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Numerous biological processes in a cell are carried out by protein complexes.

To understand the molecular mechanisms of such processes, it is crucial to

know the quaternary structures of the complexes. Although the structures of

protein complexes have been determined by biophysical experiments at a rapid

pace, there are still many important complex structures that are yet to be

determined. To supplement experimental structure determination of

complexes, many computational protein docking methods have been

developed; however, most of these docking methods are designed only for

docking with two chains. Here, we introduce a novel method, RL-MLZerD,

which builds multiple protein complexes using reinforcement learning (RL). In

RL-MLZerD a multi-chain assembly process is considered as a series of

episodes of selecting and integrating pre-computed pairwise docking

models in a RL framework. RL is effective in correctly selecting plausible

pairwise models that fit well with other subunits in a complex. When tested

on a benchmark dataset of protein complexes with three to five chains, RL-

MLZerD showed better modeling performance than other existing multiple

docking methods under different evaluation criteria, except against AlphaFold-

Multimer in unbound docking. Also, it emerged that the docking order of multi-

chain complexes can be naturally predicted by examining preferred paths of

episodes in the RL computation.
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Introduction

Proteins interact with other proteins when they perform biological functions in a cell.

Therefore, knowing how proteins physically interact with each other is an essential step

toward molecular- and atomic-level understanding of functional mechanisms of proteins.

A three-dimensional (3D) picture of individual proteins and protein complexes can be

determined by biophysical experiments such as X-ray crystallography and cryogenic

electron microscopy. However, experimental methods are often time-consuming and

expensive. Moreover, determining the structures of multimeric protein complexes is often

found to be extremely difficult. As a result, there are still many important protein complex
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structures in the human proteome and the proteomes of other

organisms which are not yet determined by experiment.

To supplement experimental approaches, computational

protein docking methods have been studied extensively in the

past few decades (Dominguez et al., 2003; Aytuna et al., 2005;

Venkatraman et al., 2009; Kundrotas and Vakser, 2010; Moal and

Bates, 2010; Kozakov et al., 2017). The progress of protein

docking prediction has been regularly monitored by the

community-wide assessment, the Critical Assessment of

PRedictions of Interactions (CAPRI) (Lensink et al., 2020).

Despite the steady progress of the field as observed in CAPRI,

the majority of developments have focused on pairwise docking.

Methods for assembling three or more chains have been receiving

less attention.

CombDock (Inbar et al., 2005) was the first method which

performed multimeric protein docking. In CombDock, first

pairwise docking of individual subunits is computed. Then,

hierarchical combinatorial assembly of subunits is performed

to build a full complex structure. Our group developed Multi-

LZerD (Esquivel-Rodríguez et al., 2012), which constructs

multimeric protein complex models using a genetic algorithm

from pairwise solutions modelled by LZerD (Venkatraman et al.,

2009). These two methods can model hetero complexes where

each chain is different. There are also multiple protein docking

methods that are limited to symmetric assembly (Popov et al.,

2014) (Ritchie and Grudinin, 2016) (Schneidman-Duhovny

et al., 2005) (Pierce et al., 2005). These methods use user

input of the symmetry type to identify binding interface in an

input structure and assembles multiple copies of the input

structure into a complex.

The major challenge of docking multiple chains is the

combinatorially larger number of possible docking

conformations compared to pairwise docking cases. In

multimeric protein docking, different patterns of interacting

subunit pairs (topologies) need to be considered, since not all

subunit pairs are in contact in a complex. Symmetric assembly is

more tractable than asymmetric assembly because it has

additional constraint in generating complexes but still has

more modeling steps than pairwise docking.

Recently, the appearance of AlphaFold (Jumper et al., 2021),

which made a notable breakthrough in single-chain protein

structure prediction (Pereira et al., 2021) has enabled new

methods for multimeric protein assembly. ColabFold (Mirdita

et al., 2021) adapted AlphaFold for multi-chain docking by

connecting the sequence of each chain with linker regions and

folding the whole complex as if it were a single protein structure.

AlphaFold-Multimer (Evans et al., 2021) uses most of the original

deep learning framework of AlphaFold, which was retrained

specifically for multiple chain protein docking. In their

manuscript posted on bioRxiv (Evans et al., 2021), it was

applied to complexes with two to three chains.

In this work, we developed a new multiple-chain docking

method, Reinforcement Learning forMultimeric protein docking

with LZerD (RL-MLZerD). RL-MLZerD approaches the problem

in a similar manner as our previous work, Multi-LZerD, where

precomputed pairwise docking poses (decoys) are selected and

assembled into complex structures. The novelty of this work is

the adaptation of RL to perform the search of the conformation

space.We found that RL is better suited for exploring the docking

space than the genetic algorithm used in Multi-LZerD because

RL is able to identify individual correct decoys through multiple

episode runs, which can effectively shrink the search space as the

number of runs is increased. Also, since an assembly episode can

resemble the physical process of protein complex formation, the

assembly order of multiple chain complexes can be directly

predicted based on assemble path that is favored during

docking. RL-MLZerD was tested on a dataset of 30 protein

complexes with three to five chains. The average root mean

square deviation (RMSD) of the best assembled model across all

targets is 2.50 Å and 6.30 Å for bound and unbound docking,

respectively. RL-MLZerD showed a better performance when

compared against CombDock and Multi-LZerD for both bound

and unbound cases. We further compared RL-MLZerD against

AlphaFold-Multimer and ColabFold. In bound cases, RL-

MLZerD outperformed ColabFold, we observed similar

performance between the AlphaFold-Multimer and RL-

MLZerD. However, for unbound cases AlphaFold-Multimer

showed better modeling accuracy against RL-MLZerD. Finally,

we show that the assembly order of complexes can be predicted

with 76.5% accuracy by RL-MLZerD when tested on complexes

in the dataset that has the assembly order information.

Materials and methods

Dataset construction

We benchmarked RL-MLZerD on 30 multimeric protein

complexes. These protein complexes were selected from PDB

(Berman, 2000) using the following criteria: First, we selected

complexes with 3–5 chains in the biological assembly

confirmed in the PISA server (Krissinel and Henrick,

2007). Complexes with DNA/RNA and those with a short

subunit of fewer than 10 residues were removed. Complexes

were grouped if any chain in one had over 25% sequence

identity to any chain in another. Subunits of each complex

were rotated and shifted randomly from the docked

conformations in the PDB file to remove potential bias to

the starting conformation. The PDB entry list is provided in

Supplementary Table S1.

Pairwise docking

RL-MLZerD builds protein complex models in two steps.

First, it constructs a pool of pairwise decoys for each pair of
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chains. In the second step, the pool of pairwise decoys is

searched and different combinations of decoys are explored as

assembly episodes in the RL framework. The resulting

assembled models are evaluated and rewards are

propagated in the Q-table of RL, which records preferred

decoys with high probability scores, to guide efficient searches

of assembly.

In the pairwise docking stage, LZerD was used to generate

candidate decoys for each pair of chains. LZerD generates

hundreds of thousands of models for an input structure pair,

which were clustered to reduce similar solutions. Two decoys

were clustered if they had a Cα RMSD of 4.0 Å or smaller. We

used this cluster criterion because it worked well in past

rounds of CAPRI (Christoffer et al., 2020). A representative

decoy with the best LZerD docking shape score was selected

for each cluster (Venkatraman et al., 2009). Then, decoys were

ranked by the sum of score ranks (the ranksum score)

(Peterson et al., 2018a) with GOAP (Zhou and GOAP,

2011), DFIRE (Zhou and Zhou, 2009) and ITScorePro

(Huang and Zou, 2011).

For a target, we generated three sets of random poses of

individual subunits and generated pairwise decoys using

LZerD for each set separately. Each of the three sets of

decoys were ranked by the ranksum score, and the top 333,

333, and 334 decoys from each of the three sets, respectively,

were combined to construct a pool of 1,000 pairwise decoys.

The 1,000 decoys for each subunit pair were then used for the

RL multiple docking phase.

FIGURE 1
Overview of RL-LZerD. In the first step, pairwise docking of every pair of subunits is performed using LZerD. 1000 decoys are selected for each
pair. In the subsequent step, pairwise decoys are assembled using reinforcement learning. When an assembly of full subunit complex is successful
without too many clashes, reward maybe propagated back to assembly states and decoy states used along the episode.
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Assembling pairwise decoys with
reinforcement learning

Generated pairwise decoys were assembled with the RL

framework shown in Figure 1. The pseudo-code is provided

in Figure 2. A docking process is represented by an episode in the

RL, which makes choices of two types of states along the path.

The first one is called assembly states (circles in the diagram in

Figure 1), which denote subunit combinations, e.g., AD > AC

(adding C to the complex by choosing a decoy of the AC pair).

Starting from an empty state at the top of the diagram, subunits

are added one at a time by choosing a pairwise decoy until a

terminal state is reached, where all subunits are assembled. The

second type of states is called decoy states (an array of boxes in

Figure 1), which denotes decoys in the pool generated for each

subunit pair. Thus, an episode consists of a set of selections of

assembly states and a decoy state at each assembly state.

Accordingly, there are two types of actions, one that selects

the next assembly state and the other that specifies a decoy from a

decoy pool for a subunit pair. The next assembly state is selected

with the Upper Confidence Bound (UCB) policy (Kocsis and

Szepesvári, 2006), which tries to balance exploitation and

exploration with the following score:

vi + C ×

����
lnN
ni

√
(1)

where vi is the value of assemble state i, C is a hyper-parameter,

which was set to 1.0 at the beginning and slowly reduced by 1.0/

(the total number of episodes) after each episode is performed. N

is the total number of visits to the parent state of the assemble

state i, ni is the number of visits to the assembly state i. When N is

small at the early stage of computation, states are selected mainly

by vi, while less-visited states are more explored as N becomes

larger. At the beginning of the computation when values are not

accumulated yet, the next assembly state is randomly chosen.

The second type of action deals with the decoy state. Each

time an assembly state is visited, a decoy state is selected from a

pool using ε-greedy (Tokic, 2010) as the policy. The ε-greedy
policy dictates that the agent exploits the best action (i.e. the

decoy with the highest shape score) among possible choices most

of the time (i.e., 1-ε) but randomly select a decoy state with

probability ε. We set ε to 1.0 at the beginning and slowly reduced
it by 1.0/(the total number of episodes) after each episode was

performed.

Here we briefly walk through the algorithm (Figures 1, 2).

The docking procedure starts from a root node in Figure 1, and

the next assembly state is selected according the UCB policy,

followed by a selection of a decoy state. This procedure is iterated

until the full complex is built. The developed full chain complex

model is evaluated by a scoring function that is a linear

combination of four scoring terms, a molecular mechanics

potential (Esquivel-Rodríguez et al., 2012), the solvent

accessible surface area, the radius of gyration (RG), and atom

clash counts. RG is included to encourage compact assemblies.

An atom clash is recognized if two heavy atoms are closer than

3 Å to each other. Weights of the terms were determined by a

logistic regression classifier with 4-fold cross validation trained

on complex models of two quality classes, with an interface

RMSD (as defined in the CAPRI evaluation (Lensink et al., 2020))

less than or over 4.0 Å.

During an episode, a partially-assembled complex is checked

for atom clashes due to the newly selected action at the decoy

state. If the resulting partially-assembled complex at the state has

a number of atomic clashes higher than the threshold (n−1) *

100, where n is the number of assembled protein chains, the

newly selected decoy state is rejected and replaced with a different

FIGURE 2
Pseudocode of RL-MLZerD. For each episode, AState_list
represents the assemble state visited for the episode,DSAction_list
represents the selected actions (decoys) for each decoy state. The
build_model function takes the AState_list and DSAction_list
and returns the assembled model. Fitted_score computes a score
of a model. Update_state_table updates the state value estimate
for the assemble state that participated in building the model,
update_action_qtable uses the Bellman Fold equation to update
the decoy state actions value estimate that participated in the
model building.
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decoy that is ranked among the top 5 by Q score until an

acceptable model is found. The modeling process moves on to

the next assembly state to add the next subunit if the top 5 decoy

selections still result in a model with a high number of atomic

clashes.

Once an episode generated a complex model, the model

evaluation score is checked to see if it has the best score that has

been discovered thus far from all episodes. This signifies a newly

discovered model with the best score, and a such model is

assigned a full reward of 100 points. Any other model score

that falls short of this criterion is assigned a partial reward if the

Metropolis criterion is met:

P � exp( −ΔE
kbT

) (2)

Where ΔE is the score difference between the new model and the

current best model. We report the results with a normalization

factor, kbT, which was set to 6.0. A complex model is accepted if P

is larger than a random number generated between 0 and 1. As a

variation of the method, we also report results where we set P to a

constant value of 0.6, thereby giving a constant 60% chance of

acceptance for assembled model regardless of the model score.

If a model score is close to the current best, it has a high

chance to be accepted even if it is lower than the best. If the model

is accepted, a partial reward is assigned by discounting the

100 points based on the calculated probability to reflect the

difference between the current best score and the score of the new

model. On the other hand, a reward of 10 points is provided if the

model does not pass the metropolis criterion. This is because the

model is geometrically possible (if it is not rejected by high

number of atom clashes) and thus we do not want to penalize the

path that generated the model. A penalty reward of −2 is assigned

if the model is rejected due to a high number of atomic clashes.

Thus, unlike conventional RL methods where the goal is fixed,

the goal of RL-MLZerD is constantly being updated based on the

current best discovered model.

Parameters used in RL, namely, the normalization factor

(Eq. 2) set to 6.0, the full reward set to 100, the reward of

10 given to a rejected model, and the penalty of −2, were

determined by a small number of tests on a couple of targets.

To examine how the different parameters affect to the results,

in Supplementary Table S2 we examined an exhaustive

108 combinations of these four parameters on nine targets.

The parameter values did not affect to the modeling results for

two targets. It turned out that the parameters we selected were

the most common parameter values individually that worked

best across the nine targets.

At last, we explain how values are updated in the RL

framework. Values for assembly states, vi used in Eq. 1, in

eligible states are updated at the end of an episode as follows:

vi � vi + η[rt], ni � ni + 1 (3)

Where η is the learning rate, set to 1.0; rt is the reward assigned

to the complex model at the end of the episode (e.g.,

100 points). ni is the number of times the assembly state

was visited. The eligible states that are updated are those

which participated in the model building path of the episode.

According to Eq. 3, the same reward value is added to all the

eligible states along the episode.

The reward obtained at the end of the episode is also

propagated to decoy states selected. The update is based on

TABLE 1 RMSD of models for the bound docking cases.

PDB-ID RLMZD RLMZD-M M-LZerD CombDock

1A0R (3)a 0.87 (0.87)b 0.87 (0.87) 1.0 (0.87) 21.53 (17.75)

6GWJ (3) 0.88 (0.81) 2.48 (0.81) 0.88 (0.88) 15.51 (10.52)

1VCB (3) 1.38 (1.33) 1.31 (1.31) 1.06 (0.93) 14.67 (11.30)

1A6A (3) 0.74 (0.74) 0.74 (0.74) 0.74 (0.74) 13.04 (13.04)

1IOD (3) 6.33 (1.85) 5.32 (1.85) 5.32 (1.85) 17.44 (10.09)

1NVV (3) 0.94 (0.94) 0.94 (0.94) 1.25 (0.90) 10.82 (10.82)

4YX7 (3) 1.60 (1.60) 1.64 (1.64) 1.65 (1.26) 7.56 (7.56)

2H47 (3) 8.75 (1.97) 5.84 (4.43) 11.16 (2.49) 20.71 (16.13)

2GD4 (3) 1.14 (1.14) 19.16 (5.70) 8.83 (8.66) 8.47 (8.47)

2ASS (3) 3.92 (3.92) 3.92 (3.92) 4.73 (1.26) 22.55 (18.02)

1P3Q (3) 1.37 (1.37) 10.66 (3.12) 11.05 (5.4) 8.2 (8.2)

1JSU (3) 0.84 (0.84) 18.93 (3.51) 0.88 (0.88) 14.81 (14.81)

1EPT (3) 1.23 (1.23) 1.78 (1.78) 5.45 (5.45) 16.52 (14.95)

1RHM (4) 1.67 (1.67) 1.47 (1.47) 1.43 (1.43) 17.58 (17.58)

1NNU (4) 1.47 (1.47) 20.69 (5.26) 2.75 (1.47) 17.95 (17.16)

1QGW (4) 14.19 (9.26) 3.77 (3.77) 19.06 (11.07) 21.84 (20.02)

1CYD (4) 1.66 (1.66) 0.90 (0.90) 0.87 (0.87) 21.14 (16.92)

1IZB (4) 1.03 (0.95) 1.03 (1.02) 9.56 (1.02) 11.79 (9.35)

6MWR (4) 25.27 (2.6) 23.09 (3.02) 25.66 (21.28) 25.06 (23.92)

3LL8 (4) 1.31 (1.21) 1.31 (1.21) 8.9 (1.16) 23.33 (22.22)

4IHH (4) 10.12 (10.1) 32.71 (16.70) 35.85 (12.98) 34.38 (28.53)

6RLX (4) 8.59 (5.45) 8.31 (4.84) 8.65 (7.11) 12.13 (10.64)

1GL2 (4) 6.64 (2.22) 10.28 (4.52) 26.38 (15.19) 16.49 (13.36)

3UAI (4) 10.8 (2.97) 11.63 (2.60) 1.01 (1.01) 33.49 (16.76)

1D1I (5) 7.92 (1.27) 7.75 (4.58) 8.22 (2.18) 15.15 (13.93)

1CT1 (5) 1.32 (1.31) 1.68 (1.60) 1.50 (1.46) 19.60 (14.24)

1CN3 (5) 1.42 (1.15) 1.22 (1.15) 1.36 (1.36) 24.61 (11.62)

1W85 (5) 7.43 (4.76) 7.35 (4.19) 18.64 (7.25) 32.74 (27.92)

4FTG (5) 1.80 (1.80) 1.39 (1.30) 1.18 (1.18) 11.34 (11.34)

4RT4 (5) 6.44 (6.44) 12.25 (8.71) 10.19 (8.70) 15.80 (12.91)

Avg. (Å) 4.64 (2.50) 7.35 (3.25) 7.83 (4.27) 18.21 (15.50)

≤8.0 Åc 24 (28) 20 (28) 17 (24) 1 (1)

RLMZD, RL-MLZerD with a fixed P of 0.6; RLMZD-M, RL-MLZerD with Metropolis

criterion;M-LZerD,Multi-LZerD. The best (smallest) RMSD of top 5 rankedmodels are

reported.
aThe number of chains of the complex is shown in the parentheses with a PDB ID.
bThe numbers shown in the parentheses is the best RMSD among all the models

generated before clustering by the method. The total number of models generated is

provided in Supplementary Table S3.
cThe number of targets with RMSD ≤ 8.0 Å is counted.

Best values in a row are shown in bold.
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the temporal difference using the Bellman-Ford Equation

(Sutton and Barto, 1998):

New DSAqtable(s, a) � DSAqtable(s, a) + α[R(s, a)
+ γmaxDSAqtable(s′, a′) − DSAqtable(s, a)]

(4)
where s is the assembly state, a is the selected action (decoy) for

the assembly state. New DS Aqtable(s, a) is the updated Q score

for the assembly-decoy state pair, DS Aqtable(s, a) is the old Q

score, α is the learning rate, where we use an adaptive learning

rate which decays from 1.0 to 1.0 * 0.85(episode/1000) after every

1000 episodes. R(s, a) is the reward. For a terminal state, it is the

reward given to the episode and it is 0 for all intermediate states. γ
is the discount rate for future rewards, which was set to 0.25.

max DS Aqtable(s′, a′) is the maximum score among decoys (a′)
of the next state visited s’.

Typically, 1500 to 12,000 models are generated for a

target complex. They are clustered by LB3DClust (Terashi

et al., 2012), and are then ranked by the sum of score ranks by

the scoring function mentioned above and the VoroMQA

score (Olechnovič and Venclovas, 2017). For each cluster,

the best scoring model was selected as the representative.

Running Multi-LZerD and CombDock

Multi-LZerD was run using the same pairwise decoy set as

RL-MLZerD. As for CombDock, we ran it three times each

with one of the same three random poses of subunits. The

three runs for any given target produced a combined

100–300 models. The models were gathered and ranked by

their docking scores, which were written in output files named

combdock.results. Thus, the input subunit structures of

Multi-LZerD and CombDock were the same as RL-MLZerD

for both bound and unbound docking results.

Results

We first discuss results of bound cases, where individual

subunit structures were extracted from the PDB files. Next, we

FIGURE 3
Examples pairwise decoy usage in episodes in RL. In the three target examples, we showed the fraction of pairwise decoys with an RMSD less
than 4.0 Å (called hits, e.g., A-B Hits for hits for A-B chain complex) that were selected within a window of 200 accepted episodes. We also counted
decoys that were within the top 10 energy ranking (called Energy, e.g., A-B Energy), which have a low energy among other decoys (but not
necessarily with a low RMSD). The percentage of the use of a decoy was averaged by a window of 100 episodes. Episodes that were terminated
due tomany clashes were not counted. The green star “*” at the top of the panel represents the episode where the best RMSDmodel was found. The
colored square boxes at the top of each plot represents RMSD ranges of models generated at along the episodes: yellow, 0–2 Å; orange 2–4 Å; light
blue, 4–6 Å; dark blue, 6–8 Å; empty, > 8 Å (A), 1A0R (a 3 chain complex; bound case); (B), 1IZB (a 4 chain complex; bound case); (C), 6RLX (a 4 chain
complex; bound case); (D), 1A0R (unbound); (E), 1IZB (unbound); (F), 6RLX (unbound).
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report docking results of unbound cases where the starting

structures were altered from bound cases. Finally, we discuss

the implications of reinforcement learning for predicting

assembly paths of complexes.

Bound docking results

The docking results on bound cases are summarized in

Table 1. The best (smallest) RMSD among the top 5 scored

models was reported for each target. For evaluating the

performance for a target, we mainly considered the best

model among the top 5 ranked models following the CAPRI

evaluation. In parentheses after this RMSD, we also provided the

best RMSD achieved among all the models generated before

clustering. The total number of models generated is provided in

Supplementary Table S3.

As mentioned in the previous section, we designed two

variations of RL-MLZerD, one that used a fixed acceptable

probability (P) of 0.6 in Eq. 2 (RLMZD in Table 1) and the

other that used the Metropolis criterion with a kbT value of 6.0

(RLMZD-M). On average, the former (with the fixed P) had a

lower RMSD value of 4.64 Å than the latter, which had 7.35 Å.

When RMSDs of individual targets were compared, the two

versions of RL-RMSD showed a lower RMSD than the other for

the same number of cases, 12 cases each. We also counted the

number of targets which yielded a model with an RMSD less than

8.0 Å, to distinguish the models where the complexes have

essentially same interaction modes between chains. RL-

MLZerD had 24 (80.0%) such cases while RL-MLZerD-

Metropolis had 20 (67%) cases. Therefore, overall, RL-

MLZerD showed better performance compared to RL-

MLZerD-Metropolis. The modeling accuracy did not have

apparent correlation with the secondary structure content of

target complexes (Supplementary Figure S1). Furthermore, the

presence of an ion at the interface of the protein complex did not

affect the modeling accuracy of RL-MLZerD with statistical

significance (Supplementary Table S4).

To understand how effective RL was in identifying the best

combinations of pairwise decoys, in Supplementary Table S5 we

compared the best (lowest) RMSD generated by RL-MLZerD

with the best possible RMSD achievable from the pairwise decoy

pool used. The best possible RMSD for a complex target was

approximated by selecting the best RMSDmodel from exhaustive

combinations of five best pairwise decoys of each pair. For 83.3%

(25/30) cases, a model within 1.0 Å RMSD was generated by RL-

MLZerD with an average RMSD difference of 0.79 Å.

Next, we compared the two versions of RL-MLZerD with

Multi-LZerD and CombDock, two existing methods that are

designed for modeling hetero multimer complexes. Models by

Multi-LZerD were assembled from the same pairwise decoy sets

as RL-MLZerD, which were generated from three random pose

FIGURE 4
Energy distribution vs. RMSD. The x-axis shows the model RMSD while the y-axis is the model energy. All the models generated are plotted.
Results for the same three targets used in Figure 3 were shown. (A), 1A0R (bound case); (B), 1IZB (bound); (C), 6RLX (bound); (D), 1A0R (unbound
case); (E), 1IZB (unbound); (F), 6RLX (unbound).
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subunit poses. In terms of the average RMSD among the top

5 models, RL-MLZerD (with p = 0.6) had the lowest value,

4.64 Å, followed by RL-MLZerD-Metropolis (7.35 Å), and then

Multi-LZerD (7.83 Å), and CombDock was the last (18.21 Å).

This order is consistent when the best RMSD value among all

generated models (shown in the parentheses in Table 1) was

considered.

To understand how RL worked, in Figure 3 we analyzed how

RL selected pairwise decoys along episodes. We examined how

often good decoys (called hits), i.e. pairwise docking models

within a 4.0 Å RMSD from the native, and the top 10 best energy

models were selected from decoy pools of each subunit pair. The

first example (Figure 3A) is a successful three-chain complex

target, 1A0R, where we obtained a near-native model of 0.87 Å.

For this target, hits for all three chain pairs were increasingly

more selected as the episode progressed, indicating the RL

algorithm successfully prioritized the hits. The color bar at the

top of the plot is colored almost entirely in yellow except for the

start of the episodes, indicating near-native models with a less

than 2.0 Å RMSD were generated throughout the process. The

next example (Figure 3B) showed an interesting history of

episodes. In this four-chain complex, hits for A-B (pink) and

C-D (orange) were increasingly selected to reach a usage of 30%

until around the 5500th episode, which guided successful model

generation of low RMSD values (color bar). The best RMSD

model was constructed at this point as shown with the star.

However, after that point, decoys of different chain pairs that

have a low energy (dashed lines) but structurally incorrect (not

hits) have dominated the usage, which led to models with a worse

RMSD. In the last example (Figure 3C), the RL increased the

usage of low energy decoys as designed as more episodes were

run; however, the modeling was not successful because low

energy decoys were not hits. Thus, this is a problem of the

energy used for evaluating decoys.

The energy vs. RMSD plots (Figure 4) also confirms this

observation. The energy and RMSD show desired correlation

showing funnel-like shape between them for the first two targets,

1A0R (Figure 4A) and 1IZB (Figure 4B). On the other hand,

essentially no correlation was observed for 6RLX (Figure 4C);

thus, selecting decoys based on the energy did not work in the RL

procedure prevented the RL algorithm from discovering lower

RMSD models.

In Supplementary Table S6, we showed the number of times

lower energy models were discovered during RL-MLZerD runs.

For all the targets, about the same number of lower energy

models were discovered, which indicates that the reward policy

was working similarly also for large complexes with more

subunits.

Unbound docking experiments

Next, we evaluated the performance of the methods on

unbound cases (Table 2), which are docking experiments with

subunit structures that are not separated from the complex

structures. Ideally, experimentally determined subunit

structures in an isolated condition would be used but here we

used computational models of subunits because genuine

unbound structures were not determined and available in

PDB. Subunit structure modeling results are shown in

Supplementary Table S7. Subunit structures were modelled by

the template-based modeling method, MODELLER (Webb and

Sali, 2016) if an appropriate template was found for a target by

HHpred (Zimmermann et al., 2018). If not, we used structure

TABLE 2 Summary of unbound docking results.

PDB-ID RLMZD M-LZerD CombDock

1A0R (3) 3.35 (3.35) 3.24 (2.86) 19.34 (19.34)

6GWJ (3) 11.35 (2.73) 24.23 (4.16) 17.03 (12.94)

1VCB (3) 1.76 (1.58) 12.32 (1.58) 14.58 (14.58)

1A6A (3) 9.39 (5.02) 12.85 (5.37) 15.9 (10.43)

1IOD (3) 6.33 (4.28) 6.14 (4.28) 7.19 (7.19)

1NVV (3) 3.82 (3.82) 23.0 (4.16) 16.24 (12.1)

4YX7 (3) 16.5 (9.68) 16.83 (11.24) 20.02 (16.98)

2GD4 (3) 17.67 (13.07) 18.7 (13.35) 23.69 (13.34)

2H47 (3) 4.54 (2.59) 18.96 (2.54) 21.31 (13.69)

2ASS (3) 4.74 (3.66) 22.7 (8.65) 16.26 (10.79)

1P3Q (3) 7.1 (4.64) 8.68 (6.32) 12.61 (11.11)

1JSU (3) 10.1 (7.26) 15.63 (5.41) 24.82 (18.3)

1EPT (3) 12.68 (8.97) 12.72 (8.84) 18.76 (15.54)

1RHM (4) 3.8 (3.8) 17.56 (3.74) 21.47 (17.17)

1NNU (4) 21.14 (5.83) 19.79 (13.01) 21.37 (17.51)

1QGW (4) 18.74 (11.69) 17.02 (8.48) 20.03 (18.7)

1CYD (4) 3.08 (3.08) 1.50 (1.50) 20.84 (20.84)

1IZB (4) 7.27 (3.64) 10.96 (1.77) 10.12 (9.38)

6MWR (4) 23.05 (12.66) 37.14 (14.59) 22.16 (22.16)

3LL8 (4) 6.90 (6.9) 27.01 (14.28) 31.56 (23.46)

4IHH (4) 25.72 (14.87) 25.33 (18.36) 36.52 (27.1)

6RLX (4) 11.1 (7.15) 11.43 (8.07) 10.92 (10.2)

1GL2 (4) 18.32 (4.94) 31.82 (7.36) 15.78 (15.78)

3UAI (4) 24.09 (9.53) 28.72 (18.72) 24.69 (19.84)

1D1I (5) 8.66 (3.51) 10.62 (1.16) 13.91 (12.59)

1CT1 (5) 11.21 (6.72) 13.15 (9.37) 19.34 (16.2)

1CN3 (5) 1.6 (1.6) 2.31 (2.31) 28.04 (26.19)

1W85 (5) 7.42 (7.42) 7.57 (7.01) 33.64 (28.9)

4FTG (5) 9.27 (4.66) 13.03 (8.06) 13.99 (13.21)

4RT4 (5) 11.82 (10.31) 13.74 (8.35) 16.02 (13.78)

Avg. (Å) 10.75 (6.30) 16.16 (7.50) 19.61 (16.31)

≤8.0 Å 13 (22) 5 (16) 1 (1)

The best (smallest) RMSD among the top 5 scored models were considered. The best

RMSD among all the models generated before clustering is shown in parenthesis at each

target. The total number of models generated is provided in Supplementary Table S3.

For RL-MLZerD, only the version with a fixed P of 0.6 was shown because it performed

better than the Metropolis version in Table 1. The best RMSD within the top 5 ranked

models were reported. Notations are the same as Table 1.
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prediction methods, AttentiveDist (Jain et al., 2021), trRosetta

(Du et al., 2021) or I-TASSER (Zheng et al., 2021) The average Cα
RMSD of the unbound subunits is 1.46 Å.

On the unbound cases, RL-MLZerD still showed the

lowest average RMSD among the three methods with

Multi-LZerD and CombDock. Comparing bound and

unbound results for each target, we observe that the RMSD

increased by more than a couple of angstroms for most of the

targets. Particularly, the RMSD went over 10 Å for 16 targets

in the unbound docking (Table 2) while there were 3 such

cases in bound docking (Table 1). For 10 of the targets, models

with an RMSD less than 10 Å were generated, but they were

not ranked with in top 5 by the scoring function. The average

difference between the bound and unbound docking results

was smaller (2.50 Å and 6.30 Å for the bound and unbound

cases, respectively) when all the generated models were

considered (values are in parentheses in Tables 1, 2) than

the best among top 5 scored models were considered. Thus,

the difference of subunit structures between the unbound

conformation and the bound conformation also affected the

scoring.

As before with the bound cases, we analyzed the RL agent

behavior in selecting good quality pairwise decoys during the

episodes. The unbound counterpart of the first example, 1A0R

(Figure 3D), showed similar behavior where good pairwise

models were increasingly selected with a usage peaking at 40%

around the 3500th episode. It was around this episode that the

best RMSD model was first discovered. In the next example

1IZB (Figure 3E), we observed a different pattern from the

bound case (Figure 3D). In the bound case we observed an

increase of the selection of A-B hits, which was not observed in

the unbound case. The usage of hits including for the A-B pair

stayed relatively low throughout the episodes. This may be a

part of the reason that the best RMSD model found has a

larger RMSD than what Multi-LZerD had found. The best

RMSD model was generated at around the 3000th episode,

when the selection of the A-B hits showed a small peak.

Finally, the last example 6RLX (Figure 3F) is also

consistent with the bound counterpart (Figure 3C), as we

can observe the lower energy model being selected

continuously during the episodes as usage grows up to

70%. However, the lower energy pairwise model does not

correspond to a good quality model, resulting in 7.15 Å RMSD

for the best generated model.

Exploring the relationship between energy and RMSD

further reinforces our findings. 1A0R unbound (Figure 4D)

is consistent with the bound example as the funnel-like shape

is observed. 1IZB unbound (Figure 4E) is also similar to the

bound example, with the only difference that no models had

an RMSD less than 2 Å. Finally, as we saw for the bound case

there is no apparent correlation for 6RLX (Figure 4F).

Similar to the bound experiment, in Supplementary Table

S8 we examined how well the RL agent identified the best

possible RMSD model from the set of available pairwise

unbound decoys. For 60.0% (18/30) of the cases, a model

within 1.0 Å RMSD to the best possible RMSD for a complex

was generated by RL-MLZerD. The average RMSD difference

of between the best possible RMSD and the one achieved was

1.67 Å.

Interface accuracy

We analyzed the interface accuracy of generated models in

the bound and the unbound docking experiments. We used

the fraction of native contacts (fnat) as the metric of the

FIGURE 5
RMSD vs. fnat. The best RMSD (Å) among the top 5 scored models relative to its fnat. (A), the bound docking experiment; (B), the unbound
docking experiment.
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interface accuracy, which is used in CAPRI (Méndez et al.,

2003) and defined as the fraction of native residue-residue

contacts (within 5 Å from each other) found in the

computational model relative to the total number of native

contacts. In Figure 5 we plotted the best RMSD among the top

5 scored models and fnat of the same models. Obviously, the

two metrics have a correlation as both evaluate the accuracy of

models. For the bound cases (Figure 5A), we observe that

models with an RMSD less than 4 Å all have high fnat values

above 0.7. This is not the case for the unbound cases shown in

Figure 5B where fnat values of models with an RMSD less than

4 Å ranged widely from 0.28 to 0.70.

Comparison with AlphaFold

We further compared the docking performance of RL-

MLZerD with AlphaFold (Table 3). Note that rigorous

objective comparison is not possible because we do not have

information of the training dataset (28 out of the 30 benchmark

TABLE 3 Comparison of RL-MLZerD against AlphaFold variations.

PDB-ID RLMZD (bound) RLMZD (unbound) ColabFold AF-Mult. AF-Mult. (nt)

1A0R 0.87 (0.87) 3.35 (3.35) 2.21 1.63 1.68

6GWJ 0.88 (0.81) 11.35 (2.73) 0.89 1.8 1.62

1VCB 1.38 (1.33) 1.76 (1.58) 0.86 0.79 0.81

1A6A 0.74 (0.74) 9.39 (5.02) 2.98 1.27 0.59

1IOD 6.33 (1.85) 6.33 (4.28) 4.73 5.81 1.93

1NVV 0.94 (0.94) 3.82 (3.82) 5.08 2.72 3.22

4YX7 1.6 (1.6) 16.5 (9.68) 5.23 1.64 2.55

2GD4 8.75 (1.97) 17.67 (13.07) 3.77 0.85 1.32

2H47 1.14 (1.14) 4.54 (2.59) 7.8 4.47 2.48

2ASS 3.92 (3.92) 4.74 (3.66) 7.27 7.13 7.03

1P3Q 1.37 (1.37) 7.1 (4.64) 13.08 9.44 11.54

1JSU 0.84 (0.84) 10.1 (7.26) 2.41 1.16 1.33

1EPT 1.23 (1.23) 12.68 (8.97) 0.63 0.3 0.76

1RHM 1.67 (1.67) 3.8 (3.8) 0.41 0.31 0.54

1NNU 1.47 (1.47) 21.14 (5.83) 0.80 0.79 1.06

1QGW 14.19 (9.26) 18.74 (11.69) 26.01 14.07 14.1

1CYD 1.66 (1.66) 3.08 (3.08) 0.83 0.60 0.55

1IZB 1.03 (0.95) 7.27 (3.64) 1.69 1.34 10.9

6MWR 25.27 (2.6) 23.05 (12.66) 28.93 20.16 23.35

3LL8 1.31 (1.21) 6.90 (6.9) 16.45 17.8 20.0

4IHH 10.12 (10.12) 25.72 (14.87) 4.31 0.87 0.98

6RLX 8.59 (5.45) 11.1 (7.15) 7.07 0.45 0.43

1GL2 6.64 (2.22) 18.32 (4.94) 0.56 0.37 0.38

3UAI 10.8 (2.97) 24.09 (9.53) 19.94 1.9 1.75

1D1I 7.92 (1.27) 8.66 (3.51) 0.46 0.35 0.34

1CT1 1.32 (1.32) 11.21 (6.72) 7.88 0.60 1.97

1CN3 1.42 (1.15) 1.6 (1.6) - 0.37 4.50

1W85 7.43 (4.76) 7.42 (7.42) - 0.50 0.61

4FTG 1.80 (1.80) 9.27 (4.66) 1.69 1.91 1.89

4RT4 6.44 (6.44) 11.82 (10.31) 9.01 2.47 6.16

Avg.(Å) 4.64 (2.50) 10.75 (6.30) 6.54 3.46 4.21

≤8.0 Å 24 (28) 13 (22) 22 26 25

RLMZD (bound), RLMLZD (unbound) reported the lowest RMSD among top 5 scored models in the bound and unbound docking results, respectively (Tables 1, 2). The number in the

parentheses is the lowest RMSD observed in the pool of generated models before clustering; AF-Multimer, AlphaFold-Multimer; AF-M (nt), AlphaFold-Multimer without using templates.

ColabFold was used on 27th October 2021 at https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb. AlphaFold-Multimer was

downloaded on 4th November 2021 from https://github.com/deepmind/alphafold and ran locally. The smallest RMSD for each target is highlighted in bold. The two cases with hyphen (-)

for ColabFold are the instance where the notebook failed to run due to memory limitation (requires >16 GB of GPU memory) on Google Colab.
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datasets have a release date that predates the AlphaFold training

set cutoff date as shown in Table 1) used to tune parameters of

AlphaFold and also because the input information for these

programs is different. Therefore, the purpose of this

comparison is simply to provide rough idea of their relative

performance. We used two versions of AlphaFold, the

implementation in the ColabFold website, where input

sequences were concatenated with linker sequences (Mirdita

et al., 2021) and AlphaFold-Multimer (Evans et al., 2021),

which are designed for complex modeling. We ran

AlphaFold-Multimer with and without templates. These three

AlphaFold methods output five models and the best (smallest)

RMSD among them is reported in Table 3 for each target.

First, we compare the bound docking result of RL-

MLZerD. AlphaFold-Multimer with templates showed the

lowest average RMSD of 3.46 Å. When templates were not

used in AlphaFold-Multimer, RMSD increased for most of the

targets, with some with a large margin, resulting in an average

RMSD of 4.21 Å. ColabFold failed to run for 2 targets, and the

average of the rest of the targets was 6.54 Å. This average by

ColabFold is worse than the bound case results of RL-

MLZerD. When RMSD values of individual targets were

compared, RL-MLZerD had a lower value than ColabFold

for 16 (Krissinel and Henrick, 2007) targets out of 28 targets

(in the parenthesis shown is when all the generated models

were considered for RL-MLZerD). When compared with

AlphaFold-Multimer (with template), RL-MLZerD was

better in 11 (Jumper et al., 2021) targets. When no

templates were used in AlphaFold-Multimer, RL-MLZerD

showed a lower RMSD in 13 (Mirdita et al., 2021) targets.

Therefore, although AlphaFold-Multimer can model

multimeric complexes with higher accuracy than RL-

MLZerD in general, there are a good number of cases

where RL-MLZerD can provide better models. Particularly,

if we consider the number of targets with an RMSD of less than

8.0 Å, RL-MLZerD had a higher value than AlphaFold-

Multimer for 28 targets out of 30 when all generated

models were considered. AlphaFold-Multimer had higher

value for 26 targets compared to 24 of RL-MLZerD when

only top 5 ranking models were considered.

Next, we compare the unbound docking results of RL-

MLZerD with AlphaFold-Multimer (no template). The

average RMSD of the targets for AlphaFold-Multimer (no

template) is lower (4.21 Å) compared to 6.30 Å and 10.75 Å

for RL-MLZerD (unbound) when the best generated model or

the top 5 models are considered respectively. When individual

RMSD values of the targets are considered, RL-MLZerD

(unbound) predicted lower RMSDs for 7 targets compared

to 23 of AlphaFold-Multimer (no template) when the best

predicted model is compared. Finally, the individual cases

where either method was able to predict a model less than

8.0 Å is considered, AlphaFold-Multimer can predict less than

8 Å complex structure for 25 targets compared to 22 and 13 for

RL-MLZerD (unbound) best model and top 5, respectively.

There are two cases where AlphaFold-Multimer (no-

template) failed with a relatively large RMSD, which were

worse than unbound docking with RL-MLZerD. 3LL8 (a four-

chain complex) is the first case. The structure is a dimer of

hetero dimers. AlphaFold-Multimer (no-template) was able to

predict the individual dimers correctly. However, the

assembly of two dimers went wrong. Two subunits were

placed too close to each other causing chain entanglements

FIGURE 6
Examples of docking models by RL-MLZerD. The native
structure solved by experimental method is in grey, the generated
models are shown in colors. Each chain is colored in a different
color. The best model among the top 5 models is shown. (A),
Transducin Beta-Gamma complex and Phosducin, PDB ID: 1A0R.
A 3-chain complex. RMSD, 0.87 Å.(B), Serine/threonine-protein
phosphatase 2B catalytic subunit alpha isoform and calcineurin
subunit B type 1, PDB ID: 3LL8. A 4 chain complex. RMSD 1.31 Å (C),
Capside protein Vp1, PDB ID: 1CN3. A 5-chain complex. RMSD,
1.42 Å. (D), Pyruvate dehydrogenase E1 component subunit alpha
and beta and Dihydrolipoyllysine-residue acetyltransferase
component of pyruvate dehydrogenase complex, PDB ID: 1W85. A
5-chain complex. RMSD, 7.43 Å (E), Elongin-C and Elongin-B
complex with Von Hippel Lindau (VHL), PDB ID: 1VCB. A 3-chain
complex. The structures of the individual chains were modelled by
MODELLER. RMSD, 1.76 Å (F), Aralkylamine dehydrogenase heavy
and light chain and Azurin, PDB ID: 2H47. A 3-chain complex.
Subunit structures were modelled by MODELLER. RMSD, 4.54 Å.
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at the interface. This mis assembly resulted in an RMSD of

20.0 Å. This observation was also true for the regular

AlphaFold-Multimer with template. The second case, 1P3Q

(a three-chain complex) is a complex of small subunits. The

individual structures of two subunits predicted by AlphaFold-

Multimer have already some deviations. Partly because of that,

only one interface between subunits was correctly built. The

resulting RMSD was 11.54 Å.

Examples of docking models

Figure 6 shows example cases of the assembled model for

each of four targets of increasing chain size. The native

structure is in grey and the models are shown with each

chain a different color. 1A0R (Figure 6A), 3LL8 (Figure 6B)

and 1CN3 (Figure 6C) are assembled almost perfectly with an

RMSD of 0.87 Å, 1.31 Å and 1.42 Å, respectively. AF-

Multimer struggled with the prediction of 3LL8 having

three interaction interfaces and the orientation of chains B

and D (magenta and green) predicted incorrectly. 1W85

(Figure 6D) was more challenging due to the small

interaction site of chain I (orange; the

dihydrolipoyllysine-residue acetyltransferase component of

pyruvate dehydrogenase complex). RL-MLZerD agent

selected the top of the pocket between chains B (cyan)

and D (yellow) as the interaction interface for chain I,

instead of the correct interface at the tip of the pocket on

chain D. Overall the RMSD of the model is 7.43 Å.

1VCB (Figure 6E) is an example of unbound docking

prediction. We used MODELLER to model the three

individual chains. The RMSD difference between the model

and native structure for the three chain is 1.19 Å, 1.14 Å, and

0.79 Å, respectively (Supplementary Table S7). RL-MLZerD

did not have problem in assembling these subunit models

resulting an RMSD of 1.76 Å 2H47 (Figure 6F) is another

example of the unbound docking prediction. RMSD values

between the native structure and the individual chain models

by MODELLER are 0.95 Å, 3.73 Å, and 0.54 Å for chain A, B,

C, respectively. Despite the high RMSD difference between the

native and modelled chain B (3.73 Å), RL-MLZerD was still

able to model the complex structure with an RMSD of 4.54 Å.

Docking order prediction

In this section, we explore the RL-MLZerD model post-

docking phase. The objective is to explore the state tree value

to infer the assembled order of the subunits. We hypothesized

that the path with the highest vi value in the assembly state

reflects the biological pathway of how the individual chains

combine to form a complex.

TABLE 4 Docking order prediction results.

PDB-
ID

Pathway RLMZD (bound) RLMZD
(unbound)

Largest BSA RLMZD
(bound) step

RLMZD
(unbound) step

BSA
step

1A0R BG > BGP BG > BGP BG > BGP BG > BGP 1/1 1/1 1/1

6GWJ BD > BDK BD > BDK BK > BKD BK > BKD 1/1 0/1 0/1

1VCB AB > ABC AB > ABC AB > ABC AB > ABC 1/1 1/1 1/1

1A6A AB > ABC AB > ABC AB > ABC AB > ABC 1/1 1/1 1/1

1IOD AB > ABG AG > AGB AB > ABG AB > ABG 0/1 1/1 1/1

4YX7 AB > ABC AB > ABC AB > ABC AB > ABC 1/1 1/1 1/1

2H47 AB > ABC AB > ABC AB > ABC AB > ABC 1/1 1/1 1/1

2GD4 HL > HIL HI > HIL HI > HIL HI > HIL 0/1 0/1 0/1

2ASS AB > ABC AB > ABC AB > ABC AB > ABC 1/1 1/1 1/1

1P3Q QR > QRV QR > QRV QR > QRV QR > QRV 1/1 1/1 1/1

1JSU AB > ABC AB > ABC AB > ABC AC > ACB 1/1 1/1 0/1

1QGW AC > ACBD BD > BDA > BDAC BD > BDC > BDCA AC > BD > ACBD 2*/2 2*/2 2/2

6MWR AB > ABCD AB > ABC > ABCD AB > ABD > ABDC CD > AB > ABCD 2*/2 2*/2 2/2

1W85 AA’BB’ >
AA’BB’I

BD > BDA > BDAC >
BDACI

AB > ABC > ABCD >
ABCDI

BD > AC > BDAC >
BDACI

1/1 1/1 1/1

4RT4 ABCD >
ABCDE

BE > BED > BEDA >
BEDAC

BE > BED > BEDA >
BEDAC

AB > CD > ABCD >
ABCDE

0/1 0/1 1/1

Total correct predictions 14/17 14/17 14/17

PDB-ID is the ID of the protein complex. Pathway is the correct order of the protein complex assemble. RLMZD (bound), RL-MLZD (unbound) is the RL-MLZerD assembly order

prediction for the protein complex. Largest BSA is the assembly order predicted by considering the size of the interface of each subunit in the native protein complex. RLMZD (bound,

unbound) step and Largest BSA step shows the number of steps predicted correctly by each method. We put asterisk (*) for the prediction results of 1QGW and 6MWR, whose known

assembly paths include a parallel assembly step of two subcomplexes. For these two complexes, RL-MLZerD predicted a sequential assembly with one submit added at a time to the complex

due to its algorithm design (a tree-based approach), which could be considered as correct because the predictions include all the correct assembly steps.
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This study is important because understanding the

complex formation process is critical for several

applications. One such application is targeted drug

development where we can develop a drug that interrupts

the complex formation after a certain subunit is formed. This

targeted disruption is only possible if we know the pathway at

which the complex is formed. There are experimental methods

available for determining such pathways, but these methods

are usually expensive. Having a computation approach will be

very useful for experimentalists and it will help foster such

drug development methodologies. The assembly order of a

protein complex can be predicted successfully for most of the

cases by considering the buried surface area (BSA) of subunits

when the tertiary structure of the complex is known as shown

in earlier works by Teichmann et al. (Levy et al., 2008; Marsh

et al., 2013). The prediction simply orders the assembly of the

complex based on the subunits with the largest BSA. One can

think of the BSA approach as an estimation of the binding free

energy where large BSA corresponds to lower binding free

energy and is hence more favorable to assembly first in the

process of complex formation. However, the key limitation to

this approach is that it requires the known complex structure

and cannot be applied when the subunits are solved separately.

We show in Table 4 that RL-MLZerD can perform the

prediction without knowing the native structure, by only

using the accumulated knowledge from generated episodes.

Table 4 shows the result of docking order prediction. Predictions

were made for 15 targets which have evidence of the docking order in

the literature. There are 4 categories of such evidence; experimental

evidence, biological inference, model of assembly, and authors’

discussion. This evidence follows the approach from previous

work from our lab Path-LZerD (Peterson et al., 2018b). Evidence

of these 15 targets is provided in Supplementary Information S1.

Evidence was classified as biological inference when the order of the

assembly can be reasonably inferred from the function of each

subunit. Experimental evidence indicates when actual experiment,

such as co-immunoprecipitation of subcomplexes, were performed.

Model of assembly indicates that the assembly pathway has been

proposed in a publication. Finally, author’s discussion indicates when

the assemble order is discussed in a publication.

For the 15 targets, which have 17 assembly steps in total,

considering the BSAs of subunits predicted 14 steps correctly.

RL-MLZerD (bound or unbound) was able to predict all the

steps for the assembly order of 12 targets out of 15. RL-

MLZerD predicted the same number of steps as the BSA-based

approach, 14 out of 17 steps (82.4%), without knowing the

tertiary structure of the complexes. The docking order

prediction is an interesting by-product of the RL-MLZerD

agent exploration as it was able to determine the assemble

pathway without explicitly incorporating the information into

the model. On a similar dataset of 13 targets with 3–5 chains,

Path-LZerD among all its modes achieved at best 69.2%

prediction accuracy.

Discussion

In this work we have proposed and developed a multimeric

protein docking method using reinforcement learning. We

demonstrated the ability of the RL agent to exploit and explore

different states and actions to assemble models with an average

RMSD of 2.50 Å for bound and 6.30 Å for unbound cases across

30 targets. RL-MLZerD showed a higher accuracy than the existing

methods we compared against, except for AlphaFold-Multimer on

unbound cases. We found that RL is better suited for exploring the

docking space than the genetic algorithm used in Multi-LZerD

because RL is able to identify individual correct decoys through

multiple episode runs, which can effectively shrink the search space as

the number of runs is increased.

To the best of our knowledge, this is the first time the RL

was adapted for the exploration of protein docking

conformation search. RL resembles multiple attempts of

assembly paths. Through running multiple episodes, RL-

MLZerD was able to accumulate knowledge of preferred

pairwise decoys and assembly orders that were more likely

to lead to near native complex structures. By considering the

assembly states of the highest accumulated score, we were

able to predict the assembly orders of protein complexes,

which is a notable novel finding of this work. Such direct

prediction of the assembly path simultaneous with complex

structure prediction is not possible by other existing multiple

protein docking methods.

From the viewpoint of the RL architecture, RL-MLZerD

uses a unique architecture where the goal of an episode is a

moving target, a better energy complex structure than so far

explored. This is very different from a regular RL task where

reward is given when an agent reaches a fix goal. This new RL

design is an important contribution of this work.

Looking into a future direction, this work has shown that RL can

be useful in identifying preferred protein interactions to build up a

larger system in a biologically meaningful order. This approach could

be further extended to model a larger system including larger protein

complexes with more subunits. It could be also applied to elucidate

biomolecular interactions in a cell that include small chemical ligands,

proteins, nucleic acids, and membrane. To scale up the system to

handle, we could consider higher order interactions, i.e. interactions

with more than two proteins (biomolecules) and adopt a more

advanced algorithm such as a combinations of deep learning and

RL (deep RL).
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