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Abstract. Resistance to oxaliplatin (L‑OHP) is a major 
obstacle to successful chemotherapy in colorectal cancer 
(CRC). In the present study, the ability of gambogic acid (GA) 
to reverse L‑OHP resistance in CRC LoVo cells was investi-
gated. L‑OHP‑resistant LoVo/L‑OHP cells were established 
by exposing them to increasing concentrations of L‑OHP. 
GA‑reversed L‑OHP‑sensitive LoVo/L‑OHP/GA cells were 
established by exposure to 0.5 µmol/l GA for 2 weeks. A Cell 
Counting Kit‑8 assay was used to assess levels of proliferation. 
Flow cytometry was applied to detect apoptosis rates. Transwell 
assays were used to analyse invasion. Inductively coupled 
plasma mass spectrometry was used to determine intracellular 
platinum (Pt) content. Western blot analysis was used to reveal 
the protein levels of Human copper transporter 1 (hCTR1), 
Copper‑transporting p‑type adenosine triphosphatases  1 
(ATP7A) and Copper‑transporting p‑type adenosine triphos-
phatases  2 (ATP7B). LoVo/L‑OHP and LoVo/L‑OHP/GA 
cell lines were successfully established, and it was identified 
that L‑OHP inhibited the proliferation of LoVo, LoVo/L‑OHP 
and LoVo/L‑OHP/GA cells in a dose‑dependent manner. 
Compared with the parent LoVo cells, the anti‑apoptosis and 
invasion properties of LoVo/L‑OHP cells were enhanced, and 
were reversed by GA treatment. Intracellular Pt content was 
highest in the LoVo cells, followed by LoVo/L‑OHP/GA cells, 

and then lowest in the LoVo/L‑OHP cells. Downregulated 
hCTP1 and upregulated ATP7A and ATP7B were associated 
with L‑OHP resistance, and GA reversed the resistance by 
increasing levels of hCTR1 and decreasing levels of ATP7A 
and ATP7B. In conclusion, GA has the potential ability to 
reverse L‑OHP resistance in CRC cells by increasing intracel-
lular Pt content, which it achieves by increasing hCTR1 levels 
and decreasing ATP7A and ATP7B levels. GA may represent 
a promising treatment agent for L‑OHP resistance.

Introduction

Colorectal cancer (CRC), the second‑most diagnosed cancer 
and the fourth‑most frequent cause of cancer‑associated 
mortality (1), remains one of the most serious health prob-
lems worldwide. In China, it ranks fifth in the morbidity 
and mortality rates among all types of cancer, with 191,000 
mortalities in 2015 (2).

Chemotherapy serves a vital role in the treatments of 
CRC, particularly for patients with advanced CRC; it lessens 
the number and severity of clinical symptoms, improves the 
quality of lives and prolongs survival (3). Drug resistance is 
a major obstacle in chemotherapy (4). Oxaliplatin (L‑OHP), a 
third‑generation platinum (Pt) compound, is the first‑line drug 
for CRC chemotherapy (5). However, resistance to L‑OHP 
leads to treatment failure and relapse in patients with CRC (4).

Reduced intracellular Pt accumulation has been identified 
as a major mechanism of L‑OHP resistance (6). Adequate 
accumulation of intracellular Pt is essential for anticancer 
drugs to exert their cytotoxic effects (7). Copper transporters 
serve important roles in the cellular import and export of 
Pt drugs  (8). Human copper transporter 1 (hCTR1) and 
Copper‑transporting p‑type adenosine triphosphatases 1 
(ATP7A) and 2 (ATP7B) have been identified as key copper 
transporters (9). hCTR1 regulates the influx of Pt drugs, while 
ATP7A and ATP7B regulate their efflux (9). The upregulation 
of hCTR1 and downregulation of ATP7A and ATP7B may be 
potential mechanisms of L‑OHP resistance (10).

Gambogic acid (GA), an active component of the 
traditional Chinese medicine Garcinia hanburyi, exhibits 
multi‑target anti‑tumour effects with few side effects  (11). 
Previously, GA was identified to be able to reverse resistance 
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to anticancer drugs, including resistance to 5‑fluorouracil in 
CRC (12), to doxorubicin in breast (13) and ovarian cancer (14), 
and to docetaxel in gastric  (15) and human epithelial 
cancer (16).

However, to the best of our knowledge, the ability of 
GA to reverse L‑OHP resistance in CRC cells has not been 
investigated. Therefore, in the present study, using a step‑wise 
increasing concentration method, L‑OHP‑resistant LoVo/
L‑OHP and L‑OHP‑sensitive LoVo/L‑OHP/GA cell lines 
were successfully established, and it was identified that GA 
may reverse L‑OHP resistance, potentially by increasing intra-
cellular platinum through increasing hCTP1 and decreasing 
ATP7A and ATP7B protein levels. GA may represent a prom-
ising treatment agent for L‑OHP resistance.

Materials and methods

Materials. LoVo cells were obtained from the American Type 
Culture Collection (Manassas, VA, USA) and were cultured 
in RPMI‑1640 medium (Gibco; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) with 10% foetal bovine serum 
(FBS; Thermo Fisher Scientific, Inc.) at 37˚C with 5% CO2. 
L‑OHP was purchased from Jiangsu Hengrui Pharmaceutical 
Co., Ltd. (cat no. H20000337; Lianyungang, China). GA was 
purchased from Sigma‑Aldrich; Merck KGaA (Darmstadt, 
Germany). The Cell Counting Kit‑8 (CCK‑8) was obtained 
from Beyotime Institute of Biotechnology (Haimen, China). 
The Alexa Fluor®488 Annexin V/Dead Cell Apoptosis kit 
was purchased from Invitrogen; Thermo Fisher Scientific, 
Inc. Antibodies against hCTR1 (cat.  no.  ab108481; rabbit 
polyclonal), ATP7A (cat.  no.  ab42486; rabbit polyclonal), 
ATP7B (cat. no. ab124973; rabbit monoclonal) and GAPDH 
(cat.  no.  ab9485; rabbit polyclonal) were purchased from 
Abcam (Cambridge, MA, USA).

Establishment of LoVo/L‑OHP and LoVo/L‑OHP/GA cell 
lines. The L‑OHP‑resistant LoVo/L‑OHP cell line was estab-
lished by exposing LoVo cells to increasing concentrations 
of L‑OHP (1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 
45 and 50 µmol/l) for 48 h at each concentration as described 
previously (17,18). LoVo/L‑OHP cells were then cultured in 
complete RPMI‑1640 medium with 4 µmol/l L‑OHP at 37˚C 
with 5% CO2. After 6 months, LoVo/L‑OHP cells capable of 
growing in 60 µmol/l L‑OHP were obtained. To examine the 
effects of drug intervention, the culture medium was changed 
to complete RPMI‑1640 medium without L‑OHP 1 week prior 
to experimentation.

The GA‑reversed L‑OHP‑sensitive LoVo/L‑OHP/GA cell 
line was established by continuous exposure of LoVo/L‑OHP 
cells to GA.

Briefly, LoVo/L‑OHP cells were cultured in complete 
RPMI‑1640 medium without L‑OHP for 1 week, and then 
cultured in complete RPMI‑1640 medium with 0.5 µmol/l GA 
at 37˚C with 5% CO2 for 2 weeks. The culture medium was 
changed every 24 h. The LoVo/L‑OHP/GA cells were then 
collected and stored for subsequent experiments.

Morphological observations. The recovery established LoVo, 
LoVo/L‑OHP or LoVo/L‑OHP/GA cells were cultured to 
~80% confluency. Cells were observed after 24 h using an 

inverted light microscope (magnification, x800) in order to 
observe morphological changes.

Cell viability assay. Cytotoxicity was determined by a CCK‑8 
assay. Briefly, LoVo, LoVo/L‑OHP or LoVo/L‑OHP/GA cells 
(4x104 cells/ml) were cultured in 96‑well plates overnight. A 
total of 100 µl of different concentrations of L‑OHP (0, 5, 10, 
15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 µmol/l) were then added 
for at 37˚C with 5% CO2 48 h. Next, 10 µl CCK‑8 reagent was 
added for 2 h, and the absorbance at 450 nm was determined 
on a microplate reader (iMark™; Bio‑Rad Laboratories, Inc., 
Hercules, CA, USA). Resistance index (RI)=half maximal 
inhibitory concentration (IC50) of drug‑resistant cells/IC50 of 
drug‑sensitive cells (10).

Assessment of cell apoptosis. Cells were harvested (0.25% 
trypsin was added for 30 sec to digest the cells, followed by 
centrifugation at 560 x g at 37˚C for 5 min and the superna-
tant was then discarded) following treatment with 20 µmol/l 
L‑OHP for 6 h and re‑suspended in Annexin‑binding buffer 
(Invitrogen; Thermo Fisher Scientific, Inc.) to a concentration 
of 2x106/ml. Annexin V (solution in 25 mM HEPES, 140 mM 
NaCl, 1 mM EDTA, pH 7.4, 0.1% bovine serum albumin) 
and propidium iodide working solutions (1 mg/ml) were then 
added at room temperature for 15 min. Flow cytometry (BD 
Biosciences, Franklin Lakes, NJ, USA) was then performed, 
and data was analysed using FlowJo 7.6 software (FlowJo 
LLC, Ashland, OR, USA).

Transwell matrix penetration assay. Cells (LoVo, 
LoVo/L‑OHP and LoVo/L‑OHP/GA cells) were cultured in 
RPMI‑1640 medium without FBS for 24 h, following which 
2x104/ml cells suspended in 2 µmol/l L‑OHP were plated 
in the upper chamber of a polycarbonate Transwell filter in 
BioCoat™ Invasion Chambers (BD Biosciences) and incu-
bated for at 37˚C with 5% CO2 for 24 h. RPMI‑1640 medium 
with 10% FBS was added to the lower chamber at 37˚C with 
5% CO2 for 24 h. Cells that migrated to the lower membrane 
were fixed with 1% paraformaldehyde at 37˚C for 10 min, 
stained with 1% haematoxylin at 37˚C for 10 min and counted 
by microscopy in 10 fields of view using a light microscope 
(magnification, x400).

Intracellular accumulation of Pt. A total of 1x107 cells/ml of 
LoVo, LoVo/L‑OHP or LoVo/L‑OHP/GA cells were seeded 
into 10 cm culture dishes for 24 h. Then, 0, 0.5, 1, 2 or 4 µmol/l 
L‑OHP was added for 4 h, or 2 µmol/l L‑OHP for 1, 4, 12 or 
24 h. Cells were harvested (0.25% trypsin was added for 30 sec 
to digest the cells, followed by centrifugation at 560 x g at 37˚C 
for 5 min and the supernatant was then discarded) following 
treatment, washed with PBS and lysed with TRIzol® (Life 
Technologies; Thermo Fisher Scientific, Inc.). Intracellular 
Pt was determined by inductively coupled plasma mass spec-
trometry (ICP‑MS; PerkinElmer, Inc., Waltham, MA, USA) as 
described previously (19).

Western blotting. Total protein from LoVo, LoVo/L‑OHP 
and LoVo/L‑OHP/GA cells were extracted with SDS‑PAGE 
Sample loading buffer (cat  no. P0015; Beyotime Institute 
of Biotechnology), and proteins were determined using the 
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Bradford method (14). A total of 50 g protein was resolved 
using SDS‑PAGE (10% separating glue and 4% concentrated 
glue) and transferred on to polyvinylidene fluoride membranes. 
Subsequent to blocking with 5% non‑fat milk dissolved 
in Tris‑buffered saline with Tween‑20 buffer (Tris‑Hcl, 
NaCl and Tween‑20) at 37˚C for 1 h, the membranes were 
incubated with anti‑hCTR1 (1:1,000), anti‑ATP7A (1:1,000), 
anti‑ATP7B (1:1,000) and anti‑GAPDH (1:1,000) antibodies 
at 4˚C overnight. The membranes were then incubated with 
15 ml horseradish peroxidase‑labelled secondary antibody 
(1:2,000; cat no. 31490; Thermo Fisher Scientific, Inc.) at 
room temperature for 1 h. Signals were visualised with the 
SuperSignal West PICO chemiluminescent detection system 
(Pierce; Thermo Fisher Scientific, Inc.). Image J 1.48 (National 
Institutes of Health, Bethesda, MD, USA) was used to perform 
the densitometric analysis.

Statistical analysis. All data were analysed using SPSS 16.0 
(SPSS, Inc., Chicago, IL, USA). Values are presented as 
mean ± standard deviation. Differences were analysed using 
one‑way analysis of variance followed by a least significant 
difference post‑hoc test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

L‑OHP inhibits the proliferation of the LoVo, LoVo/L‑OHP 
and LoVo/L‑OHP/GA cells. The cytotoxicity of L‑OHP to 
LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA cells was first 
analysed using a CCK‑8 assay. As demonstrated in Fig. 1A, 
as the concentration of L‑OHP increased, the survival rates 
of cells decreased, indicating that L‑OHP increased the levels 
of cytotoxicity in a dose‑dependent manner. The survival 
rate of the LoVo/L‑OHP cells was increased compared with 
those of the LoVo and LoVo/L‑OHP/GA cells (P<0.05). 
After 24 h treatment with 40 µmol/l L‑OHP, the LoVo and 
LoVo/L‑OHP/GA cells were almost entirely killed. However, 
72.53±3.06% LoVo/L‑OHP cells survived.

The IC50 of L‑OHP was then calculated (Fig. 1B). The 
L‑OHP IC50 for LoVo cells was 11.82 µmol/l, while that for 
the LoVo/L‑OHP cells was 53.81  µmol/l. The RI for the 
LoVo/L‑OHP cells was 4.55. The IC50 for the LoVo/L‑OHP/GA 
cells was 12.54 µmol/l and the RI was 1.06. The results demon-
strated that the LoVo/L‑OHP cells were resistant to L‑OHP, 
and that GA inhibited this resistance.

Whether the established L‑OHP‑resistant cells and sensi-
tive cells were able to maintain their characteristics was 
also assessed. LoVo/L‑OHP cells were cultured in complete 
RPMI‑1640 medium without L‑OHP for 15 days, following 
which the IC50 for the LoVo/L‑OHP cells was 46.43 µmol/l, 
the RI was 3.92 and resistance remained at 86.29% viable 
cells. Subsequent to storage in liquid nitrogen (‑196˚C) for 
2 months, recovered LoVo/L‑OHP cells were able to grow and 
proliferate. The IC50 for the recovered LoVo/L‑OHP cells was 
47.97 µmol/l and the RI was 4.05, indicating that the estab-
lished LoVo/L‑OHP cells were able to maintain resistance. 
Regarding the LoVo/L‑OHP/GA cells, following culture 
incomplete RPMI‑1640 medium without GA for 15 days, the 
IC50 was 12.93 µmol/l and the RI was 1.09. The resistance was 
27.85% of all viable LoVo/L‑OHP cells, which was higher 
compared with the first established cells (23.0% viable cells). 
The LoVo/L‑OHP/GA cells recovered from liquid nitrogen 
were also able to grow and proliferate. The IC50 for the recov-
ered cells was 13.92 µmol/l and the RI was 1.18, suggesting 
that GA was able to reverse L‑OHP resistance, and that the 
L‑OHP‑sensitive cells had been successfully established.

Morphological changes of LoVo/L‑OHP and LoVo/L‑OHP/GA 
cells. The morphological changes of the established cells were 
then observed through inverted light microscopy (magnifica-
tion, x800). As demonstrated in Fig. 2, the parent LoVo cells 
were adherent, flat and polygonal, with numerous cell junc-
tions. LoVo/L‑OHP‑resistant cells were rounder and bigger, 
and the nuclei were clearer. The LoVo/L‑OHP/GA cells exhib-
ited a similar appearance to the recovered LoVo cells.

GA reverses the anti‑apoptosis ability of the LoVo/L‑OHP 
cells. LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA cells were 
treated with 20 µmol/l L‑OHP for 6 h, following which the 
apoptosis rates were determined by flow cytometry. As indi-
cated in Fig. 3, the apoptosis induced by L‑OHP in the LoVo 
and LoVo/L‑OHP/GA cells was 66.02±5.30 and 54.21±5.52%, 
respectively. It is noteworthy that L‑OHP only induced minimal 
levels of apoptosis in the LoVo/L‑OHP‑resistant cells, with 
only 4.56±1.70% apoptosis. A comparison of apoptosis rates 
revealed that the rate was decreased in the LoVo/L‑OHP cells 
compared with the LoVo and LoVo/L‑OHP/GA cells (P<0.01), 
and that the apoptosis rate in the LoVo/L‑OHP/GA cells was 
decreased compared with that in the LoVo cells (P<0.05). 
The results suggested that the anti‑apoptosis ability of the 

Figure 1. L‑OHP inhibits the proliferation of LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA cells. (A) Survival rates of LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA 
cells in the presence of L‑OHP. **P<0.01, #P<0.05 and ##P<0.01 vs. LoVo cells. (B) L‑OHP IC50 of LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA cells at different 
times. L‑OHP, oxaliplatin; GA, gambogic acid; IC50, half maximal inhibitory concentration; RI, resistance index; d, days.
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LOVO/L‑OHP cells was increased compared with the LoVo 
and LoVo/L‑OHP/GA cells, and that GA reversed these effects.

GA attenuates invasion in the LoVo/L‑OHP cells. LoVo, 
LoVo/L‑OHP and LoVo/L‑OHP/GA cells were treated with 
2 µmol/l L‑OHP for 24 h, following which the levels of invasion 
were determined in Transwell assays. The numbers of invasive 
LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA cells was 21±0.12, 
46±0.15 and 17±0.09, respectively. As demonstrated in Fig. 4, 
a comparison of the numbers of invading cells revealed that 
the LoVo/L‑OHP cells yielded an increased number of inva-
sive cells compared with the LoVo and LoVo/L‑OHP/GA cells 
(P<0.01). Subsequent to treatment with L‑OHP, the invasive 
ability of the LoVo/L‑OHP cells was increased compared with 
that of the LoVo and LoVo/L‑OHP/GA cells, suggesting that 
the rates of invasion in LoVo/L‑OHP‑resistant cells increased, 
and that GA was able to reverse and attenuate the invasion.

Determination of intracellular Pt content. To explore the 
potential mechanisms by which GA reversed resistance 
to L‑OHP, the intracellular content of Pt was detected. As 
demonstrated in Fig. 5A, it was identified that intracellular 
Pt accumulated as the concentration of L‑OHP increased, 
indicating that L‑OHP entered into cells in a dose‑dependent 
manner. Following 4 h treatment with different concentrations 
(0, 0.5, 1, 2 or 4 µmol/l) of L‑OHP, the Pt content in LoVo 

and LoVo/L‑OHP/GA cells was increased compared with 
the LoVo/L‑OHP cells (P<0.05). Intracellular Pt content was 
highest in the LoVo cells, followed by LoVo/L‑OHP/GA cells, 
and then lowest in the LoVo/L‑OHP cells.

The Pt content of cells then was detected following treat-
ment with 2 µmol/l L‑OHP for different times (1, 4, 12 and 24 h). 
It was identified that intracellular Pt accumulated as treatment 
time intervals increased, indicating a time‑dependent effect. 
There was no difference between the LoVo, LoVo/L‑OHP and 
LoVo/L‑OHP/GA cells at 1 and 4 h (P>0.05). At 12 and 24 h, 
the Pt content in the LoVo and LoVo/L‑OHP/GA cells was 
increased compared with the LoVo/L‑OHP cells (P<0.05). Pt 
content in the LoVo cells was increased compared with the 
LoVo/L‑OHP/GA cells at 12 and 24 h (P<0.05; Fig. 5B).

hCTR1, ATP7A and ATP7B protein levels. In order to deter-
mine whether the changes in intracellular Pt were associated 
with copper transporters, the protein expressions of hCTR1, 
ATP7A and ATP7B in LoVo, LoVo/L‑OHP and LoVo/
L‑OHP/GA cells were examined. As demonstrated in Fig. 6, 
hCTR1 protein levels were decreased in the LoVo/L‑OHP 
cells compared with in the LoVo and LoVo/L‑OHP/GA 
cells (P<0.01), and decreased in the LoVo/L‑OHP/GA cells 
compared with the LoVo cells (P<0.01). The protein levels 
of ATP7A and ATP7B were increased in the LoVo/L‑OHP 
cells compared with the LoVo and LoVo/L‑OHP/GA cells 

Figure 3. Apoptosis rates of LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA cells in the presence of L‑OHP (20 µmol/l for 6 h), *P<0.05 and **P<0.01. L‑OHP, 
oxaliplatin; GA, gambogic acid; PI, propidium iodide.

Figure 2. Morphological changes of LoVo/L‑OHP and LoVo/L‑OHP/GA cells captured using inverted microscopy. L‑OHP, oxaliplatin; GA, gambogic acid.
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(P<0.01), with levels being increased in the LoVo/L‑OHP/GA 
cells compared with the LoVo cells (P<0.01). These results 
suggest that downregulated hCTP1 and upregulated ATP7A 

and ATP7B were associated with L‑OHP resistance, and that 
GA reversed the resistance by increasing the levels of hCTR1 
and decreasing ATP7A and ATP7B levels.

Figure 6. Western blotting reveals protein levels of hCTR1, ATP7A and ATP7B in LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA cells. **P<0.01. GA, gambogic 
acid; L‑OHP, oxaliplatin; hCTR1, human copper transporter 1; ATP7A, copper‑transporting p‑type adenosine triphosphatases 1; ATP7B, copper‑transporting 
p‑type adenosine triphosphatases 2.

Figure 5. Intracellular Pt levels of LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA cells in the presence of L‑OHP. (A) Different concentrations (0.5, 1, 2 and 
4 µmol) of L‑OHP for 4 h. (B) A total of 2 µmol/l L‑OHP at different time intervals (1, 4, 12 and 24 h). *P<0.05 and **P<0.01. Pt, platinum; L‑OHP, oxaliplatin; 
GA, gambogic acid.

Figure 4. Invasion by LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA cells in the presence of L‑OHP (2 µmol/l for 24 h), visualised using haematoxylin staining by 
light microscopy (magnification, x400). Numbers of cells represent the invasive abilities of LoVo, LoVo/L‑OHP and LoVo/L‑OHP/GA cells. **P<0.01. L‑OHP, 
oxaliplatin; GA, gambogic acid.
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Discussion

Resistance to L‑OHP remains one of the major obstacles in 
chemotherapy for CRC, and it is essential to identify novel 
drugs to overcome or reverse L‑OHP resistance. GA is a 
traditional Chinese medicine with multi‑target anticancer 
effects, including the inhibition of proliferation (20), induc-
tion of apoptosis (21), cell cycle arrest (22), and inhibition of 
angiogenesis (23), invasion and metastasis (24). GA was also 
identified to exhibit inhibitory effects on resistance to anti-
cancer drugs in CRC (12), breast (13), ovarian (14), gastric (15) 
and human epithelial cancer (16).

Therefore, in the present study, the possibility of using 
GA to reverse L‑OHP resistance in CRC cells was evaluated. 
It was identified that the LoVo/L‑OHP cells were resistant to 
L‑OHP, and that GA reversed this resistance. Compared with 
the parent LoVo cells, the anti‑apoptosis and invasive abili-
ties of resistant LOVO/L‑OHP cells were improved, and GA 
was able to reverse these effects. Intracellular Pt content was 
highest in the LoVo cells, followed by the LoVo/L‑OHP/GA 
cells, and then lowest in the LoVo/L‑OHP cells. Decreased 
hCTP1 levels and increased ATP7A and ATP7B levels were 
associated with L‑OHP resistance, and GA reversed this 
resistance by increasing hCTR1 and decreasing ATP7A and 
ATP7B levels. These results indicated that GA exhibited 
the ability to reverse L‑OHP resistance in CRC cells, which 
was associated with an increase in intracellular Pt content 
and a regulation of the protein expression levels of copper 
transporters.

The cytotoxic effects of Pt drugs are directly associated 
with intracellular Pt content, and the majority of resistant 
cells exhibit decreased intracellular accumulation of these 
drugs (25). Adequate intracellular accumulation of Pt drugs 
is essential to exert their anticancer effects (7). Intracellular Pt 
content was directly associated with the content of L‑OHP in 
cells, while intracellular L‑OHP content is positively associated 
to the sensitivity of cells to L‑OHP (7). In the present study, 
intracellular Pt content was determined by ICP‑MS, and it was 
identified that intracellular L‑OHP content increased in a dose‑ 
and time‑dependent manner. Intracellular L‑OHP content was 
highest in the LoVo cells, followed by the LoVo/L‑OHP/GA 
cells, and then lowest in the LoVo/L‑OHP cells, suggesting 
that parent LoVo cells were relatively sensitive to L‑OHP, that 
LoVo/L‑OHP cells were resistant to L‑OHP, and that GA was 
able to reverse this resistance.

The process of cellular import and export of Pt drugs 
is primarily mediated by copper transporters  (8). hCTR1, 
ATP7A and ATP7B are key copper transporters involved 
in intracellular Pt accumulation  (9). hCTR1 regulates the 
influx of Pt drugs, while ATP7A and ATP7B regulate the 
efflux of these drugs (9). Previous studies have indicated that 
copper transporters not only regulate the influx and efflux 
of Pt drugs, but also affect cell cytotoxic sensitivity to Pt 
drugs: Ishida et al (26) identified that the downregulation of 
hCTR1 resulted in the reduced accumulation of cisplatin and 
increased cisplatin resistance. Song et al (27) also identified 
that the upregulation of hCTR1 enhanced the accumulation 
of oxaliplatin and carboplatin in small‑cell lung cancer cells. 
Low expression of hCTR1 was determined to be associated 
with poor prognosis in patients with non‑small cell lung 

cancer (NSCLC) and ovarian cancer treated with Pt‑based 
chemotherapy (28,29). hCTR1 is a potential biomarker for 
intracellular Pt accumulation and Pt drug resistance. ATP7A 
serves an important role in Pt resistance by transporting Pt 
drugs out of cells (30). The overexpression of ATP7A was 
associated with Pt resistance in oesophageal squamous cell 
cancer (31), NSCLC (32), CRC (33) and ovarian cancer (34). 
Overexpressed ATP7A was also identified to predict a 
poor prognosis in patients with NSCLC receiving Pt‑based 
chemotherapy (32). Similar to ATP7A, ATP7B facilitates the 
efflux of Pt drugs, and also affects resistance to Pt drugs (35). 
ATP7B silencing resulted in improved cisplatin sensitivity 
in cisplatin‑resistant ovarian cells (36). The overexpression 
of ATP7B was associated with Pt resistance in patients with 
CRC, and predicted poor prognosis in patients following 
oxaliplatin‑based chemotherapy (37). In the present study, it 
was identified that hCTR1 protein levels were decreased in 
resistant LoVo/L‑OHP cells compared with parent LoVo and 
L‑OHP‑sensitive LoVo/L‑OHP/GA cells, while ATP7A and 
ATP7B protein levels were increased in resistant cells, indi-
cating that downregulated hCTP1 and upregulated ATP7A 
and ATP7B were associated with L‑OHP resistance, and that 
GA may reverse this resistance by increasing hCTR1 and 
decreasing ATP7A and ATP7B levels.

Overall, the results of the present study demonstrated that 
GA exhibits the potential ability to reverse L‑OHP resistance 
in CRC cells. The potential reversal mechanism may involve 
an increase in intracellular Pt content and hCTR1 levels, and 
a decrease in ATP7A and ATP7B levels, making it a potential 
treatment agent for L‑OHP resistance.
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