide
in autonomic, neuroendocrine, and cognitive function and emotion. Orexin might also
convey an efferent signal to the food-entrainable oscillator [108]. An important driver
of homeostatic sleep regulation is the neuromodulator adenosine, accumulating during
wakefulness in the extracellular space as a by-product of neuronal metabolic activity [109].
Consistently, caffeine, the world‘s most widely consumed psychoactive drug, induces
wakefulness, the release of norepinephrine, dopamine, and serotonin in the brain, and an
increase in serum catecholamine levels by blocking adenosine receptors (reviewed in [110]).
Glutamatergic neurons and, to a lesser extent, cholinergic neurons in the basal forebrain
contribute to the adenosine-mediated control of sleep homeostasis [111]. For the control
of the circadian rhythm in sleep/wakefulness projections of the SCN to the dorsomedial
hypothalamus via the subparaventricular zone (SPZ) of the hypothalamus seem to play
a major role (reviewed in [103]). Interestingly, the SPZ seems to have an amplifying and
integrative role in the regulation of circadian rhythms in sleep, activity, and core body
temperature, but with distinct subpopulations controlling the rhythms in body temperature
or sleep/wake and locomotor activity [112]. Neurons in the dorsomedial hypothalamus
project to the VLPO and the lateral hypothalamus using inhibitory and excitatory neuro-
transmitters orchestrating rhythmic changes in sleep–wake and wake–sleep transitions
(reviewed in [103]). Importantly, the SPZ, the LH, and the VLPO receive direct innervation
from the ipRGCs, so activation of the VLPO might account for light-induced sleep in
nocturnal animals (reviewed in [113]).

Sleep architecture is altered in mice with a compromised molecular clockwork even
under LD 12:12 conditions. In Bmal1-deficient mice, the rhythms in total sleep time, REM
and non-REM sleep, and core body temperature are blunted [59]. During sleep depriva-
tion, Bmal1-defiecient mice show a reduced propensity for sustained wakefulness/higher
sleep pressure and a reduced percentage of REM sleep during recovery [59]. Similarly, in
Cry1/Cry2 double mutants, the rhythms in REM and non-REM sleep are blunted and show
high non-REM sleep pressure [67]. In Per2 and Per1/2 double mutants, the acrophase of
rhythmic core body temperature is advanced, while the amplitude during the dark/active
phase is reduced, and these mutants are more awake and have less REM sleep during the
mid-third of the light phase [114]. Collectively, these data indicate an important role for
clock genes in sleep pressure and sleep phase timing. Consistently, it has been suggested
that insomnia is associated with polymorphisms in clock genes and clock-associated genes,
such as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a rhythmi-
cally expressed transcriptional coactivator that regulates energy metabolism (reviewed
in [100]).
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Figure 2. Simplified summary of the effects of light and the suprachiasmatic nucleus (SCN) on the
brain circuitry that governs sleep and wakefulness. The cholinergic ascending reticular activating
system (ARAS) is a key element in the control of wakefulness and sleep–wake transition. It activates
the thalamus, which controls general cortical activity and transmission of sensory information to
the cerebral cortex. By interacting with other brain stem reticular nuclei, the ARAS also modulates
muscle tone as well as autonomic functions during wake and sleep. In addition, cortical activity is
indirectly (via the ARAS) and directly (not shown) modulated by a variety of brain stem nuclei, which
employ different neurotransmitters, including the noradrenergic locus coeruleus, the dopaminergic
ventral tegmental area, and the serotoninergic raphe nuclei. Sleep- and wake-inducing hypothalamic
nuclei control ARAS activity. During sleep and wake, the ARAS is inhibited and activated by a
system of GABAergic neurons in the ventrolateral preoptic nucleus (VLPO) and of histaminergic
neurons in the tuberomamillary nucleus (TMN), respectively. Orexinergic neurons in the lateral
hypothalamus (LH) contribute to arousal by projections into the TMN, the forebrain, the thalamus,
and the brain stem. The circadian rhythm in sleep/wakefulness is controlled by the suprachiasmatic
nucleus (SCN) which projects to the dorsomedial hypothalamus (DMH) via the subparaventricular
zone (SPZ). DMH neurons project to the VLPO and the lateral hypothalamus using inhibitory
and excitatory neurotransmitters orchestrating rhythmic changes in sleep–wake and wake–sleep
transitions. Importantly, the SCN, the SPZ, the LH, and the VLPO receive direct innervation from
the retina. Diencephalic, brain stem, and telencephalic brain regions are assembled in red, grey and
green boxes, respectively. ACh, acetylcholine. Based on [103–105,113].

2.5.4. Cognitive Performance and Emotion-Related Behaviour

Cognitive performance, as well as brain functions affecting cognitive performance,
such as mood/emotion, attention/arousal, sleep, core body temperature, and executive
function, show time-of-day-dependence as well as circadian rhythms (reviewed in [101]).
In humans, just after the nadir in body temperature shortly before wake time, sleepiness is
highest, and vigilance and cognitive performance are lowest (reviewed in [115]), indicating
a strong interconnection between these parameters. Studies using ‘forced desynchrony
protocols’ in which subjects sleep in non-24 h schedules show circadian rhythms in cog-
nitive performance, even when time spent awake has been controlled (reviewed in [116]),
so sleep/wake and cognitive function are interconnected and independently regulated.
However, a proper alignment between sleep/wake rhythms and internal circadian time is
crucial for optimal cognitive performance [117].
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Cognitive performance is a function of the neocortex and depends on sensory infor-
mation processed by the specific thalamus. It is strongly regulated by paleocortical and
archicortical input and by multiple projections from subcortical forebrain structures, the
unspecific thalamus, and the brain stem, which convey emotional states, motivation, and
alertness. Of note, the amygdala is a key structure in the forebrain for processing sensory
information in the context of memory, decision making, and emotional responses, such as
fear, anxiety, and aggression. It receives sensory information and input from other subcorti-
cal forebrain structures and the brain stem and sends projections to the entorhinal cortex
(EC), modulating learning and memory (see below), to the hypothalamus, controlling acute,
and chronic responses to stress, to the thalamus, controlling attention and alertness, and to
the nucleus accumbens, controlling reward-related behaviour.

Long-term memory is a three step process that consists of the acquisition of new
information, consolidation of the acquired information, and the retrieval of stored infor-
mation [118]. Importantly, in mice, long-term memory formation, especially training, is
time-of-day-dependent with a peak during the early night [119]. Therefore, the time of day
has a strong effect on the readout of tests on cognitive behaviour. The rhythm persists in
constant darkness, indicating circadian-regulated memory consolidation [119]. In addition,
light has a strong inhibitory effect on various cognitive functions and behavioural dimen-
sions in mice [120,121]. Hence, for studies on cognitive function in nocturnal rodents, one
should consider performing tests on behaviour and cognition in the dark phase (under LD
12:12) or in subjective night (under DD) and, thus, in the activity phase of the animals and
without the disturbing influence of light.

The archicortical hippocampus is the major brain region for episodic memory forma-
tion and for the integration of temporal and spatial information enabling navigation. It
integrates sensory information, as well as information about the emotional and motiva-
tional state. Cholinergic, serotonergic, noradrenergic, and dopaminergic input for the brain
stem modulates hippocampal function. The hippocampus includes the dentate gyrus (DG)
and the cornu ammonis (CA), which is divided into four subfields (CA1–4). The dorsal
hippocampus (DH) and the ventral hippocampus (VH) are functionally and anatomically
distinct regions. The DH has a high density of so-called place cells, the cellular correlate
for encoding spatial information (reviewed in [122]), and serves for spatial memory and
conceptual learning, while the VH is strongly connected to the amygdala and implicated
in stress responses, emotional behaviour, and contextual fear learning (reviewed in [123]).
Processed sensory information reaches the CA1 pyramidal neurons via direct and indirect
projections from the EC. The indirect projection, called the trisynaptic circuit, includes the
projection from EC to DG granule cells and from there to CA3 pyramidal cells, sending their
axons, called Schaffer collaterals, to the CA1. The hippocampus shows circadian rhythms
in clock gene expression [124] that are almost 180 degrees out of phase with the expression
rhythms measured from the SCN [48,80]. Mice with deletions/mutations of clock genes
show impaired hippocampus-dependent memory formation [124] and a reduced ability to
link spatial information with the time of day [125]. Moreover, hippocampus-dependent
memory training leads to an upregulation of Per1, presumably via modulating the occu-
pancy of the Per1 promoter by the histone deacetylase HDAC3, which is also implicated in
the age-related impairment of functional synaptic plasticity [126].

The cellular substrate for hippocampal learning and memory is neuroplasticity. Struc-
tural hippocampal plasticity is provided by changes in spine formation and by adult
neurogenesis in the subgranular zone (SGZ) of the DG [127–129] which is strongly influ-
enced by the circadian system [130]. We have shown that adult neurogenesis is affected in
BMAL1-deficient mice [59,131,132]. Moreover, the fine astrocytic processes ensheathing
the hippocampal mossy fibre synapse and the astrocyte actin cytoskeleton are affected in
BMAL1-deficient mice [133], indicating that the molecular clockwork modulates astrocyte-
neuron interaction at the structural level of the tripartite synapse. Consistently, both
neurons and astrocytes show time-of-day-dependent structural and functional changes in
CA1, while pyramidal neurons change the surface expression of NMDA receptors, and
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astrocytes change the proximity to synapses [80]. Interestingly, the activation of puringergic
receptors by extracellular ATP plays an important role in neuron–glia interaction and
modulates synaptic strength (reviewed in [134]). Various purinergic receptors show a time-
of-day-dependent oscillation in the hippocampus [131], some in phase with the SCN [132],
suggesting a general regulatory mechanism across brain regions.

Functional hippocampal neuronal plasticity is provided by long-term potentiation
(LTP), defined as a persistent strengthening of glutamatergic synapses based on recent
patterns of activity [135]. Mice with mutations of the clock gene Per2 show changes in
the LTP of the Schaffer collateral-CA1 synapse, presumably as a result of the reduced
activation of the CREB [48], which is implicated in LTP and memory formation (reviewed
in [136]). Signal transduction pathways, including MAPK and CREB are implicated in
amygdala- and hippocampus-dependent long-term memory consolidation in the context
of fear conditioning [137,138]. In mice, MAPK activation shows a circadian oscillation with
high levels during the (subjective) light phase, associated with an increased consolidation
of contextual fear memory during the (subjective) light phase [139]. Similarly, mice show
time-of-day-dependent changes in hippocampus-dependent memory formation [119] and
retrieval [43]. Consistently, time-of-day-dependent changes in LTP occur in the rodent
hippocampus (reviewed in [140]) [80]. Nocturnal rodents exposed to chronic phase shifts
show a deficit in spatial learning and memory, indicating that chronodisruption affects
hippocampal function [141,142]. In hamsters, this is associated with impaired adult neu-
rogenesis and is independent of systemic glucocorticoids [142]. In Bmal1-deficient mice,
impaired contextual fear and spatial memory are associated with the reduced activation
of the MAPK signalling pathway [57], indicating an interconnection between the molecu-
lar clockwork and pathways implicated in the memory consolidation. Importantly, LTP
is decreased in hippocampal slices from BMAL1-deficient mice, indicating that the hip-
pocampal molecular clockwork modulates functional synaptic plasticity. In mice with a
hippocampus-specific inhibition of BMAL1 function (dnBMAL1), showing a normal circa-
dian rhythm of locomotor activity, memory retrieval is impaired [43]. This indicates that
the molecular clockwork contributes to hippocampus-dependent learning. Remarkably,
the retrieval deficits observed in dnBMAL1 mice seem to be due to impaired dopamine D1
and D5 receptor-dependent cAMP signal transduction [43]. In addition, phosphorylation
of the AMPA-type glutamate receptor subunit GluA1, which is modulated by D1/D5
dopamine receptor activation [143], regulates AMPA receptor trafficking, and is suggested
to play a crucial role in hippocampus-dependent learning and memory [144], which is
reduced in dnBMAL1 mice. Hence, the molecular clockwork might control rhythms in
hippocampus-dependent memory function via cAMP-dependent D1/D5 dopamine recep-
tor signal transduction and GluA1 phosphorylation. Importantly, dopamine, which plays
important roles in executive functions, motor control, motivation, arousal, reinforcement,
and reward, seems to be an important mediator in maintaining circadian rhythms in many
brain regions, and the loss of dopamine neurons might account for the impairment of
circadian rhythms in Parkinson’s disease (reviewed in [145–147]). In the SCN, D1 receptor
signalling is necessary for photoentrainment [148], a mechanism that employs similar
signal transduction pathways as hippocampus-dependent memory consolidation. In ad-
dition, other neurotransmitters as well as hormones might have time-of-day-dependent
and/or circadian effects on cognitive performance and memory formation. The rhythm
in locomotor activity levels does not show a clear correlation with circadian rhythms in
memory formation in various species (reviewed in [140]). Microdialysis experiments show
a time-of-day-dependent fluctuation in basal levels of various neurotransmitters in the
hippocampus of nocturnal rodents. Basal levels of adenosine, noradrenalin, acetylcholine,
and serotonin are higher during the dark phase compared to the light phase [149]. These
neurotransmitters are key regulators of synaptic plasticity in the hippocampus [150–153].
Acetylcholine release shows a strong correlation with locomotor activity [154] and the
activity of thyroid hormones, which is also implicated in hippocampus-dependent learning
(reviewed in [155]). Furthermore, in a recent study by McCauley and co-workers, corti-
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costerone was identified as a key factor in regulating time-of-day-dependent changes in
synaptic strength [80].

A brief light pulse applied during the dark phase enhances the consolidation of con-
textual fear conditioning and CA1 LTP [156], indicating that light has a strong impact on
contextual fear learning in nocturnal animals. Although there is evidence that (blue) light
also enhances alertness and cognitive function in humans (reviewed in [157]), the mecha-
nism might be different from nocturnal rodents, where light represents a strong aversive
stimulus. So far, little is known on the neuronal network transmitting non-visual photic
information to the hippocampus. Anterograde polysynaptic tracing of retino-recipient
regions identified the amygdala and the hippocampal CA1 region among many others [158].
Data by Richetto et al. [121] suggest that mesolimbic structures, such as the nucleus accum-
bens and the midbrain might be involved in the effect of the light phase on behavioural
responses [121]. Interestingly, the chemogenetic activation of ipRGCs in dark-adapted
mice evokes circadian phase resetting and increases anxiety-related behaviour similar to
light exposure [159]. Moreover, it induces neuronal activation in various brain regions,
including the amygdala and the unspecific thalamus, which are implicated in anxiety and
arousal, respectively [159]. Thus, non-visual light information affects alertness and anxiety
presumably via the unspecific thalamus and the amygdala. Interestingly, distinct ipRGC
projections mediate the effects of light on learning and mood (Figure 3). The projections
of the ipRGCs to the SCN mediate the effects of light on learning, which are independent
of the SCN function in circadian rhythm generation. The nature of this pathway is un-
known so far but may include projections of the SCN to other hypothalamic nuclei and
the septal region [160] known to project to the hippocampus [9,161]. SCN-independent
projections to the thalamic perihabenular nucleus drive the effects of light on emotional
behaviour [11]. The perihabenular nucleus projects to the ventromedial prefrontal cortex,
which is implicated in the processing of risk and fear upstream of the amygdala and in the
consolidation of extinction learning [162], to the dorsomedial striatum, which is implicated
in motor learning and performance (reviewed in [163]), and to the nucleus accumbens,
which integrates input from the prefrontal cortex, amygdala, ventral hippocampus, and
from the dopaminergic neurons of the ventral tegmental nucleus and plays a significant
role in the processing of motivation, aversion, reward, and reinforcement learning and in
the induction of slow-wave sleep [164]. Hence, the perihabenular nucleus seems to play an
important role in mediating the effects of light on emotion/mood implicated in cognitive
function and learning. This might also be relevant for the effects of light on cognition
and mood in humans. In patients with major depressive disorder and bipolar depression,
treatment with bright white light (>5000 lux, >30 min) during the day, known as light
therapy, ameliorates the symptoms [165]. On the other hand, exposure to excessive light
at night shortly before bedtime, is associated with a greater risk for depressive symptoms
(reviewed in [166]). In mice, light at night induces depressive-like behaviour without dis-
turbing circadian rhythms [167]. This effect was mediated by a projection from the ipRGCs
to the perihabenular nucleus and from here to the nucleus accumbens, suggesting that this
brain circuitry might also be relevant for mental health effects of the prevalent night-time
illumination in the modern 24/7 society [167]. In addition, the superior colliculus, which
receives direct retinal input and mediates behaviour responses to visual danger signals,
projects to the reticular formation [168] and to the amygdala via the thalamic pulvinar,
driving emotional responses to visual information [169]. However, little is known about
the relevance of these projections for light-at-night-induced changes in brain plasticity.
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Figure 3. Simplified summary of the effects of light and the suprachiasmatic nucleus (SCN) on the
major brain circuitry responsible for emotion and learning.Projections of the retina to the SCN mediate
the effects of light on learning presumably via indirect projections to the hippocampus. Projections of
the retina to the perihabenular nucleus (PHN) mediates effects of light on emotion/mood, memory
consolidation, and motor learning. The PHN projects to the ventromedial prefrontal cortex (vmPFC)
and the nucleus accumbens (NAc), both are closely interconnected with the amygdala. The NAc
integrates input from the vmPFC, amygdala, hippocampus and from dopaminergic neurons of the
ventral tegmental nucleus (VTA). The VTA and other monoaminergic nuclei of the reticular formation
(RF) project to various brain regions, including those related to learning and memory, providing
emotional and motivational drive. The superior colliculus (SC) receives direct retinal input and
projects to the RF and to the amygdala via the thalamic pulvinar (not shown). Visual information
is transmitted from the retina to the visual cortex via the corpus geniculatum laterale (cgl) and
from there to most of the cerebral cortex including the hippocampus via the entorhinal cortex (EC).
Diencephalic, brain stem, and telencephalic brain regions are assembled in red, grey, and green boxes,
respectively. DMS, dorsomedial striatum.

2.6. Neuropathological Conditions and Circadian Misalignment

Chronic disruption of circadian rhythms in humans, for example in shift and night
work, has aversive effects on health in general (reviewed in [170]) and may even have an ef-
fect on preterm birth (reviewed in [171]). Especially excessive artificial light at night, e.g., in
shift work, during repeated transmeridian travel, or from the use of illuminated electronic
devices, such as mobile phones, televisions, and personal computers disrupts circadian
rhythms and suppresses the production of melatonin, both these changes are light intensity
and wavelength dependent [172]. In recent years, significant technical advances have been
made in developing blue-free white light-emitting diodes [173], or blue light filters, such
as in the night-shift mode of smartphones, that can help to prevent chronodisruption and
to preserve rhythmic melatonin production. Chronodisruption is associated with higher
risk for brain dysfunction, such as sleep disturbances, impaired alertness, and depression
(reviewed in [174]), and impairs brain plasticity. Moreover, there is a reciprocal relationship
of chronodisruption and neurological or psychiatric conditions and diseases. Psychiatric
conditions, such as depressive disorders, bipolar disorder, seasonal affective disorder, and
schizophrenia, are frequently associated with abnormalities in the sleep/wake cycle or
in social rhythms [175,176]. Patients with Alzheimer’s disease (AD) suffer from circadian
disruption, while the cause-and-effect relationship is still unclear (reviewed in [177,178]).
Moreover, in mouse models for AD [179] and other synucleopathies and neurodegenerative
diseases [180,181], the light input into the circadian system and thus masking and/or
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entrainment is impaired, thus further enhancing circadian misalignment. Hence, there
is an interconnection between neuropathological conditions and the circadian system at
various levels.

3. Summary

Rhythmic brain function is controlled by light and the circadian system. The SCN
and its rhythmic output govern endogenous/circadian rhythms, which are entrained to
the environmental light/dark cycle by retinal input. Direct and indirect retinal input is
provided to many parts of the brain, contributing to light-dependent responses in a wide
range of neuronal networks. At the cellular level, synaptic plasticity is modulated by
a molecular clockwork in neurons and glia, which are modulated by various rhythmic
neuronal, glial, and endocrine signals.

4. Conclusions and Outlook

In recent decades, great advances have been made in understanding the molecular ba-
sis of circadian time-keeping mechanisms and circadian light perception in the mammalian
brain. The greatest challenge for the future will be to decipher the complex interactions
and connectivity between the various components of the circadian system at the level
of complex neural networks. This is mandatory for understanding not only rhythmic
basic brain function, such as sleep but also higher cognitive function such as learning and
memory under physiological and pathological conditions.

The cholinergic ascending reticular activating system (ARAS) is a key element in the
control of wakefulness and sleep–wake transition. It activates the thalamus, which controls
general cortical activity and transmission of sensory information to the cerebral cortex.
By interacting with other brain stem reticular nuclei, the ARAS also modulates muscle
tone as well as autonomic functions during wake and sleep. In addition, cortical activity
is indirectly (via the ARAS) and directly (not shown) modulated by the noradrenergic
locus coeruleus, the dopaminergic ventral tegmental area, and the serotoninergic raphe
nuclei. Sleep- and wake-inducing hypothalamic nuclei control ARAS activity. During sleep
and wake, the ARAS is inhibited and activated by a system of GABAergic neurons in the
ventrolateral preoptic nucleus (VLPO) and of histaminergic neurons in the tuberomammil-
lary nucleus (TMN), respectively. Orexinergic neurons in the lateral hypothalamus (LH)
contribute to arousal projections into the TMN, the forebrain, the thalamus, and the brain
stem. The circadian rhythm in sleep/wakefulness is controlled by the suprachiasmatic
nucleus (SCN) which projects to the dorsomedial hypothalamus (DMH) via the subparaven-
tricular zone (SPZ). DMH neurons project to the VLPO and the lateral hypothalamus using
inhibitory and excitatory neurotransmitters orchestrating rhythmic changes in sleep–wake
and wake–sleep transitions. Light information reaches the SCN, the SPZ, the LH, and the
VLPO by direct innervation from the retina. Diencephalic, mesencephalic and telencephalic
brain regions are assembled in red, grey, and green boxes, respectively. ACh, acetylcholine.
Based on [103–105,113].
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