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Abstract

Ongoing climate change can alter conditions for plant growth, in turn affecting ecological
and social systems. While there have been considerable advances in understanding the
physical aspects of climate change, comprehensive analyses integrating climate, biological,
and social sciences are less common. Here we use climate projections under alternative
mitigation scenarios to show how changes in environmental variables that limit plant growth
could impact ecosystems and people. We show that although the global mean number of
days above freezing will increase by up to 7% by 2100 under “business as usual” (represen-
tative concentration pathway [RCP] 8.5), suitable growing days will actually decrease glob-
ally by up to 11% when other climatic variables that limit plant growth are considered (i.e.,
temperature, water availability, and solar radiation). Areas in Russia, China, and Canada
are projected to gain suitable plant growing days, but the rest of the world will experience
losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year.
These changes will impact most of the world’s terrestrial ecosystems, potentially triggering
climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the
poorest people in the world (~30% of the world’s population) highly vulnerable to changes in
the supply of plant-related goods and services. These impacts will be spatially variable, indi-
cating regions where adaptations will be necessary. Changes in suitable plant growing
days are projected to be less severe under strong and moderate mitigation scenarios (i.e.,
RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such
disproportionate impacts on ecosystems and people.

Author Summary

Ongoing greenhouse gas emissions can alter climate suitability for plant growth, in turn af-
fecting biological and social systems. Using the latest generation of available climate pro-
jections we show that there will be fewer days with suitable climates for plant growth,
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despite an increase in days above freezing. This decline in suitable plant growing days is
due to interactions among unsuitable temperatures, light, and water availability. Our anal-
ysis shows that reductions in suitable plant growing days will be most pronounced in trop-
ical areas and in countries that are among the poorest and most highly dependent on
plant-related goods and services. Changes in suitable plant growing days will be less severe
under strong and moderate mitigation scenarios, highlighting the importance of reducing
emissions to ameliorate the biological and social impacts of these changes.

Introduction

Plant growth is a fundamental biological process that is strongly controlled by climate variables
[1-6]. Plant productivity influences the functioning of ecosystems [7], fuels the global food
web [8], and is the foundation for some of the most diverse habitats in the world [9]. Vegeta-
tion also sustains humanity [10-12], directly providing oxygen, food, fiber, and fuel (e.g., an es-
timated ~30%-40% of the biosphere production is currently consumed or coopted by humans
[13-18]) and indirectly supporting livelihoods through jobs and revenue [19]. However, plant
growth is strongly limited by climate variables such as air temperature, water availability, and
solar radiation [1-4,20-22], which are changing in response to ongoing climate change [23-
26]. These changes are concurrent with a greater human demand on the planet’s resources,
which could further stress natural ecosystems and lead to shortages in important goods and
services [13,15,27-29]. While there have been considerable advances in understanding the ex-
tent to which individual [30] and multiple [4,6,31] climate variables limit plant growth [e.g.
20,23-25,32-34], comprehensive analyses integrating climate, biological, and social sciences
are less common. Here we provide a global-scale perspective, using climate model projections
(S1 Table) and available socioeconomic and ecological data (S2 Table), to assess how projected
climate change will affect the suitability of the planet for plant growth and evaluate potential
implications of these changes for ecosystems and people.

Results and Discussion

To assess the future limiting roles of temperature, water availability, and solar radiation on
plant growth, we calculated changes in the number of days in a given year that are within suit-
able climate conditions for plant growth (i.e., suitable plant growing days) under different cli-
mate projections (see Methods; data used are described in S1-S2 Tables). We first estimated
climatic thresholds (i.e., for temperature, soil moisture, solar radiation, and the interactions of
these three factors) within which 95% of the terrestrial vegetative matter in the world is pro-
duced (Moderate Resolution Imaging Spectroradiometer [MODIS] Net Primary Production
[NPP] from 2004-2013; S2 Table; see Methods; Fig 1). We then used daily climate projections
(from the Coupled Model Intercomparison Project Phase 5 [CMIP5]) under strong (i.e., repre-
sentative concentration pathway [RCP] 2.6), moderate (i.e., RCP 4.5), and business-as-usual
(i.e., RCP 8.5) mitigation scenarios to quantify the number of days in a given year that fall with-
in climate thresholds for plant growth. We analyzed each climate variable independently as
well as their interactions. We describe results based on multimodel averages because they are
more accurate at predicting observed suitable growing days than most models alone (results
for precision and accuracy are shown in 52-S3 Figs).

When we analyzed the limiting roles of temperature, soil moisture, and solar radiation inde-
pendently, global average trends masked regional differences in the gains and losses of suitable
plant growing days. As expected, we found that at mid- and high latitudes, projected warming
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Fig 1. Climatic ranges for plant growth. Global vegetative matter produced (i.e., MODIS NPP, http://neo.sci.gsfc.nasa.gov/view.php?datasetld=
MOD17A2_E_PSN) along gradients of temperature (A), soil moisture (B), solar radiation (C), and the interactions of these three variables (D—G). Climate
data were obtained from National Centers for Environmental Prediction (NCEP) Reanalysis Daily Averages (http://www.esrl.noaa.gov/psd/cgi-bin/db_
search/DBSearch.pl?Dataset=NCEP+Reanalysis+Daily+Averages+Surface+Flux&group=0&submit=Search). Grey lines in plots A—F indicate the climatic
conditions that surround 95% of the global NPP each year between 2004 and 2013. Red lines encompass all of the yearly boundaries and define the climatic
thresholds used in our analysis. A suitable plant growing day was defined as any day falling within these climatic thresholds. Points in plot G are a random
subset (i.e., 1,000 points) of global climate conditions and resulting NPP (grey points indicate positive NPP/growth, and red points indicate negative NPP/
respiration). As illustrated, climatic conditions occurring beyond the estimated global thresholds have commonly resulted in plant respiration. See also S1
Fig. Data are provided in S1 Data.

doi:10.1371/journal.pbio.1002167.g001
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will reduce the number of days below freezing, resulting in more suitable growing days (the av-
erage global number of days above freezing will increase by 2%, 5%, and 7% under RCP 2.6,
RCP 4.5, and RCP 8.5, respectively; Fig 2A, SSA-S5D Fig, S6A-S6C Fig) [35]. However, we
also found that warming will more often exceed the upper thermal threshold for plant growth,
which will decrease the number of suitable growing days, mainly in the tropics (Fig 2A, S5A-
S5D Fig, S6D-S6F Fig, see also [35]). By 2100, the decreasing number of suitable growing days
in the tropics will offset optimistic projections at mid- and high latitudes, resulting in minimal
changes in the global average number of suitable days under RCP 2.6 and RCP 4.5 but a ~26%
reduction in the number of suitable growing days under RCP 8.5 (solid blue lines in Fig 3). For
soil moisture and solar radiation, regional differences in the number of suitable plant growing
days averaged out globally under all scenarios (solid green and yellow lines in Fig 3). Notably,
projected changes in soil moisture (Fig 2B) and solar radiation (Fig 2C) showed contrasting
spatial patterns. Areas that gained suitable days because of water availability also lost days be-
cause of solar radiation, and vice versa; this could be explained by coupled dynamics between
rainfall and cloud cover [3].

Plant growth is strongly mediated by the extent to which multiple interacting climate vari-
ables remain within suitable conditions. When looking at the interaction between temperature
and solar radiation, we found that the number of suitable plant growing days will decline more
so than either variable independently (5%, 9%, and 29% under RCP 2.6, RCP 4.5, and RCP 8.5,
respectively; dashed yellow lines in Fig 3). This steeper decline is driven mainly by patterns at
high latitudes, where gains in suitable plant growing days due to higher temperatures are offset
by the fact that those places remain limited by light (compare the intensity of blue colors in Fig
2A and 2F). In contrast, the interaction between temperature and soil moisture resulted in a
smaller reduction in suitable plant growing days than the losses due solely to temperature (0%,
5%, and 19% under RCP 2.6, RCP 4.5, and RCP 8.5, respectively; dashed blue lines in Fig 3).
This smaller decline is driven mainly by patterns in arid regions (e.g., northern Africa, Austra-
lia, and the Middle East), where losses in suitable plant growing days due to higher tempera-
tures are reduced because those locations are already limited by water availability (compare
yellow- and white-colored areas in Fig 2A and 2D). Changes in suitable plant growing days due
to the interaction between solar radiation and soil moisture were minimal (-2%, 0%, and 2%
under RCP 2.6, RCP 4.5, and RCP 8.5, respectively; dashed purple lines in Fig 3), although
there was considerable spatial variability (Fig 2E) due to the coupling between rainfall and
cloud cover. When looking at the interaction among all three climate variables, we found that
the global average number of suitable days still decreased under RCP 8.5 but less so than when
temperature was considered alone or in interaction with solar radiation or soil moisture (-2%,
1%, and 11% under RCP 2.6, RCP 4.5, and RCP 8.5, respectively; dashed red lines in Fig 3).
Gains and losses in suitable plant growing days due to projected temperature changes alone are
lessened because some regions are already limited by either solar radiation (reducing gains at
high latitudes) or water availability (reducing losses in arid regions). However, there is still an
overall loss in suitable plant growing days, with some regions facing unsuitable conditions for
multiple reasons. In addition to fewer plant growing days, unsuitable plant climate conditions
will occur sporadically throughout the year, as indicated by our metric of continuous suitable
plant growing days. We found that the longest uninterrupted number of days when all three
climate variables remained within suitable climate ranges reduced considerably under RCP 4.5
and RCP 8.5 (5%, 13%, and 35% under RCP 2.6, RCP 4.5, and RCP 8.5, respectively; solid red
lines in Fig 3).

While some areas at high latitudes (most noticeably in Russia, China, and Canada) will gain
days with suitable conditions in all three climate variables (Fig 2G, S5 Fig), many other areas
will actually become limited by multiple climatic variables. For example, areas across the Sahel
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Fig 2. Spatial changes in projected suitable days for plant growth. Changes between future (i.e., the average from 2091 to 2100) and contemporary (i.e.,
the average from 1996 to 2005) number of days with suitable climatic conditions for plant growth under RCP 8.5 (results for all RCPs shown in S5-S7 Figs;

data are provided in S2 Data). The map outline was obtained from the Central Intelligence Agency (CIA) World DataBank (https://www.evl.uic.edu/pape/data/
WDBY).

doi:10.1371/journal.pbio.1002167.g002

that are already limited by water availability will become increasingly limited by high tempera-
tures by 2100 (Fig 2). These results highlight the risk for synergistic responses and concerns
over biological and societal adaptations given the suite of physiological traits and social capaci-
ty needed to cope simultaneously with future changes in several climate variables. Reductions
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Fig 3. Global average changes in projected suitable days for plant growth. These plots illustrate the
global average number of suitable plant growing days relative to contemporary values. Data are provided in

S3 Data.

doi:10.1371/journal.pbio.1002167.g003
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Fig 4. Biological exposure to projected changes in suitable plant growing days. Violin plots show frequency distributions of projected change between
future and contemporary suitable plant growing days for all areas covered by each ecosystem; vertical colored lines indicate global median change for the
given ecosystems. These plots are simply the overlay of our plant suitable days (data are provided in S2 Data) for areas of different land uses: (http:/
webmap.ornl.gov/wcsdown/wesdown.jsp?dg_id=10006_1, http://webmap.ornl.gov/wcsdown/wesdown.jsp?dg_id=20042_6, and http://webmap.ornl.gov/
wesdown/wesdown.jsp?dg_id=20042_8).

doi:10.1371/journal.pbio.1002167.g004

in the number of days with suitable climate conditions for plant growth also underscore an in-
ternal discrepancy of Earth System Models: while these models project dramatic enhancements
of NPP [5,20,36], our results show multiple climate variables becoming limiting for plant
growth, particularly in tropical areas, which could result in considerable reductions in future
NPP (S4 Fig). This discrepancy likely reflects an overemphasis of CO, fertilization in modeling
NPP while failing to account for the limiting roles of other climatic variables and disturbances
[5,22,36]. Furthermore, reductions in plant growth due to unsuitable growing days could lead
to feedbacks whereby climate change is even more extreme, leading to even less suitable condi-
tions for plant growth. The fact that unsuitable climatic conditions will occur more sporadically
throughout the year highlights the potential for extreme events (e.g., heat waves or drought)
to truncate the growing period, which may impair plant growth and even cause mortality
[5,21,37]. Reichstein et al. [5] recently concluded that “climate extremes. . .can lead to a de-
crease in regional ecosystem carbon stocks and therefore have the potential to negate an ex-
pected increase in terrestrial carbon uptake,” further highlighting an important research area
for improvement of Earth System Models.

Most of the world’s ecosystems and cultivated areas will be negatively affected by changes in
the number of suitable growing days if climate change continues, possibly triggering climate
feedbacks. Tropical ecosystems in particular (e.g., broadleaf evergreen forests; Fig 4) will lose
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suitable growing days due to temperatures exceeding the upper limit of the thermal range

in combination with water failing to meet plant growth requirements. By 2100, for example,
broadleaf evergreen forests will lose about 3 wk of suitable growing days under RCP 2.6

(Fig 4A) but lose nearly 3 mo under RCP 8.5 (Fig 4C). Prolonged unsuitable climatic condi-
tions can prevent development of tropical forests [37] and result in tree die-offs, either directly
from intolerance to altered climate conditions or indirectly through increased vulnerability to
infestations by insects and pathogens [1,2,21]. In turn, such increased tree mortality can trigger
ecological responses, including changes in plant community composition (e.g., from sensitive
to less-sensitive species) and range contractions or expansions [2]. Unsuitable climate condi-
tions can lead to increased plant respiration, potentially turning forests into carbon sources
rather than carbon sinks [4,5]. At the same time, fewer freezing days at higher latitudes could
potentially accelerate carbon releases through microbial decomposition [38,39], and this excess
carbon might not be sequestered by plants, as higher latitudes will remain limited by insuffi-
cient solar radiation (S6G-S6I Fig). Finally, the impacts of climate change on plant growth
could alter ecological interactions among species with potential cascading effects on food webs;
integrating changes in suitable plant growing days and NPP within recently developed General
Ecosystem Models [40] could provide some insights into the magnitude of these changes.

Losses in suitable plant growing days can translate into losses of food, fiber, fuel, and associ-
ated jobs and revenue, with potentially negative effects in countries with high reliance on those
goods and services, particularly those with minimal capacity to adapt. Here, we assessed
human vulnerability to changes in the number of suitable plant growing days by using a com-
mon method that distinguishes populations depending on their (i) “exposure” to environmen-
tal change, (ii) “dependency” on potentially impacted goods and services, and (iii) social
“adaptability” [41-44]. We used changes in suitable plant growing days (i.e., between contem-
porary and 2100, Fig 2G) as our metric of exposure and collected agriculture-related and eco-
nomic data to quantify dependency and adaptability (see Methods). Under RCP 2.6, no
country will experience high losses or high gains in suitable plant growing days (i.e., reductions
or gains greater than 30% of the current suitable growing period, S3 Table). However, human
vulnerability will be much greater under RCP 8.5. If climate change were to continue under
this scenario, ~3,400 million people will live in countries facing reductions of 30% or more suit-
able plant growing days; of those people, ~2,900 million are highly dependent on plant-related
goods and services, and ~2,100 million of those are in low-income countries (S3 Table). A few
countries in the Americas and all countries in Oceania, Asia, and Africa, with the exception of
Australia, New Zealand, Russia, South Africa, Namibia, Algeria, and Libya, are highly vulnera-
ble to reductions in plant growing days (Fig 5). Under RCP 8.5, only ~270 million people live
in countries projected to experience medium to high gains (i.e., greater than 10%) in the num-
ber of suitable plant growing days (e.g., Iceland, Norway, Sweden). Vulnerability for all coun-
tries is shown in Fig 5, S3 Table, and S2 Data.

Our study adds to the understanding of projected changes in climate suitability for plant
growth, highlighting where ecosystems and human populations could be more vulnerable to
such changes. Although our study confirms a benefit of ongoing climate change on plant grow-
ing conditions at higher latitudes because of fewer freezing days, this considerably underesti-
mates the full extent of consequences of projected climate changes, particularly under
business-as-usual projections. Consideration of an upper thermal limit and interactions with
plant growth thresholds in additional climatic variables resulted in the opposite trend: global
decreases in the number of suitable plant growing days by 2100 (Fig 2). The unprecedented
rate and number of climate variables becoming limiting for plant growth could challenge the
capacity of species to adapt, with the potential to negatively impact terrestrial ecosystems and
trigger climate feedbacks. Potential reductions in plant growth associated with fewer plant

PLOS Biology | DOI:10.1371/journal.pbio.1002167 June 10,2015 8/15
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Fig 5. Human vulnerability to projected changes in suitable plant growing days. Human vulnerability is quantified as the combined effect of
dependency, exposure, and adaptability, which are displayed along a red-green-blue gradient (colors in the triangle correspond to colors in the map). Points
in the triangle represent each of the 194 countries analyzed, with the positions of United States (U), China (C), and Brazil (B) indicated for reference. The map
outline was obtained from the CIA World DataBank (S2 Table). Data are provided in S4 Data.

doi:10.1371/journal.pbio.1002167.g005

growing days are particularly worrisome given that the largest impacts are expected to affect
the poorest and most agriculturally dependent countries in the world (Fig 5). These effects will
be further exacerbated by increasing human appropriation of NPP associated with human pop-
ulation growth (Fig 6, S4 Fig). On a positive note, our study also indicated that projected
changes in suitable plant growing days are minimal under RCP 2.6, underscoring the impor-
tance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.
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=== Projected human appropriation of NPP
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Fig 6. Projected changes in NPP under different scenarios of emissions and human consumption of terrestrial NPP. Plots A—C show the global
average change in NPP under different scenarios before (blue lines) and after (red lines) accounting for unsuitable plant growing days. Grey lines indicate the
projected global human appropriation of terrestrial NPP (i.e., modern per capita appropriation of NPP multiplied by human population projections under
different scenarios). Additional details are shown in S4 Fig. Data are provided in S5 Data.

doi:10.1371/journal.pbio.1002167.g006
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Methods
Quantifying Plant Growth Climatic Thresholds

We used the rate at which terrestrial vegetative matter is produced (NPP) as a proxy for plant
growth. Derived values of NPP were obtained from 8-d averaged MODIS data (the finest tem-
poral resolution available; data source in S2 Table). MODIS NPP data are modelled using re-
motely sensed satellite data and have been cross-validated by other studies [45]. To estimate
climate thresholds for plant growth, we overlaid 8-d maps of derived NPP onto 8-d maps of ob-
served temperature (i.e., near-surface air temperature), water availability (using soil moisture
in upper 10 cm of the soil column as proxy), and solar radiation (i.e., surface downwelling
shortwave radiation) (sources provided in S2 Table). This allowed us to calculate the total
amount of 8-d NPP produced along gradients of each of the three climate variables and their
interactions. We defined NPP climatic thresholds as the boundaries that surround the climatic
conditions under which 95% of the world’s NPP occurs for each variable (Fig 1A-1C) and
their interactions (Fig 1D-1G), for each year between 2004 and 2013. For our analysis, we used
the boundaries encompassing all of the yearly boundaries (Fig 1) and define suitable growing
days as those days in which projected climatic conditions fall within that multiyear boundary.
While some plants grow under extreme conditions, relatively little NPP occurs in these primar-
ily cold and arid places (as noted by the steep declines of NPP along climatic variables in Fig 1);
using more than 95% of global NPP to include these extremist plants will considerably broaden
the climate thresholds and overestimate global suitability for the majority of plant growth. An
upper threshold for radiation was rarely exceeded (S7B Fig), but we retained it to maintain con-
sistency with the analysis of other climatic variables. To compare global thresholds to ecosys-
tem-specific thresholds, we repeated the above approach using NPP within cells that overlap
each of 14 land-cover types (based on satellite-derived maps of dominant ecosystem type; S8
Fig, data sources provided in S2 Table under “Land use data”). We used global thresholds to
calculate suitable plant growing days, as they encompassed the bulk productivity of most eco-
systems (S8 Fig). However, some ecosystems that already frequently experience extreme condi-
tions surpassed global thresholds (e.g., semidesert wooded grassland/shrubs, S8 Fig),
suggesting that these ecosystems could better cope with future climate projections. Climatic
thresholds were also very similar if they were weighted by the area where climatic conditions
occur (S1 and S8 Figs). All data sources are listed in S2 Table.

Calculating Suitable Plant Growing Days

To estimate the number of suitable days for plant growth each year, we counted the total or con-
secutive number of days in a year in which climatic conditions (i.e., temperature, soil moisture,
solar radiation, and the interactions of these three variables) fall within the global thresholds for
plant growth. We obtained daily projections of temperature, soil moisture, and solar radiation
from recent Earth System Models developed as part of the Coupled Model Intercomparison
Project Phase 5 to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change (S1 Table). Daily projections run from 1950 to 2005 simulating anthropogenic and nat-
ural climate forcing (i.e., “historical” experiment) and from 2006 to 2100 under three alternative
representative concentration pathways: RCP 2.6, RCP 4.5, and RCP 8.5. CO, concentrations
will reach ~400, ~530, and ~930 ppm by 2100, under RCP 2.6, RCP 4.5, and RCP 8.5, respec-
tively. As of November 2014, there were 14 Earth System Models from 12 centers in eight coun-
tries that modeled temperature, soil moisture, and solar radiation at a daily resolution for at
least one of the three RCPs (S1 Table) (Note: all Earth System Models that we used include feed-
backs of plant production on water balance). In total, for all variables and projections, we
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processed ~1.8 million daily global maps. We quantified the number of suitable plant growing
days independently for each model and averaged the results to estimate the multimodel average.
Changes in the number of suitable plant growing days (Fig 2) were calculated by subtracting
contemporary (1996 to 2005) from future averages (2091 to 2100); decadal averages were cho-
sen to minimize aliasing by interannual variability. To assess exposure of different terrestrial
ecosystems to projected changes in climate suitability (Fig 4), we calculated the mean and fre-
quency distribution of changes in suitable plant growing days (Fig 2A-2C and 2G) for cells
dominated by each of 14 land-cover types. All data sources are indicated in S2 Table.

Assessing Human Vulnerability

“Vulnerability” was assessed in the traditional sense of determining human “exposure” to envi-
ronmental change, “dependency” in terms of food, jobs, and revenue at stake, and “adaptability”
in terms of wealth, assuming that richer countries will have more capacity to respond [41-43].
“Exposure” was quantified as changes in climate suitability for plant growth categorized for
each country as follows: “high loss” for countries experiencing reductions in suitable plant
growing days in excess of 30%, “medium loss” for countries experiencing losses of 30% to 10%,
“no change” for countries that gain or lose up to 10%, “medium gain” for countries gaining 10%
to 30%, and “high gain” for countries gaining in excess of 30% more days. “Dependency” was
quantified by adding three proportional metrics for each country: percentage of gross domestic
product contributed by agricultural revenue, percentage of the workforce in the agricultural sec-
tor, and percentage of NPP appropriated by people (from food, paper, wood, meat, fiber, and
animal by-products) [14]. Countries were categorized as having “low,” “medium,” or “high” de-
pendency if their cumulative percentages in those three goods and services ranged from 0% to
33%, >33% to 66%, or >66%, respectively. Finally, “adaptability” was quantified as per capita
gross domestic product, under the assumption that richer countries will have greater access to a
wider range of adaptive strategies. For the purpose of classification, we used the World Bank
categorization of low-, medium-, and high-income countries depending on whether annual per
capita gross domestic product was less than US$4,000, between US$4,000 and US$12,000, or
greater than US$12,000, respectively. All data sources are shown in S2 Table.

General Considerations and Caveats

Variability in thresholds. To project global plant growth suitability, we used thresholds
broad enough to encompass the current sensitivities of most plants (S8 Fig) and kept them stat-
ic for comparison, but we recognize that those thresholds can change. Thresholds could change
either at the species level (through genetic adaptation, but see [46]) or at the community level
(through replacement of species with those that are more tolerant today [2] or those that have
greater adaptive capacity [47]). It would be expected that more diverse ecosystems will have
greater capacity to deal with projected unsuitable climates compared to monoculture systems
(i.e., more diverse ecosystems should have a greater variety of thresholds [7]). This highlights
the vulnerability of many agricultural systems and associated human vulnerability to future cli-
matic changes, as necessary adjustments to farming practices (e.g., using more tolerant crop va-
rieties, irrigation, etc.) are likely to be costly and some of the most extreme reductions in plant
growing days are expected in tropical countries with limited economic capacity (Figs 2 and 5).
Interactions among CO, and climatic variables could also broaden or narrow modern thresh-
olds. For instance, elevated CO, is known to increase resistance to drought by plants closing
their stoma [48,49]. However, under warming conditions the closing of the stoma may induce
overheating (by preventing transpiration) and/or if sustained could decrease carbon fixation
[50,51]. Likewise, the temperature ranges over which elevated CO, enhances plant growth are
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strongly mediated by water availability [49]. Our paper described climate suitability for plant
production overall, but we also provide a web-user interface that allows for repetition of our
analysis with tolerance thresholds related to different adaptation scenarios and species- and/or
ecosystem-specific thresholds (http://128.171.126.15/growingdays/index.html).

Correlative nature of our approach. Our analysis uses the modern distribution of where
plants grow and assumes that climatic conditions at those locations are suitable. Although this
is a correlative approach, it provides important relative insights into how plant growth could
be affected by alternative future climates.

Additional global sources of NPP. It should be noted that a major source of the world’s
productivity includes freshwater and marine plants, which could not be incorporated into the
scope of this study because they are not limited by the same climatic conditions (e.g., soil mois-
ture) as terrestrial NPP. Our approach could be replicated for those systems using the climatic
variables that limit their productivity. This would represent another interesting study.

Population projections and human vulnerability. Our calculations for the number of
people vulnerable to projected changes in suitable plant growing days were based on current
population numbers (as of 2012), but populations are projected to increase to 9,600-12,300
million people by 2100 [52]. These projections suggest that the number of people vulnerable to
projected changes in suitable plant growing days will be higher than indicated in this paper.
Human vulnerability could be further exacerbated because projected increases in human popu-
lation are likely to result in a higher demand for diminishing plant-associated resources (Fig 6,
S4 Fig, [29]).
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