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Abstract

Background: Alternative Promoter (AP) usages have been shown to enable diversified transcriptional regulation of
individual gene in a context-specific (e.g., pathway, cell lineage, tissue type, and development stage et. ac.) way. Aberrant
uses of APs have been directly linked to mechanism of certain human diseases. However, whether or not there exists a
general link between a gene’s AP repertoire and its expression diversity is currently unknown. The general relation between
a gene’s AP repertoire and its disease susceptibility also remains largely unexplored.

Methodology/Principal Findings: Based on the differential expression ratio inferred from all human microarray data in NCBI
GEO and the list of disease genes curated in public repositories, we systemically analyzed the general relation of AP
repertoire with expression diversity and disease susceptibility. We found that genes with APs are more likely to be
differentially expressed and/or disease associated than those with Single Promoter (SP), and genes with more APs are more
likely differentially expressed and disease susceptible than those with less APs. Further analysis showed that genes with
increased number of APs tend to have increased length in all aspects of gene structure including 39 UTR, be associated with
increased duplicability, and have increased connectivity in protein-protein interaction network.

Conclusions: Our genome-wide analysis provided evidences that increasing alternative promoter repertories is positively
associated with differential expression and disease susceptibility.
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Introduction

Promoter is the region of DNA consisting of transcriptional

regulatory elements required for transcription initiation. Alterna-

tive Promoter (AP) usage refers to the control of alternative

transcriptional start within a single gene locus by using alternative

promoter. AP usage has been observed for many individually

characterized genes [1,2] and recent genomic studies have found

that approximately 50% of human genes have at least one AP

[3,4]. The wide-spread AP usage indicates it might play a critical

role in shaping human genome and transcriptome [1,2,5,6].

As AP consists of different modules of cis-regulatory elements

[7,8], AP usage has long been explored for the regulation of

expression diversity of individual metazoan gene [9]. For example,

by selectively using one promoter active in parotid gland and the

other active in liver, mammal a-amylase gene shows a more than

100-fold difference of expression level in these two tissues [10].

The number of individually characterized genes with AP driving

context-specific (e.g., pathway, cell line, tissue type, development

stage, species et. ac.) manner of differential expression has

accumulated during the past two decades [1,2,5,6,11,12]. This

thus raises an interesting question: are genes with AP more likely

to be differentially expressed than genes with Single Promoter

(SP)? Furthermore, among genes with AP, are genes with more AP

more likely to be differentially expressed?

There is also growing evidence that AP usage is linked to disease

through aberrant promoter choice and/or genetic defects affecting

the functional cis-regulatory element [2,9]. For example, the

upstream promoter of MYC, dominant negative in normal tissue, is

aberrantly activated in Burkitt’s lymphoma cells due to aberrant

translocation of MYC gene locus [13]. A recent survey of

mammalian AP showed that the group of putative human cancer

related genes (,2,800) on average have 2 promoters compared

with an average 1.5 promoters among the other human genes [2].

However, cancer related genes can be classified into passenger and

driver, with the later playing a critically causal instead of passive

role in tumor formation and progression [14,15]. It remains

unclear whether there is a general link between a gene’s AP

repertoire and the likelihood of being cancer driving genes.

Furthermore, it remains unclear whether or not there is a positive
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relationship between the increasing promoter repertoire and the

likelihood of being associated with general human diseases.

Results

AP Genes Are More Likely to Be Differentially Expressed
For each human gene, we obtained its Differential Expression

Ratio (DER) from the study by Chen et al. [16,17]. The DER

value of a gene is its frequency of differential expression in multiple

microarray studies (see Methods section). As DER was derived

from all available human microarray datasets deposited at GEO, it

provided a comprehensive metric to measure the regulation

diversity at expression level. To test the hypothesis whether genes

with AP are more likely differentially expressed than genes with

SP, we compared the DER between SP and AP genes. Of the

genes with SP, the median DER was 0.50. In contrast, the genes

with AP have median DER 0.53 (P,2.2e-16, Wilcox rank sum

test). To test whether there is a general link between increasing

number of promoter and differential expression among genes with

AP, we divided the AP genes into three classes based on their

number of promoters (AP = 2, AP = 3/4, AP. = 5, see methods).

As shown in Figure 1, genes with more AP are more likely to be

differentially expressed. The median DER was 0.52 for AP = 2

class (P = 2.2e-16, vs. SP), and increased to 0.54 for AP = 3/4 class

(P,2.2e-16, vs. AP = 2 class). The median DER was further

increased to 0.56 for AP. = 5 class (P,2.2e-16, comparing with

that of AP = 3/4 class). Recent studies have shown that different

tissues, cell types, developmental and/or disease stage are often

regulated by distinct transcriptional factors, and there is

considerable diversity in the composition of cis-regulatory elements

in alternative promoters [2,7,18]. The increased number of

alternative promoters from a single locus will provide increased

flexibility and diversity of AP usage, and thereby generate either

identical or distinct protein conducts in a tissues, cell lineage, stage,

and time point specific manner. Such a diversifying and complex

regulation control might contribute to the increased frequency of

differential expression observed here for AP genes.

AP Genes Are More Likely to Be Disease Susceptible
The study by Chen et al [17] has revealed that highly

differentially expressed genes are more likely to be associated

with disease. As we found that AP genes are more likely to be

differentially expressed, it is expected that AP genes are more likely

to be involved in disease. To confirm this positive link and quantify

the extent to which a gene’s promoter repertoire is associated with

the likelihood of disease susceptibility, we first compiled a list of

775 human cancer genes which are likely to play casual roles in

tumor formation and progression. We built a 262 contingency

table using the number of cancer-driver gene and non-cancer-

driver genes, and tested whether the fraction of cancer-driver

genes is significantly increased from SP to AP gene classes using

Fisher’s exact test. As shown in Figure 2, the fraction of cancer-

driver genes in SP class was 2.9%, and increased to 5.8% in AP

class, an almost 2-fold increase (P = 2.2e-16). We further compare

the fraction of cancer-driver genes between different AP classes.

The fraction was found to be 4.3% for AP = 2 class (P = 0.00021,

vs. SP), 6.2% for AP = 3/4 class (P = 0.00026, vs. AP = 2), and

9.7% for AP. = 5 class (P = 8.075e-05, vs. AP = 3/4).

In order to further characterize the general relationship between

having increased promoter repertoire and the likelihood of being

human disease susceptibility gene, we compiled a list of 3,392

curated human disease-associated genes. We again built 262

contingency tables and tested whether there is an increased

fraction of disease gene from SP to AP gene classes using Fisher’s

exact test. As shown in Figure 3, the fraction of disease genes in SP

class was 16.4%, and increased to 21.6% in AP class (P = 2.78e-

16). The fraction was 19.9% for AP = 2 class (P = 2.497e-06, vs.

SP), 21.7% for AP = 3/4 class (P = 0.04481, vs. AP = 2), and 26.6%

for AP. = 5 class (P = 0.0004199, vs. AP = 3/4).

Figure 1. Distribution of differential expression ratio for each
gene class. The figure (density plot) showed that genes with more
alternative promoters are more likely to be differentially expressed. SP
means gene with single promoter, while AP = 2, AP = 3,4, and AP. = 5
means gene with only 2 promoters, 3 or 4 promoters, and at least 5
promoters, respectively.
doi:10.1371/journal.pone.0009482.g001

Figure 2. Fraction of cancer driver genes for each gene class.
The figure showed that genes with more alternative promoters tend to
be enriched with cancer driver gene. The Y-axis is the fraction of genes
belonging to cancer driver gene in each gene class. SP means gene with
single promoter while AP means gene with alternative promoters.
AP = 2, AP = 3,4, and AP. = 5 means gene with only 2 promoters, 3 or
4 promoters, and at least 5 promoters, respectively.
doi:10.1371/journal.pone.0009482.g002
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AP Genes Are Longer in All Aspects of Gene Structure
As shown in Table 1 and Figure S1, AP genes are significantly

longer than SP genes in all aspects of the gene structure including

genomic sequence, coding sequence (CDS), 59 untranslated

regions (59 UTR), 39 UTR, total exon, and total intron. AP genes

also tend to have more exons and introns. Among AP genes, the

class with more AP tends to be longer in all aspects of gene

structure than the class with less AP (Table 1 and Figure S1). For

example, the median of total intron length is 14.4, 25.2, 43.7 and

87.2 kb for SP, AP = 2, AP = 3,4 and AP. = 5 gene class,

respectively (P,2.2e-16, Wilcox rank sum test). As AP usage will

lead to alternative usage of first exon, the increased number of AP

will undoubtedly increase the degree of freedom for the extension

of transcript region from the 59 end [3]. However, it is remarkable

that 39 UTR, the region enriched for microRNA binding sites

important for post-transcriptional regulation, also tend to be

longer as the number of AP increases (Figure 4).

AP Genes Are Associated with Increased Duplicability
We retrieved 14, 410 unique duplicate genes and 5, 226 unique

singleton genes from Ensembl database via BioMart, with the

fraction of duplicate gene about 73%. 10,665 of duplicate genes

and 4,054 of singleton genes have curated promoter architecture

from DBTSS (used in this work), with a similar ratio of duplicate

gene (i.e, 72.5%). As shown in Figure 5, duplicate genes comprise

67% of SP genes, but make up 77% of AP genes (P = 1.087e-07,

Fisher’s exact test). The fraction was 74% for AP = 2 class

(P = 0.002138, vs. SP), 78% for AP = 3/4 class (P = 0.08113, vs.

AP = 2), and 85% for AP. = 5 class (P = 0.05049, vs. AP = 3/4).

AP Genes Are More Likely to Be Associated with Hub
We downloaded the manually curated human protein–protein

interaction network from HPRD[19]. We found that the AP genes

tend to have significantly more node connectivity (degree) than

that of SP genes, and display a much stronger trend as the number

of AP increases (Figure 6, P, = 0.01, Wilcoxon rank sum test).

The average connectivity of SP genes is 6.5, and increases to 10.5

for AP. = 5 gene class (P,2.2e-16).
Example of AP genes. To exemplify the characters of AP

genes studied in this work, we described several genes whose

alternative promoter usage has been shown in literatures. GNAS

(guanine nucleotide binding protein, alpha stimulating activity

polypeptide 1), is a G protein involved in hormonal regulation of

adenylate cyclase. GNAS has ten potential alternative promoters

supported by curated full-length c-DNA clones, and the switched

recruitment of four of them has been found to generate multiple

Figure 3. Fraction of disease genes for each gene class. The
figure showed that genes with more alternative promoters tend to be
enriched with disease gene. The Y-axis is the fraction of genes
belonging to disease gene in each gene class. SP means gene with
single promoter while AP means gene with alternative promoters.
AP = 2, AP = 3,4, and AP. = 5 means gene with only 2 promoters, 3 or
4 promoters, and at least 5 promoters, respectively.
doi:10.1371/journal.pone.0009482.g003

Table 1. Length parameter of each gene class.

Genomic Sequence CDS 59 UTR 39 UTR Total Exon Total Intron # of Exon # of Intron

SP 16,835 a 1,097 139 599 2,158 14,370 6 b 5

AP 41,017 1,638 183 1,062 3,274 37,314 11 10

Pvalue c ,2.2e-16* ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16

AP = 2 28,100 1,415 172 881 2,808 25,162 9 8

Pvalue d ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16

AP = 3,4 48,058 1,763 188 1,178 3,492 43,650 12 11

Pvalue e ,2.2e-16 ,2.2e-16 2.153e-05 ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16

AP. = 5 90,787 2,296 207 1,325 4,178 87,204 17 16

Pvalue f ,2.2e-16 ,2.2e-16 0.000329 0.0005684 ,2.2e-16 ,2.2e-16 ,2.2e-16 ,2.2e-16

The table showed that genes with more alternative promoters tend to have increased length in all aspects of gene structure parameter. SP means gene with single
promoter while AP means gene with alternative promoters. AP = 2, AP = 3,4, and AP. = 5 means gene with only 2 promoters, 3 or 4 promoters, and at least 5
promoters, respectively.
a: Median length;
b: Median count;
c: Wilcoxon rank sum test, AP vs. SP.
d: Wilcoxon rank sum test, AP = 2 vs. SP.
e: Wilcoxon rank sum test, AP = 3,4 vs. AP = 2.
f: Wilcoxon rank sum test, AP. = 5 vs. AP = 3,4.
*: The Wilcoxon rank sum test function in R (wilcox.test) returns ‘‘P,2.2e-16’’ when P is smaller than 2.2e-16.
doi:10.1371/journal.pone.0009482.t001
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protein transcripts involved in metabolic regulation and

development (For reviews, see Weinstein et al. [20] and

Davuluri et al. [2]). GNAS has a high frequency of differential

expression - differentially expressed in more than 69% of GEO

dataset in which it was measured (DER value equals to 0.691).

Promoter switching of GNAS has been found to plays a role in

various diseases and tumorigenesis through loss of imprinting

[21,22,23]. It is a disease gene of multiple syndromes including

Albright hereditary osteodystrophy, pseudopseudohypoparathyroidism

and McCune-Albright syndrome [24,25]. It is a cancer driver gene of

pituitary adenoma [26]. It is a duplicate gene, and the paralog is

GNAL. The gene length of RUNX1 is 71.5 kb, well above the median

of SP gene (16.8 kb). GNAS has 23 interacting partners in the protein-

protein interaction network, comparing with an average connectivity of

6.5 for SP genes.

FGFR1 (fibroblast growth factor receptor 1), is a member of the

fibroblast growth factor receptor family that binds to both acidic

and basic fibroblast growth factors. FGFR1 has seven alternative

promoters supported by curated full-length c-DNA clones, and at

least of four of them have been shown to control the differential

expression in a tissue- and cancer cell- specific manner

[27,28,29,30]. We found that FGFR1 is indeed frequently

differentially expressed, with the DER value of 0.684. It is a

disease gene of a number of syndromes including familial Pfeiffer

syndrome [31]. It is cancer driver gene, implicated in the

tumorigenesis of hematological malignancies including chronic

myeloid leukemia, myeloid hyperplasia and non-Hodgkin’s

lymphoma [32]. It is a duplicate gene, with its paralogs including

RET and FGFR2. FGFR1 has 18 exons and 5.9 kb exon length,

comparing with the 6 exons and 2.2 kb exon length for SP gene.

The protein-interaction network connectivity of FGFR1 is 36.

PDGFRA (platelet-derived growth factor receptor, alpha

polypeptide), is a cell surface tyrosine kinase receptor for members

of the platelet-derived growth factor family. The expression of

PDGFRA is regulated by four potential alternative promoters, and

the switched usage of two of them has been found to be involved in

early human embryogenesis [33,34]. The DER value of PDGFRA

is 0.651, indicating that it is differentially expressed in more than

65% of GEO dataset in which it was measured. It is a key disease

Figure 5. Fraction of duplicate genes for each gene class. The
figure showed that genes with more alternative promoters tend to have
increased duplicability. The Y-axis is the fraction of genes belonging to
duplicate gene in each gene class. SP means gene with single promoter
while AP means gene with alternative promoters. AP = 2, AP = 3,4, and
AP. = 5 means gene with only 2 promoters, 3 or 4 promoters, and at
least 5 promoters, respectively.
doi:10.1371/journal.pone.0009482.g005

Figure 6. Distribution of node connectivity (degree) for each
gene class in human protein-protein interaction network. The
figure (density plot) showed that genes with more alternative
promoters tend to have increased node connectivity. SP means gene
with single promoter, while AP = 2, AP = 3,4, and AP. = 5 means gene
with only 2 promoters, 3 or 4 promoters, and at least 5 promoters,
respectively.
doi:10.1371/journal.pone.0009482.g006

Figure 4. Length distribution for the 39 un-translated region (39
UTR) of each gene class. The figure (density plot) showed that genes
with more alternative promoters tend to have longer 39 UTR. SP means
gene with single promoter, while AP = 2, AP = 3,4, and AP. = 5 means
gene with only 2 promoters, 3 or 4 promoters, and at least 5 promoters,
respectively.
doi:10.1371/journal.pone.0009482.g004
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gene in hematologic disorder, involved in the gene fusions

associated with the hypereosinophilic syndrome [35,36]. It also

serves as a well-documented cancer driver gene of gastrointestinal

stromal tumor [37]. The paralog of PDGFRA, PDGFRB, has two

alternative promoters and is also a cancer driver gene [38].

Compared with SP genes, PDGFA is both longer (69.1 kb) and

connected by more interacting partners (24) in the protein-protein

interaction network.

Discussion

The functional role of alternative promoter usage in differential

expression and/or disease susceptibility has been characterized for

a bunch of genes. However, whether there is a positive link

between a gene’s AP repertoire and its likelihood of being

differentially expressed and/or disease associated remains un-

known. Based on a systematic analysis of promoter, microarray

and disease gene in the public repositories, we found that

compared with single-promoter genes, genes with alternative

promoters are more likely to be differentially expressed and/or

disease associated. Furthermore, our results showed that among

AP genes, those with more promoters are more likely differentially

expressed and/or disease susceptible.

Gene expression data has been frequently incorporated into the

prioritization of disease candidate genes or SNPs. Recent

translational study by Chen et al [17] has demonstrated that

highly differentially expressed genes are more likely to have

variants associated with disease, based on the analysis of all

microarray data from GEO database. The finding that there is a

positive association between differential expression and disease

susceptibility marked a significant step towards the translation of

gene expression data into disease gene prioritization. However, the

molecular, genetic and genomic mechanism underlying this

translation remains to be explored. Our study found that there

is a general link between alternative promoter and differential

expression and disease susceptibility. We further demonstrate that

genes with increased number of alternative promoters are marked

with features important to regulation complexity and disease

origins, including increased gene length, duplicability and

connectivity. While it remains to be explored for the positive

prediction value of incorporating alternative promoter repertoire

into disease gene prioritization, our results will be useful to

understand the genomic mechanism underlying the translation

from differential expression to disease susceptibility.

A better characterization of the role of alternative promoter

usage on expression diversity and disease susceptibility requires a

truly unbiased and comprehensive resource of alternative

promoter activity, gene expression change and disease propensity.

The DBTSS full-length cDNA derived alternative promoter data

are taken from .160 distinct cDNA library of various cell types

and tissue, and the GEO derived DER data are calculated based

on 4,877 group-versus-group comparisons on 476 human GEO

datasets. Although comprehensive, there is a possibility that both

DBTSS and GEO data might be biased to certain biological

niches. Thus, a future research direction will be to identify the

separated effects in the analysis of alternative promoter versus

differential expression, by classifying the different kinds of

experiment in DBTSS and GEO (e.g., based on tissue, disease

condition, and et. ac.). Also, it remains to be explored the effects of

adopting alternative metric of differential expression and different

definition of alternative promoters (e.g., varied cutoff of TSS

clustering, other curated promoter database [39], and et. ac.).

Similarly, the OMIM-based disease gene record is far from

complete and historically biased to monogenic disorders. A more

complete catalog of genes underlying different disease will alleviate

the potential analysis bias to certain type of human disorders.

Recent technique developments in high-density promoter

microarray and next-generation sequencing have enabled the

genome-wide monitoring of alternative promoter activity and

transcriptome change under different conditions [5,6,40,41,42].

Simultaneously, results from multiple genome wide association

studies have shed light to the widespread involvement of

regulatory variants including alternative promoters in disease

association [43,44,45,46]. By integrating the fast-accumulated

data from these high-throughput studies and other functional

genomics data, we expect that a more complete understanding of

the mechanism of and extent to which alternative promoter usage

has shaped human transcriptome and diseasome will be achieved.

In summary, based on a systematic analysis of promoter,

microarray and disease gene in public repositories, we demon-

strated that there exists a general link between a gene’s alternative

promoter repertoire and its expression diversity and/or disease

susceptibility. Our further comparative analyses of AP vs. SP gene

reveal several remarkable features of AP genes as a class. First, we

found that AP genes tend to have longer length in all aspects of

gene structure. As gene length is found to be positively related with

the density of functional elements [47], it is reasonable to suggest

that AP genes, with increased length in all aspects of gene

parameter, subject to more sophisticated regulation besides

transcriptional factor mediated promoter binding (e.g., alternative

splicing [1,48], microRNA mediated regulation [49,50,51], and et.

ac.). Second, we showed that AP genes are associated with

increased duplicability. Gene duplication has been widely

appreciated as one of the factors underlying genetics variation,

phenotypic diversity and disease mechanism [52]. Third, we

observed that AP genes tend to have higher connectivity in

protein-protein interaction network. The topological centrality of

AP genes thus indicates that they play critical role in human

physiological system [53]. Collectively, our analysis suggests that

increasing AP repertories might be an important factor in shaping

human genome, transcriptome and diseasome.

Methods

We retrieved information of promoter annotation from DBTSS

(Version 6.0, based on UCSC hg18) [54]. DBTSS determine

alternative promoters using clustering of transcriptional start sites

(TSS) by 500 bps, with TSS derived from collection (.160 distinct

libraries) of experimentally determined 59-end sequences of full-

length cDNA clones. A total of 15,180 human RefSeq genes with

curated full-length cDNA derived promoter architecture were

obtained, which include 7,291 genes with Single Promoter (SP)

and 7,889 genes with Alternative Promoter (AP). Among genes

with AP, there are 3, 772 genes with two promoters (AP = 2), 2,941

with three or four (AP = 3,4), and 1,176 with five or more

(AP. = 5). The length parameter of gene structure was based on

NCBI Reference Sequence (RefSeq) annotation. The 59 UTR

length is calculated from transcription start position and cording

region start, while that of 39 UTR from transcription end position

and cording region end. For genes with multiple transcripts, the

longest one is selected for length calculation.

We obtained the differential expression ratio (DER) of human

genes from the study by Chen et al. [16,17]. Briefly, the authors

downloaded all curated human microarray-based gene expression

datasets from the NCBI Gene Expression Omnibus (GEO)

[55,56], and conducted comprehensive group-versus-group com-

parisons within each dataset based on GEO annotated experi-

mental variables (e.g., time, treatment, tissue, development stage et

Promoter and Disease
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ac.) to identify differentially expressed (q value#0.05, using SAM

[57]) genes. For each human gene, the DER was calculated as the

count of GEO datasets in which it was differentially expressed

divided by the count of GEO datasets in which it was measured

[17]. Only genes that were measured in at least 5% of all GEO

datasets are included, which include 14,783 (97.4%) of the 15,180

genes with promoter annotations available from the DBTSS

database.

We downloaded a manually curated collection of ,380 human

genes whose variants play a causal role in cancer (Cancer Gene

Census database [14]). CGC is a regularly updated database to

catalogue those genes for which mutations, deletions, and/or

translocations have been causally implicated in cancer. We also

compiled a set of ,450 human cancer candidate genes, which are

most likely to be key driver genes, based on recent large-scale

sequencing of breast, colorectal, pancreatic and brain tumor

genomes [15,58,59,60]. The combination of these two datasets

resulted in a list of 775 unique cancer driver genes.

We compiled a list of ,2,380 known disease genes from the

Morbid Map (MM) of the Online Mendelian Inheritance in Man

(OMIM) [61]. Only the Morbid Map entries with the ‘‘(3)’’ tag, for

which there is strong evidence that abnormality of the particular

gene is causative to the disorder, were used to derive the list of

human disease gene. We also downloaded a list of ,2,360 human

genes with annotated disease-associated variants from the latest

Swiss-Prot database [62]. A combination of these two dataset

resulted in 3,392 non-redundant human disease genes.

We used BioMart [63]to retrieve the complete set of human

duplicate genes from EnsemblCompara GeneTrees database[64].

This corresponds to a total of 14,410 unique genes that have at

least one duplicate copy in the human genome, and a total of

5,226 unique known singleton genes that have no duplicate copy.

We downloaded the manually curated human protein–protein

interaction network from the Human Protein Reference Database

[19], which is composed of 9,306 unique proteins and 35,023

protein–protein interactions (with self-interaction removed). The

network degree was calculated using the NetworkAnalyzer plug-in

[65] of Cytoscape package [66].

Supporting Information

Figure S1 Length distribution for the gene structure parameter

of each gene class. The figure (density plot) showed that genes with

more alternative promoters tend to be longer in all aspects of gene

structure. SP means gene with single promoter, while AP = 2,

AP = 3,4, and AP. = 5 means gene with only 2 promoters, 3 or 4

promoters, and at least 5 promoters, respectively.

Found at: doi:10.1371/journal.pone.0009482.s001 (0.27 MB

PDF)
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