
The antimalarial screening landscape—looking beyond
the asexual blood stage
Sabrina Yahiya1, Ainoa Rueda-Zubiaurre2, Michael J Delves3,
Matthew J Fuchter2 and Jake Baum1

Available online at www.sciencedirect.com

ScienceDirect
In recent years, the research agenda to tackle global morbidity

and mortality from malaria disease has shifted towards innovation,

in the hope that efforts at the frontiers of scientific research may re-

invigorate gains made towards eradication. Discovery of new

antimalarial drugs with novel chemotypes or modes of action lie at

the heart of these efforts. There is a particular interest in drug

candidates that target stages of the malaria parasite lifecycle

beyond the symptomatic asexual blood stages. This is especially

important given the spectre of emerging drug resistance to all

current frontline antimalarials. One approach gaining increased

interest is the potentialofdesigningnoveldrugsthat targetparasite

passage from infected individual to feeding mosquito and back

again. Action of such therapeutics is geared much more at the

population level rather than just concerned with the infected

individual. The search for novel drugs active against these stages

has been helped by improvements to in vitro culture of

transmission and pre-erythrocytic parasite lifecycle stages,

robotic automation and high content imaging, methodologies that

permit the high-throughput screening (HTS) of compound libraries

for drug discovery. Here, we review recent advances in the

antimalarial screening landscape, focussed on transmission

blocking as a key aim for drug-treatment campaigns of the future.
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Introduction
Incredible progress has been made in reducing the global

malaria burden since the declaration of theUN Millennium

Development Goals in 2000. However, in recent years,

progress has stalled, with incidence and death rates from

malaria no longer declining [1]., Commitment to these

goals triggered a spike in global funding and interest,

resulting in an increased implementation of artemisinin

combinationtherapies (ACTs), insecticide treated bednets

(ITNs) and indoor residual spraying (IRS) which was

pivotal in addressing the global burden of malaria disease

[2]. Parasite resistance to artemisinin, its derivatives and

partner drugs [3] and mosquito resistance to insecticides

are, therefore, key challenges to get reduction of malarial

incidence back on track. It is increasingly acknowledged

that a focus on innovation, and not just implementation of

the current antimalarial armamentarium, is required to

overcome these challenges [4�,5]. New drugs, with novel

chemical structures and new modes of action (MoA), will

likely be a key component of such innovation [5].

Many groups active in antimalarial drug discovery, coordi-

nate their work within a framework of molecule type [target

candidate profiles (TCP)],meaningthe lifecyclestagewhich

is compromised by the drug, and medicine class (target

product profiles (TPP)], the final drug formulation defined

as a combination of TCPs, developed by the not-for-profit

Medicines for Malaria Venture, MMV [6��] (Table 1).

Sought after characteristics include activity against asymp-

tomatic stages (TCP3-5), endectocides targeting the mos-

quito (TCP-6) and symptomatic asexual blood stages (ABS),

classified as TCP-1 (Table 1). Profiles meet different needs

such as medicines for clinical case management, chemopro-

tection for travellers, and those aimed at breaking population

transmission. Protection of the uninfected population is

crucial for eventual local elimination of transmission, and

can be achieved by either targeting the mosquito (via vector

control, bite-prevention or endectocides) or via compounds

with transmission blocking activity [6��]. One long-sought

goal for optimal treatment formulation is the administration

of a Single Encounter Radical Cure and Prophylaxis (SER-

CaP), removing blood parasitemia and the longer-lived

parasite reservoir from patients for both radical cure and

elimination of future transmission, all in one go [5].

Drug Discovery by screening

In recent years, great emphasis has been placed on high-

throughput screening (HTS) of large compound libraries,
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2 Next Generation Therapeutics

Table 1

Classifications of Medicines for Malaria Venture TCP and TPPs

Target Candidate Profiles

Profile Plasmodium lifecycle stage target Notes

TCP1
Asexual blood stages Active against resistant strains of PlasmodiumSymptomatic treatment

TCP3
Dormant liver-stage hypnozoites Improved safety compared to primaquine and tafenoquineAnti-relapse

TCP4
Hepatic schizonts Effective at equal/lower dose to TCP1 treatmentChemoprotection

TCP5
Gametocytes/Gametes Low dose, less than TCP1 treatmentTransmission blocking

TCP6
Insect vector (endectocides) Low dose, less than TCP1 treatmentTransmission blocking

Target Product Profiles

Profile TCPs Addressed Notes

TPP1 TCP1 Single or multiple treatment medicines for treatment of: Severe malaria (TCP1)

TCP3 Uncomplicated malaria and preventative treatment (TCP1)

Case Management TCP5 Relapsing malaria (TCP3)

TCP6 Asymptomatic stages for population protection (TCP5 & 6)

TPP2 TCP1
In the case of epidemics or for migratory populationsChemoprotection TCP4
to find novel therapeutics having a new MoA, combined

with improvement of existing compounds through medic-

inal chemistry and structure activity relationship (SAR)

studies. High-throughput screens (HTS) are generally

categorised into two types: target-specific assays (usually

biochemical) or whole-cell (phenotypic) tailored to meet

the different TCP/TPP criteria [7]. Given the breadth in

the literature of both, here we centre our discussion on

phenotypic (specifically cellular) screens, with a particular

focus on P. falciparum, the most virulent parasite causing

malaria in humans [8].

Although in vitro culture of P. falciparum is routine,

automation, liquid handling and high-throughput imag-

ing have played key roles in recent advancements in HTS

capacity [7]. This has been markedly helped by efforts

from the chemical vendor industry and pharma to provide

access of compound libraries to smaller institutions and

academic research groups, permitting testing on a massive

scale, often with millions of compounds. Combined with

assay miniaturisation, this has led to development of

robust, inexpensive, and reproducible screens, typically

utilising 384- or 1536-well plate-based formats [7,9]. To

date, the vast majority of screening campaigns have

centred on ABS. Recently, however, this has expanded

to transmission and pre-erythrocytic stages, including

development of screening platforms for sporozoites

[10], sexual stage gametocytes [11��], gametes [12], ooki-

netes [13] and liver stages [14]. In either context, parasite

cultures are incubated with compounds of interest and

parasite survival is determined as an assay readout. Struc-

tures and activity of antimalarial compounds derived from
Current Opinion in Chemical Biology 2019, 50:1–9 
such phenotypic screens are then deposited in the

chEMBL Neglected Tropical Disease archive [15].

Asexual Blood Stage (ABS) screens

Novel compounds targeting asexual blood stages (under

the umbrella of TCP-1) have long been seen as a priority

in antimalarial research, being the causative agent of

symptoms associated with malaria [6��]. The first

P. falciparum ABS screen (indeed the first major HTS)

tested 1.7 million compounds from the Genomics Insti-

tute of the Novartis Research Foundation (GNF) Chem-

ical Library, identifying �6000 hits [16]. Similar screens

followed using 300 000 compounds of the St. Jude Chil-

dren’s Research Hospital (SJCRH) chemical library [17];

250 000 compounds from the Griffiths University library

[18]; and, possibly the largest study, from GlaxoSmithK-

line who screened almost 2 million compounds [19]. This

latter screen yielded an enriched library of >13 500 future

potential antimalarials, called the Tres Cantos antimalar-

ial compound set (TCAMS) that has since seeded several

other screens (for example, Refs. [20–23]). The numerous

asexual blood stage screens performed to date, each using

very different methodologies (Figure 1), have identified

thousands of hits, some of which have progressed to

developmental antimalarials, such as the spirondolone

KAE609 (Cipargamin, Figure 2) [24].

Liver stage screens

Beyond ABS, in recent years, the search for novel anti-

malarials has pushed for drugs targeting other stages of

the parasite lifecycle. Plasmodium hepatic forms have

recently gained significant traction due to improved
www.sciencedirect.com
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Figure 1
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The Plasmodium parasite lifecycle highlighting notable cell-based screens and Target Candidate Profiles (TCP) for developmental drugs.

The Plasmodium lifecycle occurs in stages between a mosquito vector and vertebrate host covering many different sites for drug intervention.

Inoculation of motile sporozoites during the female Anopheles mosquito bloodmeal commences the asymptomatic liver stage. Exclusively to

P. vivax and P. ovale, a proportion of liver-stage parasites form dormant hypnozoites (TCP3). Rupture of hepatic schizonts (TCP4) releases small

merozoite forms that initiate the symptomatic stages (ABS, TCP1) made up of cycles of erythrocyte invasion, replication and release. A proportion

of ABS parasites, rather than divide, commit to sexual differentiation to form the transmissible male and female gametocytes (TCP5), developing

over 8–12 days (for P. falciparum), likely in the bone marrow, through morphologically distinct stages with sexual dimorphism most apparent at the

mature stage V. Upon uptake to the mosquito during a bloodmeal, gametogenesis (formation of mature gametes), is induced rapidly (�10–15 min).

This follows environmental cues in the mosquito midgut, including a rise in pH, drop in temperature and the presence of xanthurenic acid, a

mosquito-derived excretory product. Gametogenesis commences with the rounding up of both male and female gametocytes and their egress

from the host erythrocyte. Male gamete formation, or exflagellation, is a remarkably rapid and tightly regulated process. The process includes

three rounds of DNA replication alternating with endomitotic division, followed by the release of eight motile haploid male gametes. Fusion of male

and female gametes ensues, leading to formation of a motile zygote that eventually colonizes the mosquito midgut, reseeding the vector for a new

www.sciencedirect.com Current Opinion in Chemical Biology 2019, 50:1–9



4 Next Generation Therapeutics
culture techniques, opening up possibilities for finding

drugs with causal chemoprophylaxis against liver stages

(TCP4) and those that may target the dormant hypno-

zoite stage (unique to P. vivax and P. ovale species)

classified as TCP3 [25]. Targeting either form hits a

natural bottleneck in the parasite lifecycle, and, therefore,

a powerful way to reduce the probability of drug resis-

tance developing [26]. One challenge remaining, how-

ever, is the need for complete parasite development in

the mosquito, required to obtain infective sporozoites to

seed assays, and the poor rates of in vitro hepatocyte

infectivity. Relatively robust assays are starting to emerge

for in vitro development [14,27], suggesting a turning

point in liver stage screening studies. Liver stage screens

are often focused on smaller libraries of commercially

available compounds with known activity against the

asexual blood stages.

One of the first liver-stage screens (Novartis-GNF Malaria

Box) identified a lead imidazolopiperazine scaffold. This

screen was performed using immunolabelled parasites to

determine the ratio of parasitemia to host nuclei, using a

high-content imaging system [28]. Lead optimisation

yielded a drug candidate, KAF156 (Figure 2) [28], which

is not only active against ABS and liver stages, but also

blocks parasite transmission. KAF156 is currently under-

going clinical trials [29��]. Another focused screen tested

1037 existing drugs, also by high-content imaging, to detect

fluorescent murine malaria parasite, P. berghei, liver stages,

identifying decoquinate, a compound with activity against

the parasite mitochondrial bc1 complex [30]. Two addi-

tional screens worth noting used the TCAMS library, to

identify 103 hits with dual inhibitory activity against blood

and liver stages [23] and an ultra-HTS format luciferase-

based assay, that tested both an open access library of small

molecules with confirmed activity against P. falciparum
ABS (the MMV malaria box) and a Diversity-Oriented

Synthesis library from the Broad Institute [31] (Figure 1).

Very recently, a landmark screen of half a million com-

pounds from Charles River [66��], consisting of small

molecules with an average weight of 369 Daltons, found

more than 600 hits with sub-micromolar IC50s using a plate-

based P. berghei assay (and validating assays with P. vivax
and P. falciparum) similar to that developed in [31]. Hits

included mitochondrial inhibitors and several others with

potentially novel modes of action.

Although these screens have advanced the pre-erythro-

cytic targeting pipeline, at present, the only existing
(Figure 1 Legend Continued) round of human infection [39]. Notable ABS 

(identifying hits with 50% inhibitory activity (IC50) of �2 mM); Griffiths Unive

analysis) and TCAMS from GSK. Screens against the asymptomatic liver st

ABS stages); bioactives library of commercially sourced compounds in clini

and liver-stage activity) and the ultra-HTS of the MMV Malaria Box, DOS an

exoerythrocytic stage activity). Transmission blocking screens to find drugs

viability, include those against the TCAMS library; LOPAC library using alam

and the Dundee GHCDL (using the DGFA).

Current Opinion in Chemical Biology 2019, 50:1–9 
liver-stage targeted drugs in use and suited to targeting

the hypnozoite stages are primaquine and tafenoquine

(Figure 2). Both, however, are also associated with intra-

vascular haemolysis in glucose-6-phosphate dehydroge-

nase (G6PD)-deficient patients [32]. The absence of an

accepted P. vivax hypnozoite model is in part to blame for

the limited anti-hypnozoite antimalarial discovery. The

most robust platform for screening was, until recently, a

low throughput in vivo imaging assay using P. cynomolgi
and rhesus monkeys. An in vitro improvement to this

using P. cynomolgi sporozoites and primary monkey hepa-

tocytes [33] has successfully identified a hypnozoitocidal

compound, KAI407 (Figure 2), that besides targeting the

ABS is active against both liver developing parasites and

hypnozoites [34]. Further advances in culture protocols

and use of humanized mouse models add to the tool base

towards the hoped-for radical cure treatment that would

eliminate liver stages [35,36]. Although not yet adapted to

an HTS format, one such assay [35,36] allowed for the

identification of a compound, TM2-115, (Figure 2) a

proposed Plasmodium histone methyltransferase inhibitor

[37] with a unique “wake and kill” phenotype.

Transmission blocking assays

Beyond liver stages, there is a growing awareness of the

potential for targeting parasite transmission, diverting

away from simply treating symptomatic (or pre-symptom-

atic) forms of parasite infection. Targeting transmission

has long been seen as a critical step towards meeting the

demanding goals of an eradication agenda [38]. Although

billions of parasites may circulate an infected individual

during asexual stages, only 0.2–1% are thought to commit

to sexual development and, therefore, are responsible for

transmission, constituting a massive lifecycle bottleneck

[39]. This stage is permissive for transmission to the

mosquito upon uptake of a blood meal, making them a

viable transmission blocking drug target [39].

Drug targeting strategies focussed on transmission centre

on two areas, either breaking transmission by targeting

the mosquito vector itself (using endecticides such as

Ivermectin [40�]), classified as TCP6 (recently reviewed

in [41]), or targeting the Plasmodium sexual stages, block-

ing gametocyte or gamete development, classified as

TCP5 [6��]. By stopping onward transmission, each is

orientated towards protecting the wider population rather

than the individual [42]. Although several platforms for

discovering transmission blocking drugs have been devel-

oped (Figure 1), advances in screening for compounds
cellular screens include those against the GNF Library; SJCRH

rsity library (identifying hits for physicochemical and chemical diversity

ages include screens of the Novartis-GNF Malaria Box (potent against

cal or pre-clinical development; TCAMS library (hits with dual blood

d most-recently Charles River libraries (hits with submicromolar

 that block parasite transmission, compromising gametocyte or gamete

arBlue; MMV Malaria Box, GNF library and DOS library (using SaLSSA)

www.sciencedirect.com
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Figure 2
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ABS and liver stages ABS and liver stages
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Notable frontline antimalarials with targets throughout the lifecycle.

Selected antimalarials with activity against different stages of the parasite lifecycle. "Me" denotes methyl groups. KAE609 is a PfATP4 inhibitor

which shows fast parasite clearance and transmission-blocking potential and is currently undergoing phase II clinical trials. Decoquinate is a dual-

stage antimalarial (ABS and liver) with activity against the parasite mitochondrial bc1 complex. Primaquine and tafenoquine are the only liver-stage

targeted compounds with the ability to kill hypnozoites in use despite their side effects. KAI407 is a hypnozoitocidal compound identified using P.

cynomolgi sporozoites and primary monkey hepatocytes that targets the ABS and developing liver stage parasites as well. TM2-115 is a putative

histone methyltransferase inhibitor with activity against both asexual and sexual stages, and the ability to induce dormant liver stages to resume

their maturation. Methylene blue is a classical antimalarial showing transmission-blocking activity regardless of assay read-out and can thus be

used as positive control in screening campaigns. DD01035881 is a male-gamete formation inhibitor identified from the GHCDL screen. KAF156 is

a drug candidate with activity against ABS, liver and sexual stages, which was developed through the optimisation of a hit identified in one of the

first liver stage screens. DDD107498 is a eEF2 inhibitor with activity across all parasite stages. Primaquine, Tafenoquine and DDD1035881 are

used as racemates.

www.sciencedirect.com Current Opinion in Chemical Biology 2019, 50:1–9



6 Next Generation Therapeutics
targeting sexual development have been boosted by

improvements to in vitro culture protocols for

P. falciparum gametocytes [43�,44�,45�]. Being non-repli-

cative developmental stages, however, gametocytes are

not amenable to traditional DNA replication or cell

proliferation markers, which has meant other measures

of viability, including mitochondrial activity or fluores-

cent protein expression are required. Control compounds

often used in such assays include classical antimalarials

such as methylene blue (Figure 2), a compound in phase

II trials which is consistently found to be active against

transmission, though with ranging IC50 values (e.g. 12–

490 nM). Artemisinin endoperoxides have generally

proven inactive (>1 mM) against mature gametocytes.

One of the first gametocyte-centred screens used the

MMV malaria box, aimed at the identification of dual

asexual-sexually active drug candidates. Gametocytaemia

was determined following expression of a transgenic

gametocyte-specific protein pfs16-Luc-GFP marker, with

cell viability determined using Mitotracker Red, a

reporter of mitochondrial function [46]. Other studies

have used similar strategies as a base for drug screening

[47–49]. In parallel to these efforts, a group from Glax-

oSmithKline developed a methodologically improved

ATP bioluminescent assay, using reduction in ATP as

a marker of cell injury and death [50]. Using this method,

the group tested 17 gold-standard compounds with

known antimalarial activity on purified stage IV–V game-

tocytes, before cytotoxicity and specificity tests with

HepG2 cells. A follow-up screen examined dual activity

of the TCAMS library against stage V gametocytes [51].

Towards an improved signal-to-noise ratio, required for

HTS, several groups have developed colorimetric read-

outs for gametocyte viability. This includes parasite lac-

tate dehydrogenase (pLDH) [52] and alamarBlue [53] as

indicators of metabolic activity. Two recent large-scale

screens are also worth highlighting, including the use of

acridine orange (AO) to measure gametocytaemia and

rounding-up post-activation as a marker of viability,

adapted to 384-well format from researchers at the Isti-

tuto Superiore di Sanità in Rome [54] and, most recently,

the Saponin-lysis Sexual Stage Assay (SaLSSA) from the

University of California San Diego School of Medicine.

[11��]. This latter assay utilises synchronised gametocytes

and involves an in situ erythrocyte saponin-lysis before

MitoTracker Red staining, highlighting parasites with an

active mitochondrial membrane potential. Because it can

work at low magnification, this automated high content

imaging platform has been developed to 1534-well capac-

ity and has been used effectively with several drug

libraries [11��] (Figure 1).

Sex specificity and viability

One of the key challenges, however, to drug discovery of the

transmission stages, is the in vivo validation of hits. Most

screens to date, validate any newly discovered hits with the
Current Opinion in Chemical Biology 2019, 50:1–9 
Standard Membrane Feeding Assay (SMFA) [55] to deter-

mineonwardsviability.Althoughwidelyconsideredthegold-

standard for transmission blocking activity, the assay is

extremely  low-throughput. It involves treatment of gameto-

cyte culture before feeding to malaria-susceptible Anopheline
mosquitos using an artificial membrane. Mosquito midguts

are then dissected 7–10 days after feeding and oocyst abun-

dance is counted by microscopy to determine viability [56].

Attempts to increase throughput have been made and hold

great promise if robustness and reproducibility in mosquito-

feeds can be achieved [57]. What use of the SMFA demon-

strates is that viability of the sexual stages is not the same

thing as capacity to transmit (i.e. gametocytaemia does not

equate with transmission). For example, it is clear that many

exemplar transmission-blocking drugs like primaquine do

not affect the presence of viable (but transmission-incompe-

tent) gametocytes in peripheral blood [58��]. Meeting this

challenge head on, a very different approach to transmission

screening is to explore the effect of drugs not on gametocytes

but on the developing gametes, mimicking their transforma-

tion in the mosquito midgut ex vivo without the limitations of

the SMFA. P. falciparum notably has a female-biased sex

ratio, with a range of ratios of between �3 and 5 females for

every 1 male [59,60]. Combined with the fact that males

exhibit an increased susceptibility to known antimalarials

despite the greater abundance of females [59], has prompted

development of assays that capture both male and female

development independently. One of the most successful of

these is the Dual Gamete Formation Assay (DGFA) [12,59],

which measures male and female gametogenesis via auto-

mated imaging. Male gamete formation is signified by for-

mation of ‘exflagellation centres’ as male gametes adhere to

neighbouring erythrocytes; female gamete formation is

detected by immunostaining of a surface protein expressed

at the gamete surface upon egress. In measuring these two

features, the assay provides a sex-specific gametocyte viabil-

ity readout and has been developed to plate-based format

[12]. Similar male-only [61] and female-only assays have also

been developed [62]. Because of each entity’s focus on

gamete formation, stage V gametocyte viability is encom-

passed in each assay since it is the only stage that will develop

further upon triggering gametogenesis. The assay has proven

to be a powerful high-throughput proxy for transmission and

there is good evidence of a linear correlation between sex-

specificgameteassaysandSMFAactivity [12,63].However,a

key caveat that remains with each of these assays is the viable

production of in vitro-derived stage V P. falciparum gameto-

cytes that are competent for exflagellation and onward trans-

mission to mosquitoes [43�].

Advancement of the DGFA to 384-well plate format

recently permitted an HTS of the University of Dundee

Global Health Chemical Diversity Library (GHCDL), in

which the DGFA was undertaken in parallel to ABS and

other transmission blocking assays to discern compounds

with varying activity profiles. The joint study between

Imperial College London and GlaxoSmithKline [64��] is
www.sciencedirect.com
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the largest transmission blocking focussed screen carried

out to date on a non-biased library (i.e. a library unrelated

to ABS activity). Numerous hits were identified display-

ing asexual-specific, dual asexual-sexual stage, sexual

stage-specific and, for the first time, gamete-specific

targeted activity. Of note, male specific, dual male-female

gametocyte and male gamete only targeted compounds

were also discovered. Among hits, several belonged to a

cluster sharing an N-((4-hydroxychroman-4-yl)methyl)-

sulphonamide scaffold, which shows promise for future

transmission-only drug development (Figure 2).

The GHCDL screen, like many others, demonstrated the

power of combining multiple platforms to find novel scaf-

folds with both new modes of action and multi-stage activity.

A good example of the latter was the discovery of

DDD107498, a translation elongation factor 2 (eEF2)-tar-

geted compound (Figure 2) identified from the Dundee

protein kinase scaffold library, which shows multiple activity

against ABS, liver stages and male and female gamete

formation [65]. Though many groups favour the clinical

development of a multi-stage drug, one caution with this

approach is the challenge that selection for parasite resis-

tance will be amplified by its multiple points of sensitivity

across the lifecycle (presuming it has a single pharmacologi-

cal mode of action across the lifecycle). Combined formula-

tions with drugs targeting different processes in different

stages, in particular transmission, may be preferable in this

case (as it has been with viral and bacterial infections), not

only blocking transmission butprotecting partnerdrugs from

resistance development [64��].

Conclusions
Application of HTS technologies to the liver and the

sexual stages of Plasmodium are receiving an increasing

interest as a necessary addition to efforts in antimalarial

drug discovery. Innovation in technologies and novel

modes of action becomes increasingly important in an

era of emerging ACT resistance and the plateau in

declining malaria incidence. Advances in screening for

drugs that act along each step of the parasite lifecycle

(from ABS to transmission and back again) have advanced

significantly in recent years with development of assays

testing activity at each stage. Though these phenotypic

screens exhibit clear advantages over target-based

approaches in their scope, they also raise challenges in

drug mode of action identification. However, by combin-

ing forces with medicinal chemistry to undertake detailed

SAR of hits, the prospect of developing new lifecycle

orientated drugs with new modes of action becomes

increasingly feasible.
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