
RESEARCH ARTICLE

An efficient Bayesian meta-analysis approach

for studying cross-phenotype genetic

associations

Arunabha Majumdar1, Tanushree Haldar2, Sourabh Bhattacharya3, John S. Witte1,2*

1 Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United

States of America, 2 Institute for Human Genetics, University of California, San Francisco, California, United

States of America, 3 Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India

* JWitte@ucsf.edu

Abstract

Simultaneous analysis of genetic associations with multiple phenotypes may reveal shared

genetic susceptibility across traits (pleiotropy). For a locus exhibiting overall pleiotropy, it is

important to identify which specific traits underlie this association. We propose a Bayesian

meta-analysis approach (termed CPBayes) that uses summary-level data across multiple

phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic associa-

tion and estimate an optimal subset of traits associated with the risk locus. This method

uses a unified Bayesian statistical framework based on a spike and slab prior. CPBayes per-

forms a fully Bayesian analysis by employing the Markov Chain Monte Carlo (MCMC) tech-

nique Gibbs sampling. It takes into account heterogeneity in the size and direction of the

genetic effects across traits. It can be applied to both cohort data and separate studies of

multiple traits having overlapping or non-overlapping subjects. Simulations show that

CPBayes can produce higher accuracy in the selection of associated traits underlying a

pleiotropic signal than the subset-based meta-analysis ASSET. We used CPBayes to

undertake a genome-wide pleiotropic association study of 22 traits in the large Kaiser GERA

cohort and detected six independent pleiotropic loci associated with at least two pheno-

types. This includes a locus at chromosomal region 1q24.2 which exhibits an association

simultaneously with the risk of five different diseases: Dermatophytosis, Hemorrhoids, Iron

Deficiency, Osteoporosis and Peripheral Vascular Disease. We provide an R-package

‘CPBayes’ implementing the proposed method.

Author summary

Genome-wide association studies (GWAS) have detected shared genetic susceptibility to

various human diseases (pleiotropy). We propose a Bayesian meta-analysis method

CPBayes that simultaneously evaluates the evidence of overall pleiotropy while determin-

ing which traits are pleiotropic. This approach investigates pleiotropy using GWAS sum-

mary statistics and allows for overlapping subjects across traits. It performs a fully

Bayesian analysis and offers a flexible inference. CPBayes also provides additional
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information about a pleiotropic signal, such as the trait-specific posterior probability of

association and the credible interval of unknown true genetic effects. Using computer

simulations and an application to a large GWAS cohort, we demonstrate that CPBayes

can offer improved accuracy compared to the existing subset-based meta-analysis

approach ASSET. We provide a user-friendly R-package ‘CPBayes’ for general use of this

approach.

Introduction

Genome-wide association studies (GWAS) have detected loci associated with multiple differ-

ent traits and diseases (i.e., pleiotropy) [1]. For example, pleiotropy has been observed for dif-

ferent types of cancers [2], immune-mediated diseases [3] and psychiatric disorders [4]. As

another example, Pickrell et al. [5] systematically compared the genetic architecture of 42

phenotypes and reported substantial pleiotropy. Analyzing pleiotropy may provide a better

understanding of shared pathways and biological mechanisms common to multiple different

diseases/phenotypes. From the perspective of clinical genetics, the discovery of a locus simulta-

neously associated with multiple diseases can support the use of a common therapeutic

intervention.

When evaluating a group of phenotypes, only a subset of them may exhibit pleiotropy. For

example, the Global Lipids Genetics Consortium [6] discovered novel pleiotropic loci associ-

ated with different subsets of blood lipid traits. In particular, variants in the genes RSPO3,

FTO, VEGFA, PEPD were associated with HDL and triglycerides, but not with LDL or total

cholesterol. Hence, in addition to evaluating the evidence of overall pleiotropic association, it

is crucial to determine which traits are associated with the risk locus to better interpret the

pleiotropic signal. Another important consideration is the availability of individual level data

from multiple GWAS of different phenotypes. When accessing individual level data is difficult,

one can use recently developed methods to investigate pleiotropy using more readily available

genome-wide (GW) summary statistics [7–12].

Pleiotropy can be detected in two main ways—a single nucleotide polymorphism (SNP)

that is associated with multiple traits, or a genomic region that is associated with multiple

traits. For example, Bhattacharjee et al. [7] proposed the subset-based meta-analysis approach

ASSET focussing on SNP-level pleiotropy and Giambartolomei et al. [11] introduced a Bayes-

ian approach to explore whether two association signals in the same genomic region obtained

from two different GWAS share a single causal variant or multiple causal variants.

In addition, there have been other recent works on methods development and applications

for pleiotropy. Andreassen et al. [8] proposed a conditional false discovery rate (FDR)

approach, and detected novel loci associated with Schizophrenia by leveraging information on

the genetic pleiotropy between Schizophrenia and cardiovascular risk factors. Andreassen

et al. [9] applied the same approach to study the shared genetic architecture underlying Schizo-

phrenia and Bipolar disorder. Liley and Wallace [12] modified the conditional FDR method to

allow for shared controls between two GWAS. Chung et al. [10] proposed a statistical method

GPA to prioritize GWAS signals by incorporating pleiotropy and annotation information.

They also demonstrated that GPA performs better than the conditional FDR approach with

respect to accurately prioritizing risk SNPs. However, these methods were mainly developed

to only analyze a pair of traits at a time. In contrast, ASSET is more directly suited for evaluat-

ing pleiotropy simultaneously across two or more traits. It provides a p-value evaluating the

Bayesian meta-analysis for studying cross-phenotype genetic associations
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evidence of aggregate-level pleiotropic association and an optimal subset of associated/non-

null traits. Recent studies [13–17] have used ASSET as a primary tool for pleiotropy analysis.

In this article, we focus on SNP-level pleiotropy and propose a Bayesian meta-analysis

approach CPBayes (Cross-Phenotype Bayes) that simultaneously provides a measure of the

evidence of aggregate-level pleiotropic association and an optimal subset of associated traits

underlying a pleiotropic signal. The evidence of pleiotropy is measured by the local false

discovery rate (locFDR) and with Bayes factor (BF). CPBayes explicitly takes into account cor-

relation between summary statistics. CPBayes considers heterogeneity both in the size and

direction of genetic effects across phenotypes. It also estimates the posterior probability of

each phenotype being associated with the risk locus that quantifies the relative contribution of

the traits underlying a pleiotropic signal. It is explicitly designed to simultaneously analyze two

or more phenotypes.

The Bayesian framework of CPBayes is based on a spike and slab prior, which is commonly

used due to its appropriateness and simplicity in solving two-class classification problems [18–

22]. The application of the spike and slab prior in genetic association studies is gradually

increasing [23–25]. With a spike and slab prior, the spike element represents a null effect, and

the slab component represents a non-null effect. The spike part can be either a positive mass at

zero (Dirac spike [18]) or a normal distribution with mean zero and a small variance (continu-

ous spike [19]). We design the Gibbs samplers for these two type of prior spikes for both

uncorrelated and correlated summary statistics across traits. The continuous spike and slab

prior can alternatively be viewed as a special case of the scale mixture of two normal distribu-

tions [26, 27]. Such scale mixtures have been employed to estimate the effect size distributions

and replication probabilities in GWAS [28, 29]. We demonstrate by simulations that the con-

tinuous spike offers better accuracy in the selection of associated traits than the Dirac spike

(also observed by George and McCulloch [19] in general context). The Gibbs sampling for the

former is also computationally much faster than that for the latter due to simpler analytic

expressions of the full conditional posterior distributions of the model parameters. Hence, we

adopted the continuous spike for constructing CPBayes.

We compare CPBayes with ASSET in various simulation scenarios. While selecting the

non-null traits underlying a pleiotropic signal, we also compared it with the standard Benja-

mini-Hochberg (BH) FDR controlling procedure with the level of FDR equal to 0.01 (BH0.01)

[30]. The choice of the FDR level is guided by Majumdar et al. [31] who demonstrated that the

simple BH procedure provides better selection accuracy than various different approaches.

CPBayes resembles ASSET in that both methods simultaneously draw inference on the evi-

dence of aggregate-level pleiotropic association and on the optimal subset of non-null traits.

But, the key advantage of CPBayes is that it selects the non-null traits with substantially higher

specificity (proportion of null traits discarded from the optimal subset) than ASSET while

maintaining a good level of sensitivity (proportion of non-null traits included in the subset).

We also compared CPBayes with GPA for a pair of traits using simulations.

We contrast CPBayes and ASSET in the analysis of 22 phenotypes in the large Kaiser

“Resource for Genetic Epidemiology Research on Adult Health and Aging” (GERA) cohort

[dbGaP Study Accession: phs000674.v1.p1]. CPBayes identified six independent pleiotropic

loci associated with at least two phenotypes including a locus at chromosomal region 1q24.2

that exhibits an association with five different diseases: Dermatophytosis, Hemorrhoids, Iron

Deficiency, Osteoporosis and Peripheral Vascular Disease. ASSET identified a larger number

of independent pleiotropic loci associated with more than one trait, but selected many pheno-

types with very weak genetic effects. We provide an R-package ‘CPBayes’ implementing the

proposed method for a general use.

Bayesian meta-analysis for studying cross-phenotype genetic associations
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Overview of methods

Given the summary statistics for a SNP across multiple traits, CPBayes estimates two different

measures evaluating overall pleiotropic association and an optimal subset of associated traits

underlying a pleiotropic signal. The evidence for aggregate-level pleiotropic association is

given by the local false discovery rate (locFDR) and the Bayes factor (BF). Let H0 denote the

global null hypothesis of no association with any trait and H1 denote the global alternative

hypothesis of overall association with at least one of the traits. Then locFDR is defined as the

posterior probability of H0 being true conditioned on the summary statistics and BF is the

ratio of the likelihood of summary statistics under H1 versus H0. A small value of locFDR (e.g.,

0.05) or a large value of Bayes factor (e.g., BF> 1) indicates an evidence for the overall pleio-

tropic association. We estimate the locFDR and BF based on the MCMC posterior sample of

model parameters obtained by Gibbs sampling. The subset of traits which is selected as the set

of non-null traits most often in the MCMC posterior sample is defined as the maximum a pos-

teriori (MAP) estimate of the optimal subset of associated traits.

CPBayes explicitly accounts for possible correlation between the effect estimates across

traits. To estimate the correlation structure of the effect estimates, we use two different

approaches—one based on the number of overlapping cases and controls between studies and

another based on genome-wide summary statistics across traits. The correlation formulae

based on the number of shared cases and controls (Eq 6 in Material and methods) is accurate

when the genetic variant and environmental covariates are not associated with the traits of

interest. However in real data, environmental covariates are expected to be associated with the

primary traits. In such scenario, the GW summary statistics based approach is more robust

with respect to estimating a reasonably accurate correlation structure.

CPBayes also provides some more insights into a pleiotropic signal, e.g., marginal trait-spe-

cific posterior probability of association (PPAj), direction of associations, credible interval of

true genetic effects, etc. Detailed description of CPBayes and a brief outline of ASSET, BH0.01

and GPA are provided in the “Material and methods” section and supporting information.

Simulation study

We compare CPBayes and ASSET with respect to correctly detecting a signal of pleiotropy and

the accuracy of selection of non-null traits underlying a pleiotropic signal in various simula-

tion scenarios. We consider multiple case-control studies with or without shared controls [7]

and a cohort study where the data on multiple disease states are available for a group of indi-

viduals [31, 32]. First, we specify the simulation model to generate the phenotype and genotype

data. After computing the summary statistics based on the simulated data, we assume that only

the summary-level data are available. For case-control studies with overlapping subjects or a

cohort study, we estimate the correlation structure of summary statistics based on Eq 6 (Mate-

rial and methods).

For non-overlapping case-control studies, we consider a separate group of 7000 cases and

10000 controls in each study. For overlapping case-control studies, we consider a distinct set

of 7000 cases in each study, and a common set of 10000 controls shared across all the studies.

For each disease, we assume an overall disease prevalence of 10% in the whole population.

While simulating the genotype data for multiple case-control studies, we assume the standard

logistic model of disease probability conditioning on the genotype: PðcasejGÞ ¼ expðaþbGÞ
1þexpðaþbGÞ,

where G is the genotype at the SNP of interest coded as the minor allele count (0, 1, 2). We

assume that the SNP is in Hardy-Weinberg equilibrium (HWE). Let A (minor) and a be the

two alleles at the SNP and p = P(A). Under HWE, the genotype probabilities are: P(AA) = p2,

P(Aa) = 2p(1 − p), P(aa) = (1 − p)2. Given the log odds ratio (β) and disease prevalence, we

Bayesian meta-analysis for studying cross-phenotype genetic associations
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compute the probability of observing each genotype conditioned on the case/control status

using Bayes theorem. Based on these conditional probabilities, we simulate the genotypes in

cases and controls.

For the cohort study, we consider 15000 individuals. First, we generate the genotype data

at a quantitative trait locus (QTL) and continuous multivariate phenotype data using the simu-

lation model in Majumdar et al. [31] that was adopted from Galesloot et al. [32]. Then we

dichotomize each continuous phenotype (liability) to case-control status subject to an overall

disease prevalence of 10%. We describe the simulation model in more details in S1 Text in sup-

porting information.

We emphasize that the simulation models used here are general in nature and independent

of the modeling assumptions underlying CPBayes which are also very general and only require

that the sample sizes of the participating GWAS should be sufficiently large to satisfy the stan-

dard asymptotic properties (Material and methods). These simulation models were also used

in Bhattacharjee et al. [7], Galesloot et al. [32], Majumdar et al. [31].

For overlapping case-control studies and a cohort study when the summary statistics are

expected to be correlated, a combined strategy of CPBayes is implemented (Material and

methods). If the effect estimates are strongly correlated and a majority of the traits are associ-

ated with the risk locus (non-sparse scenario), the Gibbs sampler underlying CPBayes may

sometimes be trapped in a local mode of the posterior distribution of model parameters. To

increase robustness for correlated summary statistics, CPBayes considers a joint strategy com-

bining its uncorrelated and correlated versions. First, we implement CPBayes considering the

correlation structure of the effect estimates. If the selected subset of non-null traits have the

smallest univariate association p-values among all the traits, we accept the results; otherwise,

we employ CPBayes assuming that the effect estimates are uncorrelated and accept the results

obtained.

Evaluation of aggregate-level pleiotropic association. First we evaluate the methods in

the context of detecting overall pleiotropic association. Consider 1000 SNPs of which 2% (20)

are risk SNPs and 98% are null SNPs (not associated with any trait). The minor allele fre-

quency (MAF) at all SNPs are randomly simulated from Uniform(0.05,0.5) distribution. One

or more traits are associated with a risk SNP. Let K1 denote the number of associated pheno-

types among a total of K phenotypes. We consider K = 5, 10, 15; K1 = 0, 1, 2, 3 when K = 5,

K1 = 0, 2, 4, 6 when K = 10, K1 = 0, 3, 6, 9 when K = 15.

For K = 5, out of 20 risk SNPs, 8, 6 and 6 SNPs are associated with 1, 2 and 3 traits, respec-

tively. For K = 10; 8, 6 and 6 risk SNPs are associated with 2, 4 and 6 traits, respectively. Simi-

larly for K = 15; 8, 6 and 6 risk SNPs are associated with 3, 6 and 9 traits, respectively. For

K = 5, first, K1 is set as 1 for 8 risk SNPs randomly selected from 20 risk SNPs without replace-

ment; next, K1 is set as 2 for 6 risk SNPs randomly sampled from the remaining 12 risk SNPs.

The same strategy is employed for K = 10 and 15. Corresponding to a risk SNP, each non-null

trait is considered to be either positively or negatively associated with equal probability. The

odds ratio (OR) for a non-null trait is randomly simulated from Uniform(1.05, 1.25) (Uniform

(1/1.25, 1/1.05)) if the trait is positively (negatively) associated.

Note that the locFDR and Bayes factor are not comparable to the p-value. Hence we com-

pared the number of risk SNPs identified as being associated (true discoveries) while adjusting

the threshold of CPBayes locFDR and ASSET p-value such that both methods detect the same

number of null SNPs as being associated (false discoveries). This can be viewed as a partial

receiver operating characteristic (ROC) curve. The method with a greater area under the curve

(AUC) is preferred. Coram et al. [33] considered a similar strategy to compare different meth-

ods that provide non-comparable measures of testing association. They also suggested an alter-

native strategy to successively reject SNPs with increasing locFDR until the average locFDR of

Bayesian meta-analysis for studying cross-phenotype genetic associations
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the rejected set (estimated FDR) reaches a pre-fixed threshold. We implement this procedure

for CPBayes to detect pleiotropic signals at a pre-specified level of FDR. We apply the Benja-

mini-Hochberg FDR controlling procedure (with the same FDR level as for CPBayes) to

ASSET p-values and compare the detected number of true and false positives with that

obtained by CPBayes (Table 1).

In Fig 1, we present the partial ROC curves for CPBayes and ASSET. It shows that CPBayes

has a greater AUC than ASSET consistently across different study designs and number of phe-

notypes. In Table 2, we provide the average number of true positives (nTP) and false positives

(nFP) and the realized FDR (rFDR) detected by CPBayes based on different significance

thresholds of locFDR in different simulation scenarios. As expected, rFDR is bounded above

by the threshold of locFDR [27, 33]. We note that the estimated nFP and rFDR are zero in

most of the cases. This is because we only considered 1000 SNPs for computational simplicity.

From Table 1, we observe that both the methods control the FDR well overall (ASSET pro-

duced substantially inflated FDR only in one simulation scenario of five non-overlapping case-

control studies). While the two methods detected similar number of true positives for non-

overlapping case-control studies, CPBayes consistently identified a larger number of true posi-

tives than ASSET for overlapping case-control studies and cohort study (Table 1). We note

that since the locFDR is directly estimated by the MCMC underlying CPBayes and it is the

posterior probability of null association, we use it as the primary measure of evaluating aggre-

gate-level pleiotropic association.

Selection accuracy for different methods. Here we assess the accuracy of selection of

non-null traits underlying a pleiotropic signal detected by CPBayes and ASSET. We also

Table 1. Simulation results: The number of true positives and false positives detected by CPBayes and ASSET at different significance levels of FDR.

Study design K Method Significance level of FDR

0.01 0.05 0.1

nTP nFP rFDR nTP nFP rFDR nTP nFP rFDR

Non-overlapping

case-control

studies

5 CPB 16.1 0 0 17.2 0.7 0.04 17.5 2.3 0.11

AST 16.0 0 0 16.8 1.0 0.05 17.5 17.5 0.47

10 CPB 18.7 0 0 19.3 0.5 0.02 19.5 1.3 0.06

AST 18.8 0 0 18.9 0 0 19.0 0 0

15 CPB 19.0 0 0 19.4 0.6 0.03 19.6 1.6 0.08

AST 19.1 0 0 19.3 0 0 19.4 0 0

Overlapping

case-control

studies

5 CPB 16.1 0 0 17.3 0 0 18.3 0.3 0.01

AST 14.2 0 0 15.2 0 0 15.7 0 0

10 CPB 18.9 0 0 19.4 0.3 0.02 19.7 1.3 0.06

AST 16.5 0 0 17.2 0 0 17.5 0 0

15 CPB 19.2 0 0 19.7 0.4 0.02 20.0 1.3 0.06

AST 17.0 0 0 17.7 0 0 18.0 3.5 0.13

Cohort

study

5 CPB 15.5 0.16 0.01 17.2 1.5 0.08 17.8 3.1 0.15

AST 12.5 0 0 14.3 0 0 15.3 0.04 0

10 CPB 19.2 0 0 19.8 0.6 0.03 19.9 1.7 0.08

AST 16.8 0 0 17.8 0.1 0.01 18.4 1.5 0.07

15 CPB 19.7 0.02 0.001 19.9 0.9 0.04 19.9 2.2 0.10

AST 16.7 0.02 0.001 17.8 0.5 0.02 18.1 1.5 0.07

K denotes the total number of studies/phenotypes. CPB denotes CPBayes and AST denotes ASSET. The number of true positives (out of 20 risk SNPs), number of false

positives, and realized FDR are abbreviated as nTP, nFP and rFDR, respectively.

https://doi.org/10.1371/journal.pgen.1007139.t001
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applied BH0.01 (Material and methods) to select the optimal subset of non-null traits for a

pleiotropic signal. We contrast the selection accuracy of CPBayes, ASSET and BH0.01 across a

range of simulation scenarios. We consider multiple non-overlapping, overlapping case-con-

trol studies and cohort study with the same choices of K and K1 as provided above. For

Fig 1. Simulation study results: Partial receiver operating characteristic (ROC) curves for CPBayes and ASSET. Number of true positives detected by CPBayes

and ASSET at the expense of committing a given number of false positives are plotted. The number of false positives is varied across a range: 0, 1, . . ., 500. In each

simulation scenario, 50 replications are performed to compute the mean number of true and false positives detected by each method.

https://doi.org/10.1371/journal.pgen.1007139.g001
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multiple case-control studies, we made an additional choice of K1 = 4 when K = 5, and K1 = 8

when K = 10.

Here we consider a single SNP with fixed MAF as 0.3 and 0.1, respectively. For a given

choice of study design, K and K1, MAF at the SNP, we consider 500 replications in each of

which OR for an associated trait is randomly simulated in the same way as described above.

We separately consider the scenarios of all positive non-null effects and both positive and neg-

ative non-null effects to explore if the methods perform differentially under these two different

scenarios. Suppose, Kþ
1

traits are positively associated and K �
1

traits are negatively associated

(K1 ¼ Kþ
1
þ K �

1
). To ideally match with a GWAS setting, we should compute the average

specificity and sensitivity of selected subset of traits only for the replications in which locFDR

(or, p-value of ASSET) falls below a certain threshold showing an evidence of aggregate-level

pleiotropic association. Hence, among the total of 500 replications, we consider only those rep-

lications in which the CPBayes locFDR is< 0.01. Based on these selected replications, we com-

puted the average specificity and sensitivity of different methods while selecting the non-null

traits. The minimum number of such selected replications was 153 for overlapping case-con-

trol studies with K = 5, Kþ
1
¼ 1, K �

1
¼ 0, m = 0.1. We note that it is also possible to select the

replications based on a threshold of ASSET p-value instead of CPBayes locFDR. We explored

this and observed that the overall conclusion about the selection accuracy of the methods

remains unchanged.

First, we note that CPBayes and BH0.01 offer similar selection accuracy. In Figs 2 and 3, and

S3, S4 and S5 Figs, points plotting the average specificity and sensitivity for CPBayes and

BH0.01 across various simulation scenarios cluster around each other. So next, we focus on

comparing the selection accuracies between the two main competing methods CPBayes and

ASSET.

CPBayes yielded a very good level of specificity (consistently more than 94%) which is sub-

stantially higher than that of ASSET. For example, in Fig 2 (for non-overlapping case-control

studies), while CPBayes’ specificity is> 96%, the specificity of ASSET varies in the range of

45%–98% when K = 5, and in the range of 53%–99% when K = 10. Similarly, in Fig 3 (for over-

lapping case-control studies), the specificity of ASSET varies in the range of 49%–100% when

K = 5, and in 61%–100% when K = 10.

Table 2. Simulation results: The number of true positives and false positives detected by CPBayes at different significance levels of locFDR.

Study design Significance level of locFDR

0.01 0.05 0.1

K nTP nFP rFDR nTP nFP rFDR nTP nFP rFDR

Non-overlapping

case-control

studies

5 15.2 0 0 15.8 0 0 16.0 0 0

10 18.0 0 0 18.4 0 0 18.6 0 0

15 18.8 0 0 18.9 0 0 18.9 0 0

Overlapping

case-control

studies

5 14.7 0 0 15.6 0 0 16.1 0 0

10 18.9 0 0 19.4 0.32 0.02 19.7 1.28 0.06

15 18.9 0 0 19.0 0 0 19.2 0 0

Cohort

study

5 13.5 0 0 14.9 0.04 0.002 15.7 0.2 0.01

10 18.6 0 0 19.0 0 0 19.1 0 0

15 19.4 0 0 19.5 0 0 19.6 0 0

K denotes the total number of studies/phenotypes. The number of true positives (out of 20 risk SNPs), number of false positives, and realized FDR are abbreviated as

nTP, nFP and rFDR, respectively.

https://doi.org/10.1371/journal.pgen.1007139.t002
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Fig 2. Simulation study results: Comparison of the accuracy of selection of associated traits by different methods

for multiple non-overlapping case-control studies. The total number of studies is denoted by K and m denotes the

minor allele frequency at the risk SNP. Kþ
1

denotes the number of positively associated traits and K �
1

denotes the

number of negatively associated traits. Different type of points present different configurations of the number of

associated traits and the number of positively and negatively associated traits.

https://doi.org/10.1371/journal.pgen.1007139.g002

Bayesian meta-analysis for studying cross-phenotype genetic associations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007139 February 12, 2018 9 / 32

https://doi.org/10.1371/journal.pgen.1007139.g002
https://doi.org/10.1371/journal.pgen.1007139


Fig 3. Simulation study results: Comparison of the accuracy of selection of associated traits by different methods

for multiple overlapping case-control studies. The total number of studies is denoted by K and m denotes the minor

allele frequency at the risk SNP. Kþ
1

denotes the number of positively associated traits and K �
1

denotes the number of

negatively associated traits. Different type of points present different configurations of the number of associated traits

and the number of positively and negatively associated traits.

https://doi.org/10.1371/journal.pgen.1007139.g003
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CPBayes also offers an overall good level of sensitivity. For 5 non-overlapping case-control

studies (Fig 2), CPBayes produced a sensitivity of 87%–100% when MAF = 0.3 and 77%–100%

when MAF = 0.1; ASSET yielded a similar sensitivity of 87%–100% (with 50%–98% specificity)

when MAF = 0.3, and a slightly higher sensitivity of 85%–100% (with 45%–91% specificity)

when MAF = 0.1. We observe a similar pattern for K = 10 (Fig 2) and K = 15 (S4 Fig). ASSET’s

higher sensitivity than CPBayes appears to come at the expense of a substantially lower

specificity.

For overlapping case-control studies (Fig 3 and S5 Fig), CPBayes gave a substantially

better sensitivity than ASSET (along with substantially better specificity) for a majority

of the simulation scenarios. For example, when K = 10 and m = 0.3, the sensitivity was

82%–89% for CPBayes, and 39%–73% for ASSET, except for the case Kþ
1
¼ 1;K �

1
¼ 1 when

ASSET had 100% sensitivity (Fig 3). Similarly, for K = 10 and m = 0.1, the sensitivity was

68%–77% for CPBayes and 39%–72% for ASSET except for the choice Kþ
1
¼ 1;K �

1
¼ 1

when ASSET had 98% sensitivity (Fig 3). We observe a similar pattern for K = 15

(S5 Fig).

For a cohort study, CPBayes and ASSET both consistently exhibited good levels of sensitiv-

ity (S3 Fig). But, CPBayes produced a substantially higher sensitivity than ASSET in a number

of cases. For all study designs, we also observed that when the non-null effects are both positive

and negative, the specificity of ASSET is substantially higher compared to when the non-null

effects are all positive. However, CPBayes performed more robustly with respect to the direc-

tion of non-null effects.

We also considered more stringent threshold of locFDR (e.g., 10−4) than 0.01 while select-

ing the replications showing evidence of pleiotropic association. We observed that for more

stringent thresholds of locFDR, CPBayes provides a higher sensitivity compared to a larger

threshold of locFDR while maintaining a good level of specificity. This is because a risk SNP

will have a smaller locFDR if the odds ratios for the individual associated traits become stron-

ger and this also leads to better sensitivity of the selected subset of associated traits for CPBayes

while preserving a good level of specificity.

Comparison between CPBayes and GPA. We contrast CPBayes with GPA for two

non-overlapping case-control studies. We have provided a summary of this comparison and

a brief outline of the probabilistic model underlying GPA in supporting information (S1

Text and S6–S9 Figs). In summary, these two methods broadly agree with each other in

terms of producing similar estimates of joint posterior probability of four possible configu-

rations of association with two traits. However, GPA can wrongly conclude sometimes that

both traits are associated even when only one of them is associated (S9 Fig and S1 Text), and

hence can lead to lower specificity in selection. CPBayes and GPA use a mixture of two prob-

ability distributions—one to model null effects and the other to model non-null effects.

While CPBayes directly models the effect estimates by a scale mixture of two normal distri-

butions with mean zero (one with small variance to model the null effects), GPA models the

univariate association p-values by a mixture of Uniform(0,1) distribution (modeling null

effects) and a Beta distribution with its first shape parameter smaller than the second shape

parameter (modeling non-null effects). This connection in the probabilistic modeling is a

reason behind the similar performance of the two approaches. However, GPA is mainly

suited for analyzing a pair of traits at a time, but CPBayes and ASSET are designed to analyze

two or more traits simultaneously. For model fitting, GPA requires summary-level data for a

sufficiently large number of GW SNPs which should include a substantial number of risk

SNPs for better fitting. But CPBayes and ASSET can be implemented for any collection of

SNPs individually.
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Application of CPBayes

To investigate the performance of CPBayes using real data, we analyzed multiple traits in the

large Northern California Kaiser Permanente “Resource for Genetic Epidemiology Research

on Adult Health and Aging” (GERA) cohort obtained from dbGaP [dbGaP Study Accession:

phs000674.v1.p1]. We also analyzed this dataset using ASSET for an empirical comparison of

the methods. We restricted our analysis to 62,318 European-American individuals, who con-

stitute more than 75% of the dbGaP data. We tested 657,184 SNPs genotyped across 22 autoso-

mal chromosomes for their potential pleiotropic effects on 22 case-control phenotypes in the

GERA cohort (S8 Table). Note that in the dbGaP data, the cancers are collapsed into a single

variable (any cancer). Therefore, we could only use an overall cancer categorization even

though the genetic architecture is likely heterogeneous across different cancers. The pheno-

types are correlated modestly with a maximum absolute value of correlation as 0.36 observed

between Hypertension and Dyslipidemia.

Before our analysis, we undertook the following QC steps. First, we removed individuals

with: over 3% of genotypes missing; any missing information on covariates (described

below); genotype heterozygosity outside six standard deviations; first degree relatives; or dis-

cordant sex information. This left us with 53,809 individuals. Next, we removed SNPs with:

MAF < 0.01; 10% or more missingness; or deviation from HWE at a level of significance 10−5.

This leaves 601,175 SNPs that were tested for pleiotropic association by CPBayes and ASSET.

We adjusted the analysis for the following covariates: age, gender, smoking status, BMI cate-

gory and 10 principal components of ancestry (PCs). We tested the single-trait association for

each of 22 phenotypes by a logistic regression of the case-control status on the genotype incor-

porating the same set of adjusting covariates. We used SNP-trait effect estimates (log odds

ratios) and their standard errors in CPBayes and ASSET. As the summary statistics are corre-

lated here, we used the combined strategy of CPBayes and the correlated version of ASSET.

Since we have environmental covariates in the GERA study, we estimated the correlation

matrix of the effect estimates under the null using the GW summary statistics data [34]. First,

we extracted all of the SNPs for which the trait-specific univariate p-value across 22 traits

are> 0.1. This ensures that each SNP is either weakly or not associated with any of the 22 phe-

notypes. Then we selected a set of 24,510 independent SNPs from the initial set of null SNPs

by using a linkage disequilibrium (LD) threshold of r2 < 0.01 (r: the correlation between the

genotypes at a pair of SNPs). Finally, we computed the correlation matrix of the effect esti-

mates as the sample correlation matrix of b̂1; . . . ; b̂22 across the selected 24,510 independent

null SNPs. We also considered different SNP filtering thresholds and compared the resulting

correlation matrices. We provide numerical results demonstrating that the estimated matrix

was not sensitive to our primary choice of the thresholds. We also give numerical results indi-

cating that the estimated correlation matrix based on the sample overlap counts (Eq 6) may be

biased. These numerical results and their interpretation are provided in more detail in S9

Table and S1 Text.

We apply the conventional GW level of statistical significance 5 × 10−8 for ASSET. For

CPBayes, a pre-fixed significance threshold of locFDR needs to be considered here. While con-

cluding that a locFDR threshold of 5% indicates good evidence of association, selecting the

most promising pleiotropic variants may require a more stringent threshold (as with the fre-

quentist p-value threshold 5 × 10−8). Liley and Wallace [12] also highlighted this point and

suggested using a more stringent threshold of conditional false discovery rate (cFDR) than the

nominal levels (e.g., 0.05 or 0.01). They used a FDR and cFDR cut-off in the order of 10−5 or

10−6 to make the analysis analogous to using a stringent threshold of p-value (5 × 10−8). We

applied various thresholds of locFDR and detected 610 (locFDR < 10−2), 537 (locFDR < 10−3),
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523 (locFDR < 10−4), 481 (locFDR < 10−5), 442 (locFDR < 10−6), 417 (locFDR < 10−7) and

380 (locFDR < 10−8) SNPs, respectively. We note that locFDR is not used as extensively as p-

value in practice. Unlike the commonly used p-value threshold 5 × 10−8, different thresholds

of locFDR (or other FDR related measures) have been used in different applications [8, 9, 12].

Since Liley and Wallace [12] used a FDR and cFDR cut-off in the order of 10−5 or 10−6, here

we report the results based on a similar threshold of locFDR as 10−6 which detected 442 SNPs.

Of note, locFDR, FDR and cFDR are distinct by definition. Theoretically, locFDR is an upper

bound of FDR [27]. ASSET detected 394 SNPs based on the p-value threshold 5 × 10−8. We

note that CPBayes and ASSET identified a common set of 322 SNPs based on these chosen sig-

nificance thresholds.

Many of the associated SNPs are expected to be in LD. It is challenging to report indepen-

dent pleiotropic variants since the LD pattern across a chromosome is irregular and converting

the conditional analysis approach used in single phenotype GWAS to select independently

associated variants in multi-phenotype context is difficult. Hence for the sake of convenience,

we undertook the following simplified approach to identify correlated LD blocks. For CPBayes

(ASSET) on each chromosome, we first chose the associated SNP that has the minimum

locFDR (ASSET p-value) and created a LD block around it using a threshold of r2 = 0.25. Then

we implement the same strategy on the remaining set of associated SNPs to identify the next

LD block, and so on. A major limitation of this approach is that defining such discrete LD

blocks may not be on par with the irregular LD pattern across a chromosome and choosing an

appropriate threshold of r2 is also difficult. For CPBayes, 442 GW associated SNPs comprised

59 LD blocks, and for ASSET, 394 GW associated SNPs comprised 30 LD blocks.

For each of 394 SNPs detected by ASSET, the optimal subset of non-null traits always

included more than one trait. Within each LD block detected by ASSET, we chose the SNP

associated with the maximum number of traits as the lead SNP of the block. If multiple SNPs

in a LD block satisfy this criterion, the one with minimum p-value of pleiotropic association

was selected. We present the results for the lead SNPs detected by ASSET only on chromosome

1 and 2 (to save space) in S11 Table.

CPBayes selected more than one trait for 93 among 442 SNPs. Within each LD block identi-

fied by CPBayes, we chose the SNP associated with the maximum number of phenotypes as

the lead SNP of the block. If multiple SNPs satisfy this criterion, we chose the one having the

minimum locFDR. In addition, if every SNP in a LD block is associated with one trait, we

chose the SNP which provided the maximum number of traits having the marginal trait-spe-

cific posterior probability of association (PPAj)> 20% (these traits were termed important

phenotypes). Again, if multiple SNPs satisfy this criterion, we chose the one having the mini-

mum locFDR.

We note that the strategy of choosing the lead SNP in a LD block identified by CPBayes and

ASSET are similar but technically different. As CPBayes locFDR and ASSET p-value are not

directly comparable, it is very difficult to contrast the two methods with respect to the power

of detecting aggregate-level pleiotropic association in a real data application. However, it

makes sense to contrast the selection of non-null traits at a pleiotropic variant detected by both

the methods.

In Table 3, we present the results for the independent pleiotropic SNPs at which CPBayes

selected at least two phenotypes. At some of the lead SNPs detected by CPBayes, some pheno-

types produced a non-negligible value of PPAj but were left out of the optimal subset of non-

null traits. In Table 4, we list these SNPs and the corresponding important phenotypes having

a PPAj> 20%. In S10 Table, we report the independent SNPs at which CPBayes selected one

trait. In the tables for CPBayes, we present PPAj and the direction of association (genotype was

coded as the number of the wild allele) for the selected phenotypes (Material and methods). In
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all the tables for CPBayes and ASSET, we also provide the trait-specific univariate association

p-values.

Many of the pleiotropic variants detected by CPBayes and ASSET are already reported in

the NHGRI-EBI GWAS catalog. For example, rs6025 at 1q24.2 (Table 3) has been associated

with inflammatory bowel disease and venous thromboembolism; rs10455872 at 6q25.3

(Table 3) has been associated with myocardial infarction, response to statins (LDL cholesterol

change), coronary artery disease, and aortic valve calcification; rs1410996 at 1q31.3 (Table 4) is

reported to be associated with Post bronchodilator FEV1/FVC ratio in COPD, End-stage coag-

ulation and Age-related Macular Degeneration; rs4506565 at 10q25.2 (Table 4) has been asso-

ciated with Fasting glucose-related traits and Type 2 Diabetes.

For a majority of the SNPs detected by ASSET, the subset of non-null traits included many

phenotypes that have large univariate association p-values. For example, rs77394225 at 1q31.3

was detected by both the methods (S10 and S11 Tables); ASSET selected 10 traits, 9 of which

had univariate p-value� 0.3 and one (Macular Degeneration) had p-value = 6.04 × 10−16 (S11

Table). In contrast, CPBayes only selected Macular Degeneration (S10 Table). This suggests

that CPBayes selects only those phenotypes with strong genetic associations, while ASSET may

select many more traits with lower specificity as seen in our simulation study. For the indepen-

dent pleiotropic SNPs identified by both the methods, for contrast’s sake, we applied BH0.01.

At rs77394225, BH0.01 only selected Macular Degeneration which is consistent with CPBayes.

Among the nine independent pleiotropic SNPs on chromosome 1 and 2 detected by ASSET,

BH0.01 selected more than one trait only for two SNPs, whereas ASSET selected multiple traits

for each of them (S11 Table). This again indicates lower specificity of ASSET.

Table 3. Independent pleiotropic SNPs detected by CPBayes which are associated with at least two phenotypes.

rsID chrom

band

CPBayes

locFDR

CPBayes

log10BF

Subset of associated

traits selected by CPBayes

PPAj Direction Univariate

p-values

rs6025 1q24.2 5.06 × 10−224 220.83 Dermatophytosis 67% positive 0.0018

Hemorrhoids 71% positive 0.0014

Iron Deficiency 97% positive 0.0004

Osteoporosis 94% negative 0.0002

Peripheral Vascular Disease 100% negative 6.81 × 10−14

rs7601401 2p16.1 6.27 × 10−19 17.24 Abdominal Hernia 100% positive 3.88 × 10−12

Osteoarthritis 68% positive 3.46 × 10−6

rs13211628 6p21.32 1.99 × 10−10 8.32 Asthma 98% positive 1.71 × 10−7

Cancers 59% negative 6.71 × 10−5

Dyslipidemia 100% negative 2.09 × 10−10

rs10455872 6q25.3 1.04 × 10−25 23.60 Cardiovascular Disease 62% negative 6.14 × 10−5

Dyslipidemia 100% negative 6.97 × 10−15

Peripheral Vascular Disease 61% negative 0.0002

rs3957148 6p21.32 1.68 × 10−21 19.39 Asthma 100% negative 7.10 × 10−8

Type 2 Diabetes 100% negative 4.74 × 10−6

Macular Degeneration 62% positive 0.0006

rs687289 9q34.2 1.11 × 10−8 6.57 Type 2 Diabetes 65% negative 0.0002

Dyslipidemia 100% negative 1.21 × 10−11

Peripheral Vascular Disease 95% negative 7.25 × 10−6

The chromosome band of a SNP is denoted by ‘chrom band’. Direction means whether the SNP is positively or negatively associated with the phenotype. PPAj denotes

the marginal trait-specific posterior probability of association with a risk SNP.

https://doi.org/10.1371/journal.pgen.1007139.t003
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CPBayes detected six independent pleiotropic SNPs that were associated with at least two

phenotypes (Table 3). For example, at rs6025 (1q24.2), it selected a maximum of 5 phenotypes:

Dermatophytosis, Hemorrhoids, Iron Deficiency, Osteoporosis and Peripheral Vascular Dis-

ease, which have univariate p-values equal to 0.0018, 0.0014, 0.0004, 0.0002 and 6.81 × 10−14,

respectively (Table 3). Interestingly, this SNP was positively associated with Dermatophytosis,

Hemorrhoids and Iron Deficiency, but negatively associated with Osteoporosis and Peripheral

Vascular Disease (Table 3). rs10455872 at 6q25.3 appeared to be the lead SNP for both the

methods in their corresponding LD block on chromosome 6. In Fig 4, we contrast the selection

of traits at rs10455872 between the methods. CPBayes selected Cardiovascular Disease, Dysli-

pidemia and Peripheral Vascular Disease (Fig 4). ASSET selected these three traits and five

more phenotypes with large univariate p-values indicating weak genetic effects (Fig 4).

CPBayes detected two independent pleiotropic SNPs in the chromosomal region 6p21.32:

rs13211628 which was associated with Asthma, Cancers and Dyslipidemia, and rs3957148

which was associated with Asthma, Type 2 Diabetes and Macular Degeneration (Table 3).

The r2 value between rs13211628 and rs3957148 was 0.03. We provide a circos plot in Fig 5

presenting 23 pair-wise trait-trait pleiotropic association signals detected by CPBayes. It

shows that CPBayes detected rs7601401 at 2p16.1 associated with Osteoarthritis and Abdom-

inal Hernia; rs687289 at 9q34.2 associated with Dyslipidemia, Type 2 Diabetes and Peripheral

Vascular Disease. We also present forest plot for some of the independent pleiotropic signals

(at rs6025, rs13211628, rs10455872, rs3957148, rs687289) detected by CPBayes in S11–S15

Figs. For these six independent pleiotropic SNPs, BH0.01 selected the same subset of traits as

CPBayes.

Table 4. Pleiotropy results by CPBayes for those SNPs at which some phenotypes were not selected in the optimal subset of non-null traits but produced a non-neg-

ligible value of trait-specific posterior probability of association (PPAj).

rsID chrom

band

CPBayes

locFDR

CPBayes

log10BF

Important

phenotypes

PPAj Univariate

p-values

Subset of associated

traits detected by BH0.01

rs1410996 1q31.3 1.00 × 10−300 300.00 Macular Degeneration 100% 1.86 × 10−75 Macular Degeneration

Iron Deficiency 20% 0.0008 Iron Deficiency

rs17647543 1p13.3 1.96 × 10−10 8.75 Dyslipidemia 100% 5.29 × 10−9 Dyslipidemia

Peptic Ulcer 36% 0.004

rs115946033 3q25.32 1.97 × 10−10 8.74 Type 2 Diabetes 100% 3.83 × 10−7 Type 2 Diabetes

Depressive Disorder 23% 0.0008 Depressive Disorder

rs387608 6p21.33 1.94 × 10−22 20.75 Macular Degeneration 100% 4.29 × 10−12 Macular Degeneration

Cancers 42% 0.0001 Cancers

rs849142 7p15.1 5.56 × 10−13 11.29 Type 2 Diabetes 100% 1.94 × 10−14 Type 2 Diabetes

Asthma 28% 2.89 × 10−5 Asthma

rs10808546 8q24.13 5.49 × 10−16 14.30 Dyslipidemia 100% 6.00 × 10−25 Dyslipidemia

Hypertension 21% 2.59 × 10−5 Hypertension

rs687289 9q34.2 1.1 × 10−8 6.57 Type 2 Diabetes 65% 0.0002 Type 2 Diabetes

Dyslipidemia 100% 1.2 × 10−11 Dyslipidemia

Peripheral Vascular Disease 95% 7.3 × 10−6 Peripheral Vascular Disease

Peptic Ulcer 28.4% 0.003

rs4506565 10q25.2 1.60 × 10−117 115.84 Type 2 Diabetes 100% 2.02 × 10−55 Type 2 Diabetes

Dyslipidemia 52% 1.33 × 10−6 Dyslipidemia

rs76075198 19q13.31 5.58 × 10−36 34.29 Dyslipidemia 100% 5.29 × 10−11 Dyslipidemia

Peripheral Vascular Disease 34% 0.007

The chromosome band of a SNP is denoted by ‘chrom band’. PPAj denotes the marginal trait-specific posterior probability of association with a risk SNP.

https://doi.org/10.1371/journal.pgen.1007139.t004
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For CPBayes, the marginal trait-specific posterior probability of association (PPAj) provides

a better insight into the relative strength of association between a pleiotropic variant and the

selected non-null traits. For example at rs6025, PPAj for Dermatophytosis, Hemorrhoids, Iron

Deficiency, Osteoporosis and Peripheral Vascular Disease are 67%, 71%, 97%, 94% and 100%,

respectively (Table 3). This implies that the association with Peripheral Vascular Disease is the

strongest among the five selected phenotypes.

Fig 4. Forest plot for pleiotropic signal at rs10455872 on chromosome 6 contrasting the selection of traits by CPBayes and ASSET. Phenotypes

selected by either of the two methods are plotted. Blue diamonds present the trait-specific univariate log odds ratio estimate with the corresponding

95% confidence interval. Red diamonds present the posterior mean and 95% credible interval of the trait-specific log odds ratio obtained by CPBayes.

The CPBayes locFDR and ASSET p-value (ASTpv) are provided. The association status of a phenotype detected by a method is denoted by null (not

associated), positive or negative (associated). The trait-specific univariate association p-values are also provided.

https://doi.org/10.1371/journal.pgen.1007139.g004
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At some of the GW significant SNPs detected by CPBayes, it produced a non-negligible

value of PPAj for some traits; but these traits were left out of the optimal subset of non-null

traits (Table 4). For example at rs4506565 (10q25.2), CPBayes only selected Type 2 Diabetes,

but Dyslipidemia also produced a PPAj of 52%. Thus, even though the effect of rs4506565 on

Dyslipidemia was not strong enough to make it into the optimal subset, a further consideration

of the pleiotropic effect of rs4506565 on Type 2 Diabetes and Dyslipidemia looks promising.

We observed similar pattern across the other pleiotropic variants listed in Table 4. We note

that the combined strategy of CPBayes used the uncorrelated version only for one SNP among

all the 601,175 SNPs analyzed.

Fig 5. A circos plot presenting the pairwise trait-trait pleiotropic signals detected by CPBayes in GERA cohort.

https://doi.org/10.1371/journal.pgen.1007139.g005
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Computational efficiency. For a larger number of phenotypes, CPBayes is computa-

tionally faster than ASSET. For example, in the analysis of 22 traits in the GERA cohort,

CPBayes took an average run time of 3.5 hours for 1,000 SNPs, and ASSET took an average

run time of 9 hours for 1,000 SNPs. However, as the number of traits decreases, ASSET

gradually becomes faster due to the reduction in the number of all possible subsets of traits.

That said, CPBayes is computationally feasible and can be implemented at a GW scale. As

expected, the uncorrelated version of CPBayes is at least twice as fast as the correlated ver-

sion of CPBayes.

Discussion

We have proposed a Bayesian meta-analysis approach CPBayes for pleiotropic association

analysis based on summary-level data. It simultaneously evaluates the evidence of aggregate-

level pleiotropic association and estimates an optimal subset of traits associated with the risk

locus under a unified Bayesian statistical framework. The method is implemented by Gibbs

sampling designed for both uncorrelated and correlated summary statistics. We have con-

ducted an extensive simulation study and analyzed the large GERA cohort for evaluating the

performance of CPBayes.

An appealing feature of CPBayes is that, in addition to locFDR, Bayes factor, and an optimal

subset of non-null traits, it simultaneously provides other interesting insights into an observed

pleiotropic signal. For example, it estimates a trait-specific posterior probability of association

(PPAj), the direction of association, posterior mean/median and the credible interval of the

unknown true genetic effect across traits. PPAj quantifies the marginal probability of each trait

being associated with a pleiotropic variant. As demonstrated in the real data application, even

if CPBayes does not select a phenotype in the optimal subset of non-null traits, PPAj for the

phenotype may not be negligible. This may help an investigator to better explain a pleiotropic

signal. One can also define the optimal subset of associated traits as {Yj: PPAj> p}, where p
can be chosen as 0.5 (known as the median model), or other values. Moreover, the joint poste-

rior probability of association for a particular subset of traits can be calculated. Such flexibility

in making inference on pleiotropy is mainly due to the MCMC construction underlying

CPBayes.

CPBayes selects the non-null traits underlying a pleiotropic signal with higher accuracy

than ASSET. CPBayes performs the selection probabilistically through updating the latent

association status by MCMC. ASSET selects that subset of traits as non-null which maximizes

the observed value of a weighted linear combination of the normalized univariate association

statistics corresponding to the phenotypes belonging to a subset. So given the summary statis-

tics, ASSET does not select the non-null traits probabilistically based on the distribution of the

summary statistics. For ASSET, even if a trait having a small genetic effect contributes a little

to a pleiotropic signal, it is included in the optimal subset of associated traits. But CPBayes

considers only those traits as non-null which substantially contribute to a pleiotropic signal.

For example in the real data application, at rs10455872, allergic rhinitis had an estimated odds

ratio 1.05 (univariate association p-value 0.07). ASSET included this phenotype in the optimal

subset of non-null traits as it might contribute to the overall signal of pleiotropic assocition.

However, CPBayes estimated PPAj for this trait as 2.4% (S13 Fig). So its contribution to the

pleiotropic signal was not necessarily null, but CPBayes did not include it in the optimal subset

of non-null traits as the effect was weak. We also note that ASSET is based on the framework

of a fixed effects meta-analysis and assumes that the effects in a given direction (positive/nega-

tive) have the same size. But we observed in our real data application that, in a given direction,

the effects of a variant across phenotypes may often be heterogeneous. CPBayes allows for
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heterogeneity simultaneously in the direction and size of the effects. S2 Table summarizes the

key features of CPBayes and ASSET.

While assessing the selection accuracy, we have placed more emphasis on specificity than

sensitivity. This was because a higher sensitivity at the expense of a lower specificity can lead to

a false selection of too many traits as non-null. CPBayes consistently maintained a very good

level of specificity while offering a good level of sensitivity across a wide range of simulation

scenarios. While CPBayes produced a limited number of independent pleiotropic SNPs associ-

ated with more than one phenotype in the analysis of GERA cohort, these pleiotropic signals

seem very promising. The subsets of non-null traits selected by BH0.01 in the GERA cohort

were consistent with CPBayes but not with ASSET which indicates that the non-null traits for

a pleiotropic variant selected by CPBayes may be more reliable than ASSET. Here we note

that, BH0.01 only facilitates the selection of associated traits underlying a pleiotropic signal but

can not test for the evidence of overall pleiotropic association as CPBayes and ASSET. While

CPBayes and ASSET estimate the measure of aggregate-level pleiotropic association and subset

of non-null traits simultaneously under the same framework, BH0.01 has to be implemented in

a separate step for a GW significant pleiotropic variant. Hence, CPBayes is a substantially

more complete statistical tool for pleiotropy analysis than BH0.01.

While evaluating the selection accuracy of different approaches by simulations, we simulta-

neously obtained the measures of overall pleiotropic association provided by CPBayes and

ASSET across 500 replications. We present various summary measures of these in some

selected simulation scenarios (to save space) and corresponding brief interpretation in S3, S4

and S5 Tables and S1 Text. We also carried out simulations for 50 traits. Since ASSET is com-

putationally very slow for 50 traits due to an extremely large number of possible subsets of

traits, we only implemented CPBayes and BH0.01. CPBayes performed consistently well simi-

larly as for smaller number of traits. See S1 Text and S6 and S7 Tables for more details.

Note that the continuous spike inherits the assumption that a SNP contributes to the varia-

tion of all traits under consideration, and the distinction is made between a negligible and a

significant contribution. In contrast, the Dirac spike assigns the null effects explicitly to zero.

We conducted a simulation study (see S1 Text and S10 Fig) to compare the continuous spike

and Dirac spike. We found that the continuous spike offers better accuracy in the selection of

non-null traits than the Dirac spike. The continuous spike is also computationally much faster

(2-3 times) than the Dirac spike. Hence, we adopted the continuous spike for constructing

CPBayes.

In a related work, Han and Eskin [35] proposed a modified random effects meta-analysis

for combining heterogeneous studies coupled with a Bayesian approach to provide a better

interpretation of an observed signal of aggregate-level association. They investigated how to

combine heterogeneous genetic studies across different populations/ethnicities. However, they

did not address how to account for a possible correlation between the summary statistics while

selecting the most important studies underlying an observed signal of aggregate-level associa-

tion. Moreover, they assumed that the non-null effects are similar across studies which is less

likely to hold in the context of pleiotropy. Hence we compared CPBayes with ASSET and

GPA.

We note that the CPBayes locFDR (Bayes factor) and ASSET p-value are not directly

comparable. In our simulation study, we adopted the strategy outlined by Coram et al. [33] to

compare CPBayes and ASSET with respect to the number of true positives detected while

maintaining the FDR at a pre-specified threshold. Another possible approach to quantify the

false positive rate could be the permutation-based strategy suggested by Servin and Stephens

[36]. However in our context, such an approach is computationally too expensive as it requires

the MCMC underlying CPBayes to be implemented for each permuted dataset. Of note, we
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did not conduct a replication study and all the pleiotropic association signals obtained from

the Kaiser cohort are reported based on the analysis only in the discovery sample.

Even though we demonstrated CPBayes only for binary traits, we note that CPBayes can

also be applied to non-binary traits. We carried out simulations for continuous traits (distrib-

uted as multivariate normal), and observed a similar pattern between the performance of

CPBayes and ASSET as for binary traits.

Another useful approach to pleiotropy analysis is MultiPhen [37] which can accommodate

general types of traits. However, we chose ASSET as the main competing method because it

simultaneously provides an optimal subset of associated traits along with a measure of aggre-

gate-level pleiotropic association, which provides a direct comparison to CPBayes. In contrast,

MultiPhen does not facilitate the simultaneous selection of the optimal associated traits under-

lying a pleiotropic signal. Of note, MultiPhen requires individual level phenotype and geno-

type data.

In the analysis of GERA cohort, we assumed that the correlation matrix of estimated effect

sizes is the same across SNPs, for each of which, we converted this correlation matrix to its

covariance matrix by incorporating its standard error across traits. Hence, if the standard

error vector varies across SNPs, the covariance matrix of the effect estimates also varies. We

did some simulations to assess this assumption of constant correlation matrix. Consider the

simulation framework of a cohort study with five case-control phenotypes designed to evalu-

ate the partial ROC curves for CPBayes. Here the continuous traits (liability) underlying the

binary traits were generated at random for every SNP following the simulation model in S1

Text; hence the binary traits dataset varied across SNPs. So the correlation matrix of effect

estimates obtained by Eq 6 also varied across SNPs. We implemented CPBayes for each SNP

using the corresponding effect estimates’ correlation matrix obtained by Eq 6 which is accu-

rate for the null SNPs as there are no environmental covariates here. In the simulated data for

a single risk SNP, we anticipate that the real correlation matrix of the effect estimates will be

very close to the sample overlap correlation matrix (Eq 6). Because, a single risk SNP usually

explains a very small proportion of total heritability for a complex trait and the genetic corre-

lation between two traits due to a single risk SNP is expected to be very small. Next we esti-

mated a constant correlation matrix as the sample correlation matrix of the observed effect

estimates for the null SNPs (following the GW strategy in GERA cohort analysis), and imple-

mented CPBayes for all the SNPs using this constant correlation matrix. We observed that

the partial ROC curve for CPBayes obtained by using varying correlation matrices and con-

stant correlation matrix across SNPs had almost the same AUC. We also found by simula-

tions that using the constant correlation matrix provides a very similar selection accuracy

compared to using varying correlation matrix across SNPs. We repeated these simulations

for a cohort study with five continuous phenotypes distributed as multivariate normal. Since

the phenotypes are normally distributed, the real correlation matrix of effect estimates can be

analytically computed. Again, CPBayes performed very similarly using constant and varying

correlation matrices.

If a set of binary traits are measured on separate independent group of individuals, one

would expect the summary statistics across traits be independent. However, if these traits are

mutually exclusive because of competing risks, risk SNPs for one trait may be underrepre-

sented among the cases of the other trait, leading to a correlation in the summary statistics,

especially for high penetrance variants. For common and complex traits, competing risks may

not result in mutual exclusivity, and may lead to very limited correlation among subjects from

independent samples. Moreover, since such traits arise from many different low risk SNPs,

any corresponding correlation among summary statistics would also be limited. Taken
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together, we expect that this would have negligible impact on our assessment of pleiotropy,

although separate studies may consider this possibility further.

Since CPBayes individually analyzes each SNP using marginal summary statistics across

traits, it can not distinguish between pleiotropy and co-localization. Any marginal SNP-level

meta analysis approach including ASSET also has this limitation. We analyzed 22 traits in the

GERA cohort. Ideally one would only include genetically correlated traits in a pleiotropy anal-

ysis to maximize the power of a multi-trait approach. However, determining a priori which

traits are genetically related can be challenging. This could be based on the literature or esti-

mated from one’s own data. In the latter situation, one must be cognizant of potential bias

due to empirically determining genetic correlations. To date, most pleiotropy analyses have

focused on a small set of context-specific traits (e.g., psychiatric disorders, cancers). Expanding

to larger numbers of disparate traits may provide important insights to shared biological

mechanisms. In general, the selection of traits to consider for pleiotropy analyses can be based

on co-heritability (genetic correlation) analyses, existing literature, and biological / clinical

expertise.

In future work, we aim to investigate whether the computing speed of CPBayes can be

increased by using a variational Bayes approach or by using an optimization technique (e.g.,

EM algorithm or its variants) instead of using MCMC, while preserving the efficiency of

the method. Also, we want to explore how to relax the assumption in CPBayes that s2
j is a rea-

sonably accurate estimate of s2
j which requires a larger sample size to be satisfied. In sum-

mary, CPBayes is an efficient Bayesian meta-analysis approach to simultaneously analyze

pleiotropy for two or more traits. It has a strong theoretical foundation and allows for het-

erogeneity in both the direction and size of effects. One can implement it for both cohort

data and separate studies of multiple phenotypes having non-overlapping or overlapping

subjects. In addition to parameters of primary interest (e.g., the measures of overall pleiotro-

pic association, the optimal subset of associated traits), it provides other interesting insights

into a pleiotropic signal (e.g., the trait-specific posterior probability of association, the direc-

tion of association, the credible interval of unknown true genetic effect across traits). It is

computationally feasible and a user-friendly R-package ‘CPBayes’ is provided for general

use.

Materials and methods

Let Y1, . . ., YK denote K phenotypes, G denote genotype at a single nucleotide polymorphism

(SNP), and W denote a set of covariates. For the SNP, assume a generalized linear model

(GLM) is separately fit for each phenotype as: g(E(Yj)) = αj + βj G + γj
0W, j = 1, . . ., K. Let

b̂1; . . . ; b̂K denote the estimates (e.g., maximum likelihood estimates) of β1, . . ., βK with

the corresponding standard errors s1, . . ., sK. Let β̂ ¼ ðb̂1; . . . ; b̂KÞ, β = (β1, . . ., βK), and

s = (s1, . . ., sK). Now suppose that we only have the summary statistics (e.g., β̂ and s). For a

large sample size, we can assume that b̂ jjbj; sj � Nðbj; s
2
j Þ. Since sj is a consistent estimator of

σj, it is commonly used in place of σj. Hence, we assume that b̂ jjbj � Nðbj; s2
j Þ. If b̂1; . . . ; b̂K are

uncorrelated, b̂ jjbj
ind
�Nðbj; s2

j Þ; j = 1, . . ., K. If b̂1; . . . ; b̂K are correlated with a covariance

matrix S corresponding to the SNP, we assume that β̂jβ � MVNðβ;SÞ. Since the maximum

likelihood estimator asymptotically follows a normal distribution and S is a consistent estima-

tor of the variance-covariance matrix of β̂, these assumptions should hold well for large sample

sizes in contemporary GWAS.
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Continuous spike

The continuous spike and slab prior in our context [19, 20] is described as follows: for j = 1,

. . ., K,

bjjzj; t; d
ind
� ð1 � zjÞ � Nð0; t2Þ þ zj � Nð0;

t

d

� �2

Þ; t > 0; 0 < d < 1;
t

d

� �2

> t2

Pðzj ¼ 1jqÞ ¼ q; Pðzj ¼ 0jqÞ ¼ ð1 � qÞ; 0 < q < 1

qjc1; c2 � Betaðc1; c2Þ; dje1; e2 � Betaðe1; e2Þ

ð1Þ

The latent variable zj denotes the association status of Yj. When zj = 0, βj * N(0, τ2), and

when zj = 1, bj � Nð0; t

d

� �2
Þ, where t

d

� �2
> t2. The usefulness of such a formulation is that τ

can be set small enough so that, if zj = 0, |βj| would probably be very small to safely be consid-

ered as zero (Yj is not associated with the SNP), and d can be chosen sufficiently small (so
1

d >> 1) such that, if zj = 1, βj can be considered as non-zero (Yj is associated with the SNP).

The proportion of traits having a non-null genetic effect is denoted by q. For simplicity and

reduction in computational cost, we consider τ as fixed. We choose e1 = e2 = 1 which corre-

spond to the uniform(0, 1) distribution. The parameter d is updated in a given range so that

the slab variance t

d

� �2
(i.e., variance of non-null effects across traits) varies in a pre-fixed range.

We describe the continuous spike and slab prior in the context of modeling pleiotropy with

diagrams in S1 and S2 Figs.

Dirac spike

The Dirac spike and slab prior in current context [18, 20] is given by: for j = 1, . . ., K,

bjjq; b
i:i:d:
� ð1 � qÞ � df0gðbjÞ þ q�Nð0; b2Þ

qjc1; c2 � Betaðc1; c2Þ; 0 < q < 1
ð2Þ

Here, δ{0}(βj) = 1 if βj = 0, and δ{0}(βj) = 0 if βj 6¼ 0. So under no association, βj = 0. The propor-

tion of associated traits is given by q.

Statistical inference on pleiotropy by employing MCMC

To perform a fully Bayesian analysis, we implement MCMC by the Gibbs sampling algorithm

to generate posterior samples of the model parameters based on which we draw the statistical

inference for pleiotropy. We derive the Gibbs samplers for both uncorrelated and correlated

summary statistics. Here we describe the inference procedure for the continuous spike. The

Gibbs sampling algorithm for the continuous spike (Algorithm 1) is outlined later in this sec-

tion, and the algorithm for Dirac spike (Algorithm S1) is stated in supporting information (S1

Text). The mathematical derivation of the full conditional posterior distributions underlying

the Gibbs samplers are also given in supporting information (S1 Text).

Let {β(i), Z(i), q(i), d(i); i = 1, . . ., N} denote N posterior samples of (β, Z, q, d) obtained by

MCMC after a certain burn-in period. We have used a burn-in period of 5000 and MCMC

sample size of 15000 in our simulation study and the real data application. First, we want to

test the global null hypothesis of no association (H0) against the global alternative hypothesis

of association with at least one trait (H1). Since, for the continuous spike, the latent association

status distinguishes between an association being null or non-null, we set H0: z1 = . . . = zK = 0

(Z = 0) versus H1: at least one of z1, . . ., zK = 1 (Z 6¼ 0).

Local false discovery rate (locFDR)/Posterior probability of null association (PPNA).

Let D denote the summary statistics data at a SNP across traits. We consider the local false
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discovery rate (locFDR = P(H0|D)) [26, 27] as a measure for evaluating the aggregate-level

pleiotropic association. The posterior odds (PO) of H1 versus H0 is
PðH1jDÞ
PðH0jDÞ

. Stephens and Bald-

ing [38] introduced the notion of the posterior probability of association (PPA) defined as:

PPA = PO/(1 + PO). We define the posterior probability of null association (PPNA) = 1 − PPA.

Note that PPNA = 1/(1+PO) = P(H0|D). Hence, by definition, locFDR and PPNA are the same

quantity. It can be viewed as a Bayesian analog of the p-value [38]. If the data supports H1,

locFDR should be close to zero, and if the data supports H0, it should be close to one (similar

to a p-value). We estimate locFDR = P(H0|D) = P(Z = 0|D) based on the MCMC posterior

sample. Note that P(Z = 0|D) =
R R R

P(Z = 0|β, q, d, D)f(β, q, d|D)d(β)d(q)d(d). Thus,

PðZ ¼ 0jDÞ ¼ Eβ;q;djDPðZ ¼ 0jβ; q; d;DÞ �
1

N

XN

i¼1

PðZ ¼ 0jβðiÞ; qðiÞ; dðiÞ;DÞ; ð3Þ

where (β(i), q(i), d(i)) denotes the ith posterior sample of (β, q, d) obtained by the MCMC. We

note that the full conditional posterior distributions of z1, . . ., zK are independent (see step 5 in

Algorithm 1 and the derivation of full conditional distributions of z1, . . ., zK in the supporting

information (S1 Text)). Hence, PðZ ¼ 0jβðiÞ; qðiÞ; dðiÞ;DÞ ¼
QK

j¼1
Pðzj ¼ 0jβðiÞ; qðiÞ; dðiÞ;DÞ. This

independence property of the full conditional posterior distributions of z1, . . ., zK is crucial for

the explicit estimation of the locFDR.

Bayes factor (BF). The Bayes Factor for testing H1 against H0 is given by:

BF ¼
PðDjH1Þ

PðDjH0Þ
¼

PðH1jDÞ
PðH0jDÞ

PðH0Þ

PðH1Þ
¼

PðZ 6¼ 0jDÞ
PðZ ¼ 0jDÞ

PðZ ¼ 0Þ

PðZ 6¼ 0Þ
¼

Posterior odds
Prior odds

ð4Þ

The posterior odds of H1 vs. H0 ¼
PðZ 6¼0jDÞ
PðZ¼0jDÞ ¼

1� PðZ¼0jDÞ
PðZ¼0jDÞ and the prior odds of H1 vs.

H0 ¼
PðZ 6¼0Þ

PðZ¼0Þ
¼

1� PðZ¼0Þ

PðZ¼0Þ
. Of note, Pðzj ¼ 1Þ ¼ EðqÞ ¼ c1

c1þc2
¼ p1. Let p0 = 1 − p1. Since, zjs are

independently distributed in the prior, PðZ ¼ 0Þ ¼ pK
0

, and PðZ 6¼ 0Þ ¼ 1 � pK
0

. So the prior

odds =
1� pK

0

pK
0

. Of note, P(Z = 0|D) is the locFDR.

Selection of optimal subset of associated traits. For i = 1, . . ., N, let Si ¼ fYj : zðiÞj ¼ 1;

j ¼ 1; . . . ;Kg denote the subset of associated traits detected in the ith MCMC posterior sample.

That subset of traits which is observed with the maximum frequency in the posterior sample is

estimated as the optimal subset of associated traits. It is the maximum a posteriori (MAP) esti-

mate of the optimal subset.

Let PPAj denote the marginal trait-specific posterior probability of association which is esti-

mated as 1

N

PN
i¼1

zðiÞj for the phenotype Yj. PPAj provides a better insight into a pleiotropic sig-

nal. It quantifies the relative contribution of the traits underlying a pleiotropic signal. Even if a

trait is not selected in the MAP estimate of the optimal subset of non-null traits, the estimated

PPAj for the trait may not be negligible, e.g., 20%. An interpretation of such a phenomenon is

that even though the estimated genetic effect on a phenotype was not substantial enough to

make into the optimal subset, the possibility of the genetic variant having a pleiotropic effect

on the trait along with those in the optimal subset seems promising. One can also estimate the

joint posterior probability of a particular subset of traits being associated based on the poste-

rior sample of Z. For example, for two traits, it may be of interest to estimate the joint posterior

probability that the first trait is associated but the second trait is not [P(z1 = 1, z2 = 0|D)]. This

probability can be estimated as the proportion of posterior samples in which z1 = 1 and z2 = 0.

The direction of association between each non-null trait and a genetic variant can be

estimated based on the posterior sample of β. The posterior probability that Yj is positively

associated is estimated as the proportion of positive βj among the posterior sample of βj. Yj is
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classified as being positively associated if this estimated proportion is greater than half. The

posterior mean, median, and the 95% credible interval (Bayesian analog of the frequentist con-

fidence interval) of the true genetic effect on each phenotype can be computed based on the

posterior sample of β.

Specifying the hyperparameters

Variance of the spike and slab distributions. After extensive experimentation with

simulated data, we set the variance of the spike distribution τ2 (variance of null or very weak

genetic effects across traits) to a fixed value 10−4. If β (log odds ratio) follows N(0, 10−4), then

P(0.98< eβ< 1.02) = 0.954. It implies that under the spike (no association), the odds ratio for

association between a variant and single trait will vary between 0.98 and 1.02 with a prior prob-

ability of 95.4%. In the MCMC, we updated the slab variance t

d

� �2
in the range (0.6 − 1.0) with

the median value equal to 0.8. If β* N(0, 0.8), then P(eβ< 0.98 or eβ> 1.02) = 0.99, which

implies that under the slab (association) with variance 0.8, the odds ratio is smaller than 0.98

(a negative association) or larger than 1.02 (a positive association) with a prior probability of

99%. We note that a majority of the odds ratios reported for the GW significant associations

with various complex traits are modest in size [39]. Hence, it is desirable to place a substantial

prior probability in modest ranges of non-null odds ratios, e.g. (1.02 − 1.5) [ (1/1.5 − 1/1.02),

(1.02 − 2.0) [ (1/2.0 − 1/1.02). In S1 Table, we provide the prior probability of different ranges

of non-null odds ratio induced by three different choices of the slab variance as 0.6, 0.8 and

1.0, respectively. For example, when the slab variance is 0.6, P(1.02<OR <1.5) + P(1/1.5 <OR

<1/1.02) = 0.38 and P(1.02 <OR<2.0) + P(1/2.0 <OR <1/1.02) = 0.61.

We also explored other choices for these parameters by simulations, such as, τ2 = 10−3,

10−2, and t

d

� �2
in a range (0.5 − 1.0), (0.7 − 1.1), etc. The values used here [τ2 = 10−4, t

d

� �2
2

ð0:6 � 1:0Þ� controlled the realized FDR while evaluating the aggregate-level pleiotropic asso-

ciation and gave an overall high level of specificity and an overall good level of sensitivity while

selecting the optimal subset of associated traits across a wide range of scenarios. The choice of

the spike variance and the ratio of the slab and spike variances ( 1

d2) directly impact the selection

accuracy [19]. A smaller choice of the slab variance will increase sensitivity of CPBayes, but at

the expense of decreased specificity.

Shape parameters of the prior distribution of q. In the continuous spike and slab prior,

q * Beta(c1, c2), c1 > 0, c2 > 0; EðqÞ ¼ c1
c1þc2

. If c1 = c2 = 1, EðqÞ ¼ 1

2
, which implies that half of

the traits are expected to be associated with a SNP in the prior. However in GWAS, a small

proportion of variants are genome-wide significantly associated with complex traits. For the

sake of convenience, we fix c2 as 1. Choosing a smaller value of c1 than c2 induces a small value

of E(q) which is appropriate for null SNPs but can severely penalize the power of CPBayes to

detect the risk SNPs. Hence we consider a simple Empirical Bayes approach here. First, apply

BH0.01 to the univariate association p-values for a SNP across traits and let q̂ be the proportion

of associated traits detected by BH0.01. If q̂ < 0:1, we set q̂ ¼ 0:1; if q̂ > 0:5, we set q̂ ¼ 0:5.

Next, we consider EðqÞ ¼ c1
c1þc2
¼ q̂ and calculate c1 fixing c2 = 1. As we restrict 0:1 < q̂ < 0:5

and c2 = 1, c1 varies from 1

9
to 1 depending on q̂. We note that even though Majumdar et al.

[31] demonstrated that BH0.01 provides good specificity and sensitivity while selecting non-

null traits underlying a pleiotropic signal, it may not always be accurate. Hence in the prior, we

do not allow c1 > 1 q̂ > 1

2

� �
. Of note, c1 = c2 = 1 corresponds to the Uniform(0, 1) distribution.

On the other hand, allowing q̂ < 0:1 can induce a too small value of c1 which can cause

computational issues in the MCMC due to generating too small value of q, and it can also

severely affect CPBayes’ power of detecting risk variants and the sensitivity of selecting the

Bayesian meta-analysis for studying cross-phenotype genetic associations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007139 February 12, 2018 24 / 32

https://doi.org/10.1371/journal.pgen.1007139


non-null traits underlying a pleiotropic signal. We have observed in our simulation study that

CPBayes performs well overall by using this Empirical Bayes approach to choose the hyper-

parameters in the prior of q.

Estimating the correlation between summary statistics

The summary statistics across traits can be correlated due to overlap or close genetic related-

ness among subjects across different studies. For case-control studies, Zaykin and Kozbur

[40] and Lin and Sullivan [41] derived a simple formula of correlation among b̂1; . . . ; b̂K . For

k, l 2 {1, . . ., K} and k 6¼ l,

corrðb̂k; b̂ lÞ ¼ nð11Þ

kl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nð0Þk nð0Þl

nð1Þk nð1Þl

s

þ nð00Þ

kl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1Þk nð1Þl

nð0Þk nð0Þl

s !,
ffiffiffiffiffiffiffiffinknl
p

ð5Þ

Here nð1Þk , nð0Þk , and nk (or nð1Þl , nð0Þl , and nl) denote the number of cases, controls, and total

sample size for the study of Yk (or Yl); n
ð11Þ

kl and nð00Þ

kl denote the number of cases and controls

shared between the studies of Yk and Yl. Let nð10Þ

kl be the number of overlapping subjects that

are cases for Yk but controls for Yl; similarly, let nð01Þ

kl be the number of shared subjects that are

controls for Yk but cases for Yl. Here, the above formula can be generalized to:

corrðb̂k; b̂ lÞ ¼ nð11Þ

kl

ffiffiffiffiffiffiffiffiffiffiffiffiffi

nð0Þk nð0Þl

nð1Þk nð1Þl

s

� nð10Þ

kl

ffiffiffiffiffiffiffiffiffiffiffiffiffi

nð0Þk nð1Þl

nð1Þk nð0Þl

s

� nð01Þ

kl

ffiffiffiffiffiffiffiffiffiffiffiffiffi

nð1Þk nð0Þl

nð0Þk nð1Þl

s

þ nð00Þ

kl

ffiffiffiffiffiffiffiffiffiffiffiffiffi

nð1Þk nð1Þl

nð0Þk nð0Þl

s !,
ffiffiffiffiffiffiffiffi
nknl
p

ð6Þ

This formula is accurate when none of the phenotypes Y1, . . ., YK is associated with the SNP

and environmental covariates. An alternative strategy [5, 34] is based on using GW (genome-

wide) summary statistics data to estimate the correlation structure, which is useful when the

environmental covariates are associated with the phenotypes. For continuous and normally

distributed traits, the correlation matrix of effect estimates under the null is the phenotypic

correlation matrix. But, its calculation requires individual level phenotype data across multiple

traits. For general type of traits (e.g. non-normal continuous traits, count phenotypes), a stan-

dard formula of correlation between the effect estimates may be difficult to derive. Such a for-

mula may also require information only available from individual-level phenotype data. For

example, the effect estimates’ correlation formula for binary traits requires the number of

cases, controls in each study and the number of overlapping cases and controls between stud-

ies. In such scenarios, since the genome-wide (GW) effect estimates corresponding to multiple

traits will be available in the pleiotropy analysis, the GW summary statistics based approach

can be applied irrespective of the type of traits without requiring any individual-level pheno-

type data. So, the GW summary statistics based approach is useful to estimate the correlation

structure of effect estimates in various scenarios including correlated non-binary traits.

A combined strategy for correlated summary statistics

For strongly correlated summary statistics, when a majority of the traits are associated with the

risk locus (non-sparse scenario), the Gibbs sampler can sometimes be trapped in a local mode

rather than the global mode of the posterior distribution due to possible multi-modality of the

posterior distribution of model parameters. We observed this pattern in our simulation study.

It may result in an incorrect selection of associated traits, reducing the robustness of CPBayes.

We noticed that, in such a scenario, if the summary statistics are assumed to be uncorrelated,

the MCMC does not get trapped in a local mode and moves around the global mode. But

ignoring the correlation can give a lower (larger) Bayes factor (locFDR) and sensitivity of the
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selected traits. Hence, for correlated summary statistics, we combine the correlated and the

uncorrelated versions of CPBayes as follows. First, we execute CPBayes considering the corre-

lation among b̂1; . . . ; b̂K . Let A denote the selected subset of non-null traits that contains K1

traits. Let B denote the subset of K1 traits that have the smallest univariate association p-values.

If A and B match, we accept the results; otherwise, we implement CPBayes assuming that

b̂1; . . . ; b̂K are uncorrelated and accept the results obtained. Note that, if A is empty, we accept

the results provided by the correlated version of CPBayes. In this combined strategy, we induce

a frequentist sense of selection. Because, majority of the multiple testing procedures reject the

null hypotheses for which smallest univariate p-values are obtained. However, we note that in

the analysis of the GERA cohort, the combined strategy used the uncorrelated version very few

times. The reason is that the non-sparse scenario may not occur frequently in real data.

Theoretical comparison between the continuous and Dirac spike

It is straightforward to observe that the Dirac spike can be obtained from the continuous spike

by first setting τ = 0 and t

d ¼ b in Eq 1, and then integrating out the latent variables Z from the

model. We note that, the latent association status (Z) could only be used in the model for the

continuous spike. For the Dirac spike, the inclusion of Z in the model makes the correspond-

ing MCMC reducible, and hence non-convergent to its stationary distribution (details not pro-

vided). Also, for the continuous spike, the full conditional posterior distributions of z1, . . ., zK
are independent which leads to an explicit estimation of the locFDR/Bayes factor based on the

MCMC sample. But, for the Dirac spike, the explicit estimation of the locFDR/Bayes factor

appears to be very difficult in the correlated case, because the full conditional posterior distri-

butions of β1, . . ., βK are not independent for correlated summary statistics.

ASSET

Bhattacharjee et al. [7] introduced an elegant subset-based meta analysis method ASSET

to analyze pleiotropy. While regressing kth phenotype Yk on genotype G, let b̂k; sk be the esti-

mates of the association parameter and its standard error, k = 1, . . ., K. Adopting the frame-

work of a fixed-effects meta analysis, for a subset of traits A, ASSET defines the Z statistic as:

ZðAÞ ¼
P

k:Yk2A

ffiffiffiffiffiffiffiffiffiffiffiffi
pkðAÞ

p
Zk, where Zk ¼

b̂k
sk

, and pkðAÞ is an appropriate weight associated

with Yk belonging to A. For example, if there are K separate GWAS for Y1, . . ., YK with the kth

study having a sample size nk, one can consider pkðAÞ ¼
nkP
k2A

nk
. The global association of a

SNP with at least one trait is measured by the test-statistic: Zmax ¼ maxAjZðAÞj, where the

maximization is taken across all possible A. In addition to the p-value of global association,

ASSET also offers an optimal subset of non-null traits that are associated with the SNP, which

is essentially the subset of traits that constructs Zmax. For more details, see Bhattacharjee et al.

[7].

Benjamini Hochberg FDR controlling procedure

Benjamini and Hochberg [30] introduced a sequential procedure that controls the expected

FDR in multiple hypothesis testing. Majumdar et al. [31] demonstrated that the BH procedure

is a simple but efficient strategy to select non-null traits underlying a pleiotropic signal. For

each individual risk SNP associated with at least one trait, we applied the BH procedure to the

univariate association p-values for the phenotypes under consideration with the level of FDR

as 0.01 which was suggested by Majumdar et al. [31]. We refer it as BH0.01.
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Gibbs sampling algorithm for continuous spike

Here we state the Gibbs sampling algorithm for the continuous spike described in Eq 1. It is a

desirable practice to provide the MCMC with a good initial value of the model parameters for

faster convergence to its stationary distribution. Hence, we apply BH0.01 on the univariate

association p-values of K traits and assign zj = 1 if Yj is found to be significantly associated, oth-

erwise set zj = 0; j = 1, . . ., K. We also choose an initial value of q as the proportion of non-null

traits detected by BH0.01 (the boundary situations of no/all non-null traits are taken care of

appropriately).

Define S2 ¼ diagðt2
1
; . . . ; t2

KÞ (a diagonal matrix with diagonal elements t2
1
; . . . ; t2

K),

where τj = τ if zj = 0; and tj ¼
t

d if zj = 1; j = 1, . . ., K. So bjZ � MVNð0~;S2Þ. Let S1 = S. Also,

let β−j = (β1, . . ., βj−1, βj+1, . . ., βK), and Z−j = (z1, . . ., zj−1, zj+1, . . ., zK).

Algorithm 1 Gibbs sampling for continuous spike in correlated case
1: Start:
2: Assign the initial values of Z and q as described above.
3: loop:
4: Simulate β from its full conditional posterior distribution:

βjZ; q; d; β̂ � MVN½ðS� 1

1
þ S� 1

2
Þ
� 1

S� 1

1
β̂; ðS� 1

1
þ S� 1

2
Þ
� 1
�.

5: For j = 1, . . ., K, update zj using the full conditional posterior

probability: Pðzj ¼ 0jZ� j;β; q; d; β̂Þ ¼ 1

1þratioj
, where ratioj ¼

q
1� q d exp½�

b2
j

2t2 ðd2 � 1Þ�.

6: Let k1 ¼
PK

j¼1
zj; k0 = K − k1. Update q using qjβ;Z; d; β̂ � Betaðc1 þ k1; c2 þ k0Þ.

7: We assume that e1 = e2 = 1. Update d from its full conditional
posterior distribution in a fixed range so that the slab variance

t

d

� �2
varies in a given range (v0, v1); let the corresponding range of

d be given by: d0 < d < d1. If k1 ¼
PK

j¼1
zj > 0, then d ¼

ffiffiffiffiy
2C

p
, where

C ¼ 1

2t2

P
j:zj¼1

b
2

j , and y follows a truncated ð2Cd2
0
< y < 2Cd2

1
Þ central w2

k1þ1

distribution. If k1 = 0, d is updated from the truncated (d0 < d <
d1) Beta(1, 1) distribution.

8: goto loop until all the MCMC iterations are finished.

We note that, d can be updated using the truncated central χ2 distribution as long as the

second shape parameter of its Beta prior (e2) is 1.

If the summary statistics are uncorrelated, step 4 of Algorithm 1 is modified as: for

j = 1, . . ., K, update βj by sampling from its full conditional posterior distribution:

bjjβ� j;Z; q; d; β̂ � Nð
s2
j

s2j
b̂ j; s

2
j Þ, where 1

s2
j
¼ 1

s2j
þ 1

t2
j
. All the other steps remain the same as in the

Algorithm 1.
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