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Abstract: Tetrodotoxin (TTX), a potent paralytic sodium channel blocker, is an intriguing marine
toxin. Widely distributed in nature, TTX has attracted attention in various scientific fields, from
biomedical studies to environmental safety concerns. Despite a long history of studies, many issues
concerning the biosynthesis, origin, and spread of TTX in animals and ecosystems remain. This
review aims to summarize the current knowledge on TTX circulation inside TTX-bearing animal
bodies. We focus on the advances in TTX detection at the cellular and subcellular levels, providing
an expanded picture of intra-organismal TTX migration mechanisms. We believe that this review
will help address the gaps in the understanding of the biological function of TTX and facilitate the
development of further studies involving TTX-bearing animals.
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Key Contribution: Anatomical distribution and accumulation of TTX in animals are reviewed. TTX
kinetics in TTX-bearing animals are discussed in detail. This review will help unveil sources of TTX
in toxic animals.

1. Introduction

Tetrodotoxin (TTX), one of the deadliest natural toxins, has attracted the interest of
researchers from various fields for decades. This non-protein, weakly basic, heat-resistant
low-molecular-weight toxin selectively blocks voltage-gated sodium channels along the
muscle and nerve cells [1]. Due to the wide distribution of TTX in nature, its ecological and
biological characteristics are relevant to date.

Since the isolation and purification of TTX from pufferfish ovaries in the early 1950s [2,3],
the search for this toxin in different groups of animals has been ongoing. Most studies have
focused on commercial animals and some highly toxic amphibians. However, the search for
TTX sources led to the study of the prey and symbiotic microflora of TTX-bearers. Hence,
TTX was found in many organisms in addition to commercial fish, including flatworms,
nemerteans, annelids, planktonic chaetognaths [4], and bacteria from different taxonomic
groups [5]. With progress in the field of TTX detection, the investigations of TTX bearers
have improved. In the early works, whole-body and known toxic organ extracts were
analyzed. Since the 1990s, studies of tissue and cellular TTX distribution began. Since
the 2000s, researchers have actively implemented experimental approaches to study TTX
accumulation and excretion in animals. Research progress in the TTX field over the past
20 years has led to the accumulation of a large amount of data, which, however, did not
reveal the mechanisms underlying TTX circulation in ecosystems and the bodies of animals.
High inter- and intraspecies variances in TTX content and variations in experimental
designs and screening studies significantly complicate the search for common patterns in
toxin accumulation and usage by animals.

The current review summarizes the data on the intra-organismal distribution of TTX in
TTX-bearing animals; its accumulation during animal development; and its accumulation,

Toxins 2022, 14, 576. https://doi.org/10.3390/toxins14080576 https://www.mdpi.com/journal/toxins

https://doi.org/10.3390/toxins14080576
https://doi.org/10.3390/toxins14080576
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0003-4175-5007
https://doi.org/10.3390/toxins14080576
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/article/10.3390/toxins14080576?type=check_update&version=2


Toxins 2022, 14, 576 2 of 34

depletion, and excretion in animals under experimental conditions. Special emphasis is
placed on TTX localization at the cellular and subcellular levels.

2. Intra-Organismal Distribution of TTX in TTX-Bearing Animals
2.1. Actinopterygii

The first experiments that led to the discovery of the toxins in the ovaries of fish belong-
ing to the order Tetraodontiformes were conducted from the end of the 19th century to the
middle of the 20th century [4]. The isolation of TTX and elucidation of its chemical structure
led to the first large-scale toxicity studies of pufferfish inhabiting Japan [6,7]. Species of the
genus Takifugu, particularly Takifugu pardalis, Takifugu flavipterus (Takifugu poecilonotus), and
Takifugu alboplumbeus (Takifugu niphobles), are highly toxic. In subsequent years, TTX was
found among most genera of the family Tetraodontidae dwelling in different countries and
regions. High levels of toxicity have been observed in species of the genera Arothron, Am-
blyrhynchotes, Chelonodon, Dichotomyctere, Lagocephalus, and Sphoeroides [8–13]. TTX is also
found in the species Yongeichthys criniger (Gobius criniger) of the order Gobiiformes [14–17].

In previous studies, the authors reported either the general toxicity of the animal [18,19]
or the toxicity of its ovaries [20]. Since the 1980s, the toxicity to individual organs and
tissues has been studied. Researchers have mainly focused on the skin, muscles, intestines,
gonads, and liver (or hepatopancreas, according to Sato et al. [21]); the fins, spleen, blood,
and gills have been studied less extensively. Many pufferfish species have high concentra-
tions of TTX in the ovaries, followed by the liver and/or skin; the remaining organs contain
small amounts of TTX [7,8,11,22–31] (Figure 1). In T. alboplumbeus, the ventral skin is more
toxic than the dorsal [25]. Comparative toxicity analysis of the fins and skin of Takifugu ver-
micularis, Takifugu snyderi, and Takifugu porphyreus showed that these tissues in some species
had similar levels of toxicity [32]. In Chelonodon patoca, the highest toxicity is found in the
skin; the muscles, liver, and ovaries of fish contain lower levels of TTX [27]. The brackish
and freshwater species of the genera Dichotomyctere and Pao also have high concentrations
of TTX in the skin compared to that in other organs [33,34] High concentrations of TTX
can be found in the skin mucus of Arothron meleagris and Sphoeroides lispus [10]. In several
species of the genus Lagocephalus, the gastrointestinal tract is the most toxic organ [13,35].
Artificially reared T. rubripes contain low concentrations of TTX accumulated in the ovaries
and liver, similar to the observations in wild specimens [30,36]. Sato et al. [37] reported
trace amounts of TTX in the guts of cultured T. rubripes. However, some studies reported
the absence of toxins in cultured pufferfish [38,39].

The distribution of TTX within the body can vary depending on the habitat of the
pufferfish. In Lagocephalus lunaris caught near Thailand [12] and the west coast of Japan [40],
TTX is mostly localized in the gonads, while other organs, including the liver, skin, digestive
tract, and muscles, contain low concentrations of the toxin. L. lunaris, which inhabits
Cambodia, contains substantial concentrations of TTX in the liver, ovaries, and intestines,
while the muscles, testes, and skin are less toxic [41]. The TTX content in different organs
can also be affected by seasonal changes. In females of several species of the genus Takifugu,
Y. criniger, and introduced species of the genera Lagocephalus and Torquigener, caught in
the Mediterranean Sea, most of the TTX is contained in the ovaries in the autumn–winter
period, during maturation, and in the liver and/or skin in the spring-summer period,
after spawning [9,42–49]. Different data were obtained for males of different species of
the genus Takifugu. T. flavipterus and T. pardalis do not show seasonal variations in TTX
content [42,46]. In male as well as female T. alboplumbeus, an increase in the toxicity level in
the pre-spawning and spawning periods was observed, when TTX was localized in the skin
and liver [44]. Lagocephalus males contain substantial TTX concentrations in the testes only
in the summer; other organs contain trace amounts of the toxin [45]. The concentration
of TTX in the organs of Torquigener flavimaculosus males reaches the maximum level in
winter and gradually decreases in autumn; in summer, only the levels in the testes and skin
increase to winter values [47].



Toxins 2022, 14, 576 3 of 34

Toxins 2022, 14, 576 3 of 35 
 

 

TTX concentrations in the testes only in the summer; other organs contain trace amounts 

of the toxin [45]. The concentration of TTX in the organs of Torquigener flavimaculosus 

males reaches the maximum level in winter and gradually decreases in autumn; in 

summer, only the levels in the testes and skin increase to winter values [47]. 

 

Figure 1. Schematic illustration of the levels and intra-organismal distribution of tetrodotoxin 

(TTX) in the adult pufferfish (family Tetraodontidae). Red color on the insets indicates 

TTX-positive cells. I—Skin with dermal gland (dg). II—Skin with singly scattered succiform cells 

(sc). III—Oocytes on different maturation stages: a—immature oocyte, b—newly mature oocyte, 

c—mature oocyte. IV—Intestinal epithelium (iep) and sac-like tissue (slt) outside the serous mem-

brane (sm). V—Liver with hepatocytes (hc). Abbreviations: ec, epithelial cell; bc, basal cell; dg, 

dermal gland; dgc, dermal gland cell; f-TTX, free TTX; sc, succiform cell; n, nuclei; yg, yolk granules; 

iep, intestinal epithelium; slt, sac-like tissue; sm, serous membrane; hc, hepatocyte. 

The cellular and intracellular localizations of TTX in pufferfish has been studied in 

highly toxic organs, including the skin, ovaries, and liver (Figure 1). Kodama et al. [50] 

detected TTX in secretions collected from the skin gland of T. pardalis and stated that the 

toxin was produced by the secretory cells of this gland. Later, the localization of TTX in 

the secretory cells of pufferfish skin was confirmed by immunohistochemistry using an-

ti-TTX antibodies [21,27,51,52]. In T. pardalis [50], T. vermicularis [27], T. flavipterus, and 

Canthigaster rivulata [21], TTX-secreting cells are located in the glands or gland-like 

structures. In C. patoca [27], Dichotomyctere ocellatus (Tetraodon steindachneri) [51], and Di-

chotomyctere nigroviridis (Tetraodon nigroviridis) [52], TTX is located in the so-called suc-

ciform cells evenly scattered throughout the skin of the animal. Itoi et al. [53] showed that 

Figure 1. Schematic illustration of the levels and intra-organismal distribution of tetrodotoxin (TTX)
in the adult pufferfish (family Tetraodontidae). Red color on the insets indicates TTX-positive cells.
I—Skin with dermal gland (dg). II—Skin with singly scattered succiform cells (sc). III—Oocytes
on different maturation stages: a—immature oocyte, b—newly mature oocyte, c—mature oocyte.
IV—Intestinal epithelium (iep) and sac-like tissue (slt) outside the serous membrane (sm). V—Liver
with hepatocytes (hc). Abbreviations: ec, epithelial cell; bc, basal cell; dg, dermal gland; dgc, dermal
gland cell; f-TTX, free TTX; sc, succiform cell; n, nuclei; yg, yolk granules; iep, intestinal epithelium;
slt, sac-like tissue; sm, serous membrane; hc, hepatocyte.

The cellular and intracellular localizations of TTX in pufferfish has been studied in
highly toxic organs, including the skin, ovaries, and liver (Figure 1). Kodama et al. [50]
detected TTX in secretions collected from the skin gland of T. pardalis and stated that the
toxin was produced by the secretory cells of this gland. Later, the localization of TTX in the
secretory cells of pufferfish skin was confirmed by immunohistochemistry using anti-TTX
antibodies [21,27,51,52]. In T. pardalis [50], T. vermicularis [27], T. flavipterus, and Canthigaster
rivulata [21], TTX-secreting cells are located in the glands or gland-like structures. In
C. patoca [27], Dichotomyctere ocellatus (Tetraodon steindachneri) [51], and Dichotomyctere
nigroviridis (Tetraodon nigroviridis) [52], TTX is located in the so-called succiform cells evenly
scattered throughout the skin of the animal. Itoi et al. [53] showed that succiform cells of T.
alboplumbeus males stained for TTX more intensely than the succiform cells of the females.
TTX has also been found in the undifferentiated basal cells of pufferfish skin [43,51–53].
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According to electron microscopic studies of D. nigroviridis skin, TTX in the basal cells
is associated with membrane-bound granules (presumably lysosomes) [52]. The TTX
absorption ability of the basal cells of the skin was demonstrated in experiments with
intramuscular, intraperitoneal, and oral administration of toxins to non-toxic cultured
pufferfish [54–56]. Interestingly, the intensity of staining for TTX in the skin cells depends
on the dose of the injected toxin: low concentrations of injected TTX in T. rubripes only
resulted in basal cell staining, while an increased dose stained the entire epidermis [56].
In vitro skin slices incubated in a TTX solution showed that TTX was transferred to the
basal cells from connective tissue [57]. In addition to succiform and basal cells in the skin
of T. alboplumbeus, TTX is found in mucous cells and the flat epithelial cell layer [53]. In the
skin of Y. criniger, all epidermal cells, including filament-containing Malpighian [58], basal,
and succiform cells, stained positively for TTX [43].

After studying the distribution of TTX in the cellular and subcellular liver fractions
of T. pardalis and Takifugu snyderi (Takifugu vermicularis snyderi), Nagashima et al. [59]
found that TTX was predominantly associated with the cytosolic fraction of the liver cells.
Subsequently, immunocytochemistry with anti-TTX antibodies has been used to detect
TTX in the cytoplasm of parenchymal hepatocytes in several species of Takifugu and C.
patoca [21,27,53,55,57]. An in vitro experiment with the incubation of T. rubripes liver slices
in a TTX solution showed that the toxin was transferred to the parenchymal hepatocytes
from the pancreatic exocrine cells [57].

In the first study on the micro distribution of TTX in pufferfish ovaries, TTX was
detected in the cytoplasm and membrane-limited yolk granules of pre-ovulated oocytes
and the vitellin envelope of the ovulated oocytes [60]. In T. vermicularis ovaries, TTX is
found in the yolk granules, vesicles, and nuclei of mature oocytes; immature oocytes do
not contain the toxin [27]. In C. patoca, TTX is localised in the connective tissues and nuclei
of some oocytes [27]. Itoi et al. found TTX in the oocyte nuclei of T. alboplumbeus [53].
Gao et al. [46] traced the localization of TTX during oocyte maturation in T. pardalis; in early
maturation stages, TTX was localized in the nucleus and yolk granules, and late stages, in
the cytoplasm and on the periphery of the cell.

Immunohistochemical studies have shown a weak TTX-positive signal in the sac-like
tissues outside the serous membrane of the T. flavipterus intestine [21] and in the brain
(optic tectum, cerebellum, and medulla oblongata), optic nerve, and olfactory epithelium
of T. rubripes juveniles [55].

2.2. Amphibia

Newts are the most popular study animals among terrestrial TTX-bearers. In 1963, a
toxin was isolated from the eggs of the newt Taricha torosa (Triturus torosus) [61], which was
soon identified as TTX [62,63]. This discovery led to an array of toxicity studies on various
members of the Salamandridae family. The first large-scale screening by Wakely et al. [64]
showed the presence of TTX in several members of the genera Taricha, Cynops, and Triturus
as well as in Lissotriton vulgaris (Triturus vulgaris), Ichthyosaura alpestris (Triturus alpestris),
and Notophthalmus viridescens. To date, TTX has been found in 10 genera of Salamandri-
dae residing in different regions of the world: Taricha, Notophthalmus, Cynops, Pachytriton,
Paramesotriton, Laotriton, Triturus, Lissotriton, Ichthyosaura, and Ambystoma [64–68]. Differ-
ences in TTX content among individuals within populations have been reported for Taricha
granulosa [69,70], N. viridescens [71], and Cynops pyrrhogaster [72].

Studies on individual organs and tissues of newts have revealed that TTX is usually
localized in the skin and ovaries; other organs, including the muscles, blood, viscera, liver,
and testes, contain low concentrations of the toxin [21,64–66,73,74] (Figure 2). In some newt
species, high TTX concentrations have also been found in the liver [74] and muscles [75].
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Figure 2. Schematic illustration of the levels and intra-organismal distribution of tetrodotoxin (TTX)
in the adult newt (family Salamandridae). Red color on the insets indicates TTX-positive cells. I—Skin
with mature granular (gg) and mixed (mg) glands. Abbreviations: ec, epithelial cell; gc, glandular
cell; gg, mature granular gland; mg, mature mixed gland; f-TTX, free TTX.

TTX was first visualized in the skin of C. pyrrhogaster by immunohistochemistry
with anti-TTX antibodies [76]. In the juveniles of C. pyrrhogaster, TTX is contained in the
glandular cells of immature dermal glands, in adult individuals, in the glandular cells
of granular and mixed dermal glands [76]. Sato et al. [21] found TTX-positive cells in
the dermal glands of only adult C. pyrrhogaster; TTX-positive structures were absent in
the liver, intestines, testes, and ovaries. Mailho-Fontana et al. [77] detected TTX in the
dermal glands and blood plasma of dermal capillaries of T. granulosa. The authors also
revealed differences in the morphology of TTX-positive glandular cells and the structure
and chemical composition of their secretions between individuals from TTX-bearing and
non-toxic T. granulosa populations. In N. viridescens, the dermal glands stained the most
intensively for TTX; in the connective tissues, liver, intestinal epithelium, ovaries, testes,
and kidneys, the TTX-positive labelling was moderate [74]. Spicer et al. [78] hypothesized
that similar to other newt species, N. viridescens might possess an increased number of
granular glands in brightly pigmented spots on the dorsal skin, which might be associated
with increased levels of TTX. Although no differences in TTX concentration were found
between the red spots and neighboring skin without spots, juveniles with more dorsal
spots possessed higher TTX levels. Uniform TTX-staining was observed in the tissues of
nematodes, trematodes, and cestodes parasitizing the intestinal cavity of N. viridescens [79].

In the order Anura, TTX has been found in four genera: Atelopus (family Bufonidae) [80–87],
Colostethus (family Dendrobatidae) [84], Brachycephalus (family Brachycephalidae) [88–90],
and Polypedates (family Rhacophoridae) [91]. TTX in frogs was first reported by Kim et al. [80]
in 1975. The authors detected TTX in the skin of Atelopus varius and Atelopus chiriquiensis;
internal organs, muscles, and bones did not contain TTX. A similar TTX distribution has
been observed in Colostethus inguinalis [84] and Polypedates sp. [91]. Later, TTX was also
found in the liver and ovaries of the Anura representatives. In Brachycephalus ephippium,
TTX is contained in the skin, liver, and ovaries [88,90], whereas in Brachycephalus pernix, only
in the skin and liver [90]. However, the TTX concentration in the ovaries of B. ephippium was
three times lower than that in the skin [90]. In contrast, the ovaries of A. chiriquiensis [81]
and Atelopus glyphus [86] contained more toxins than the skin. Immunohistochemical
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studies of Atelopus hoogmoedi showed the presence of TTX in the hepatocytes, granular skin
glands, and epithelial skin cells [87].

2.3. Mollusca

The data on intra-organismal TTX distribution in octopuses, gastropods, and bivalves
are summarized in Figure 3. TTX in molluscs was first discovered in 1978 when a toxin
isolated from the posterior salivary glands of the octopus Hapalochlaena maculosa was
identified [92]. Subsequently, TTX in H. maculosa was found not only in the salivary glands,
but also in all body parts, including the arms, cephalothorax, and abdomen [93,94]. In
Hapalochlaena fasciata, TTX has been found in the anterior and posterior salivary glands,
arms, mantle, digestive gland, gonads, brachial heart, nephridia, gills, oviducal gland, and
ink sac [95–97]. Hapalochlaena lunulate contains TTX in its salivary glands, gonads, mantle,
arms, and ink [95,97,98]. However, the posterior salivary glands were the most toxic organs
in both species. Immunofluorescence microscopy of the micro distribution of TTX in the
tissues of H. lunulate and H. fasciata showed that TTX was concentrated in the cells lining
the secretory tubules within the posterior salivary gland [97]. In the mantle and arms of H.
lunulate, TTX was concentrated beneath the integumentary epidermis and in the channels
of the circulatory system running through the dermis.
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Figure 3. Schematic illustration of the levels and intra-organismal distribution of tetrodotoxin (TTX)
in molluscs. Red color on the insets indicates TTX-positive cells. (A)—Blue-ringed octopus (genus
Hapalochlaena). I—Posterior salivary gland with glandular cells (gc). (B)—Marine gastropod (genus
Pleurobranchaea). I—The epidermis of the mantle. II—Digestive gland with glandular cells (gc).
III—Oocytes (oc) surrounded by follicles (fc). (C)—Marine bivalve mollusc (genus Paphies).
I—Siphon with TTX-positive cells located under the epithelium (ep). Gills (II), intestine (III), and
labial palp (IV) showing epithelium (ep). Abbreviations: gc, glandular cells; bm, basement membrane;
ec, epithelial cells; nmc, neutral mucin cells; oc, oocytes; fc, follicles; ep, epithelium.
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In 1981, a substance with a neuroparalytic effect and physicochemical properties
similar to TTX was isolated from the digestive glands of the sea snails, Charonia lampas
(Charonia sauliae) and Babylonia japonica [99,100]. Further studies revealed TTX in sea
snails Tutufa bufo (Tutufa lissostoma) [101], Buccinum undatum [102], Patella depressa, and
Nucella lapillus [103], as well as in some members of the families Naticidae [104,105],
Trochidae [106,107], Nassariidae [108–117], and Olividae [118,119]. In most studies, TTX
has been detected in the digestive glands. In the lined moon snail Tanea lineata (Natica
lineata), the muscles are the most toxic part of the body, followed by the remaining parts,
including the salivary gland, brain, and mouth organs; the digestive gland contains the
least amount of TTX [120]. Hwang et al. [105] found that when seawater was released from
the mantle cavity of T. lineata, TTX was secreted into the water. In another study, Nassarius
conoidalis (Niotha clathrata) released TTX into the water in response to the first electric shock
treatment; repeated stimulation did not cause toxin secretion [121].

TTX was also found in sea slugs Pleurobranchaea maculata [122], Onchidella celtica,
and Aplysia depilans [103]. Wood et al. [123,124] reported high TTX concentrations in the
stomachs of P. maculata, while the mantle and gonads of the mollusc were less toxic. A
detailed study of the tissues and cells of P. maculata revealed the presence of TTX in the
neutral mucin cells and basement membrane in the mantle, oocytes, and follicles in the
gonads, and digestive gland [125]. TTX was found in P. maculate egg clutches [124,125].

The well known TTX-bearing bivalve mollusc is Paphies australis [126]. In P. australis,
the highest level of TTX is contained in the siphon [127]. Immunohistochemical studies
have shown that TTX was localized in the cells of the inner and outer epithelia of the siphon,
in the inside cells of the epithelium of the intestine and rectum, and in the cytoplasm of
some epithelial cells of the labial palps and gills [128]. Since 2008, TTX has been detected in
many commercial bivalves living in European waters [102,103,119,127,129–134].

2.4. Echinodermata

The undigested body parts of starfish, found in the contents of the digestive glands of
marine TTX-bearing gastropods, served as a starting point for the search for TTX in echino-
derms. TTX has been found in several starfish species of the genus Astropecten [135–138]
and in Ophidiaster ophidianus as well as in sea urchins Echinus esculentus [103] and Fellaster
zelandiae (Arachnoides zelandiae) [139]. Lin et al. showed that the internal organs of A. scopar-
ius had the highest toxicity, whereas the gonads and body wall were less toxic [106,140].
The tissue and cell distribution of TTX in echinoderms has not been studied.

2.5. Nemertea

For the first time, TTX was detected in two species of marine ribbon worms, Lineus
fuscoviridis, and Tubulanus punctatus in 1988 [141], although pyridine compounds with a
neurotoxic effect were previously found in extracts of Amphiporus angulatus [142]. In the
nemertean Cephalothrix simula (in the article by Cephalothrix linearis), both the body and
proboscis were found to be highly toxic, with the proboscis being the most toxic [143]. In
addition, TTX was released into the mucus on the surface of the animal’s body during
mechanical stimulation. Subsequently, TTX and its analogs have been found in representa-
tives of the genera Cephalothrix [144–151], Lineus [147,149,150,152,153], Ramphogordius [149],
Riseriellus [149], Amphiporus [149], Yininemertes [154], Quasitetrastemma [150], and Collarene-
mertes [150].

The cellular and tissue localizations of TTX has been well studied in highly toxic
nemerteans of the genus Cephalothrix [155,156] (Figure 4). In an early study on C. simula
(Cephalothrix sp.), TTX was detected in the vesicles of the epidermal bacillary cells, basal
lamina, granular cells of the proboscis epithelium, rhynchocoel epithelium, and vesicles
of the intestinal epithelial cells located near the blood vessels and rhynchocoel [155]. The
excretory system (protonephridia) and eggs also contain TTX. Vlasenko and Magarlamov
found higher TTX content in the anterior region of the body of C. cf. simula than in the poste-
rior one [151]. High TTX concentrations were detected in the intestine, body wall, proboscis,
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and mucus on the surface of the animal body. According to immunohistochemical studies,
the main sites of TTX accumulation in C. cf. simula are the secretory cells of the integument,
epidermal ciliary cells, mucous cells of the cephalic glands, glandular epithelium of the
proboscis, enterocytes, and terminal cells of the protonephridia [156]. In the secretory and
glandular cells, TTX is associated with secretory granules, in the ciliary cells, with microvilli,
in the enterocytes, with phagosomes. In the protonephridial cells, TTX is located in the
cytoplasm. In Dushia atra and Micrura verrilli, TTX was found in dermal glandular cells,
intestinal epithelium, and outer proboscis epithelium, including pseudocnidae-containing
cells [157]. In Kulikovia alborastrata (Lineus alborostratus), TTX was present in type-I subepi-
dermal bacillary gland cells in the cutis and pseudocnidae-containing and mucoid gland
cells in the proboscis [152]. Within glandular cells, TTX is associated with the nuclear
envelope, the endoplasmic reticulum membrane, and secretory granules. Moreover, the
glandular cells of the cutis in K. alborostrata released TTX-containing mucus in response to
external stimuli [153].
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Figure 4. Schematic illustration of the levels and intra-organismal distribution of tetrodotoxin (TTX)
in the marine ribbon worm (genus Cephalothrix). Red color on the insets indicates TTX-positive cells.
I—Glandular epithelium of proboscis. II—Intestinal epithelium. III—Protonephridium (pn) associ-
ated with the blood vessel (bv). IV—Cephalic gland. V—Integument. VI—Oocytes. Abbreviations:
pgs, proboscidial gland cell; sc, supportive cell; ent, enterocyte; igs, intestinal glandular cell; bv, blood
vessel; pn, protonephridium; tc, terminal cell; cc, ciliary cell; cgc, cephalic gland cell; f-TTX, free TTX;
egc, epidermal gland cells; yg, yolk granules.
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2.6. Platyhelminthes

Although the toxicity of flatworms was reported in early naturalistic works from
the 18th and 19th centuries, the first scientific work noting the presence of neurotoxins
in marine and terrestrial flatworms dates back to 1943 [158]. After 40 years, TTX was
found in extracts of the marine flatworms Planocera multitentaculata [159,160] and Planocera
reticulata (type A) [161,162]. Subsequent studies showed the presence of TTX in several
marine [125,163,164] and terrestrial [165] flatworms. In P. multitentaculata, the most toxic
organs are the oviducts filled with mature eggs and organs of the digestive (including the
pharynx) and reproductive systems; a weak neurotoxic effect of the mucus enveloping
the worm was observed [160,166]. High TTX concentrations have also been found in the
pharynx and eggs of Planocerid sp. 1 [163]. Detailed immunohistochemical studies have
detected TTX in the cytoplasm of the ova and epithelial cells of the pharynx of Stylochoplana
sp. [167] and the ova of P. reticulata [155]. In the terrestrial flatworms Bipalium adventitium
and Bipalium kewense, most of the TTX was contained in the head and eggs; the anterior
and posterior parts of the body contained smaller amounts of the toxin [165]. Figure 5
summarizes the intra-organismal TTX distribution in marine flatworms.
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Figure 5. Schematic illustration of the levels and intra-organismal distribution of tetrodotoxin (TTX)
in the marine flatworm (order Polycladida). Red color on the insets indicates TTX-positive cells.
I—Oocytes. II—Pharynx showing epithelial cells (ep) and parenchyma (prh).

2.7. Annelida

In 1986, TTX was found in the annelid Pseudopotamilla occelata [168]. In their review,
Miyazawa and Noguchi [4] mentioned that TTX was present in Lepidonotus helotypus,
Halosydna brevisetosa, Hermenia acanthopeltis, and Harmothoe imbricata.

2.8. Chaetognatha

In 1988, TTX was found in planktonic chaetognaths Parasagitta elegans [169]; the
sodium-channel-blocking activity of extracts of chaetognaths of the families Eukrohniidae
(genus Eukrohnia), Sagittidae (genus Flaccisagitta), and Spadellidae (genus Spadella) was also
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reported; however, physicochemical methods of TTX detection were not used. Interestingly,
only fractions containing chaetognath heads were toxic; the bodies did not contain TTX.

2.9. Arthropoda

TTX is found in three classes of arthropods: Malacostraca, Merostomata, and Cope-
poda. Among Malacostraca, TTX is detected in several crab species of the family Xanthi-
dae [168,170–176]. Xanthid crabs contain TTX throughout their body, but the most toxic
organs differ among species. In Lophozozymus pictor [171] and Demania reynaudi [174], the
cephalothorax and viscera were found to be more toxic, whereas, in Atergatis floridus, the
viscera and appendages were more toxic than other organs [174]. Saito et al. showed that
the high toxicity of A. floridus was associated with the muscles of the chelipeds, particularly
the muscles of the palm and carpus [177]. In some specimens, the muscles of the walking
legs, gills, and ovaries were found to be toxic. In Demania cultripes, the viscera are more
toxic than the appendages [176].

Among Merostomata, TTX is found in the horseshoe crab Carcinoscorpius rotundi-
cauda [178]. In C. rotundicauda, TTX was first detected in the eggs [178]. Subsequent studies
showed the presence of TTX in almost all organs and tissues of crabs of this species; however,
most of the toxins are located in the eggs, muscles, viscera, and hepatic caecum [179–181].

Ikeda et al. first revealed the presence of TTX in the ectoparasitic copepod Caligus
fugu (Pseudocaligus fugu) that parasitizes the pufferfish T. alboplumbeus [179]. In the same
year, TTX was detected in another parasite of T. alboplumbeus, Taeniacanthus sp. [180]. Anti-
TTX antibody-based immunohistochemical studies have shown that TTX in C. fugu was
accumulated in all tissues of the body, intestines, and appendages except for the epicuticle
and reproductive system, including the ovaries, oviduct, uterus, and egg sacs [179]. TTX
appears at an early stage of chalimus development, and at chalimus stage IV and in adult
copepods, it is present in all tissues and organs, except for the reproductive system [181].

2.10. Concluding Remarks

Data on TTX localization in animals can help elucidate the biological and physiological
significance of the toxin. Most studies have focused on the anatomical distribution of
TTX in animals, and only a small percentage of studies have focused on the intratissue
and intracellular localization of TTX. A common tendency for TTX accumulation in the
skin, ovaries, and endodermal organs (digestive system and liver) can be traced among
different taxonomic groups of animals. The cellular distribution of TTX in these organs
has mostly been studied in pufferfish (Figure 1) and nemerteans (Figure 4). Data on the
cellular localization of TTX in other TTX-bearing animals are either limited or absent.
More studies implementing high-resolution microscopy, such as laser scanning microscopy
and electron microscopic immunocytochemistry, are required to trace the cellular and
subcellular TTX distribution. These studies allow significantly expand the understanding
of the cellular mechanisms of TTX sorption and migration within the body of a TTX-bearing
animal. However, molecular mechanisms involved in TTX retention are yet to be explored.
Studying the resistance of toxic pufferfish and arthropods to TTX, TTX-binding molecules
in these animals were supposed [25,182–184]. TTX-binding proteins and high-molecular
weight substances were isolated from the plasma of some pufferfish species, shore crab,
and toxic gastropods [185–189] Nevertheless, the manner in which these molecules bind
and transport TTX remains unclear. Future studies of the transcription factors involved in
the regulation of TTX transport and accumulation in TTX-bearing animals are needed.

3. TTX in Animal Development: From Egg Maturation to Hatched Larvae
3.1. Actinopterygii

TTX was first isolated from the ovaries of T. rubripes in 1950 [190]. The high toxicity
of the ovaries and the absence or low concentrations of TTX in the testes of most marine
pufferfish species [191] led to studies of TTX kinetics in the maturation period. Studies
on the seasonal changes in the TTX distribution in the tissues of T. alboplumbeus and T.
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flavipterus showed that TTX content in the ovaries increased sharply during egg maturation,
and the total TTX concentration in the body of animals of both sexes was higher during
maturation/spawning than in other months [42,44]. The ovaries of Lagocephalus sceleratus
are toxic throughout the year, whereas the testes are toxic only in spring and autumn [45].
In T. flavimaculosus, the gonads are toxic in all seasons, except summer, and females are
more toxic than males [47].

Using an indirect competitive enzyme immunoassay, TTX concentrations were cal-
culated in T. alboplumbeus oocytes before and after ovulation [60]. The ovulated oocytes
contained half as much TTX as pre-ovulated oocytes. Detailed studies of TTX distribution in
the ovaries during oocyte maturation and spawning have been conducted on Y. criniger [43]
and T. pardalis [46]. TTX accumulation in the ovaries of Y. criniger starts at the yolk globule
stage, accounting for 45% of the total toxin in the body [43]. During the spawning period,
the total toxicity of the female increases by up to eight times, where 73% of TTX is present
in the ovaries. At the end of spawning, the toxicity of the female remains the same, but the
TTX is mostly contained in the skin, and the contribution of the ovaries does not exceed 2%.
Similar results were obtained for T. pardalis: during egg maturation, most of the TTX was
concentrated in the ovaries, and after spawning, TTX content in the ovaries showed a sharp
decline [46]. TTX is localized in the oocyte nucleus in the perinucleolar phase, redistributed
to the yolk vesicles and globules during maturation, and partially transferred to the egg
membrane close to spawning [46]. A similar study on T. vermicularis revealed TTX in the
nuclei of oocytes in the perinucleolar phase, but in the yolk vesicles and granules at the
final stage of yolk formation [27]. In the same study, the ovaries of C. patoca contained TTX
only in the connective tissue and nuclei of some oocytes during the perinucleolar phase.
In mature females of T. alboplumbeus, intense immunoreactivity against TTX in the oocyte
nuclei was observed in both the perinucleolar and during yolk formation phases [53,60]
whereas, in T. flavipterus, the oocytes stained intensively for TTX in the perinucleolar phase
and weakly during maturation [21].

In 1998, Matsumura investigated TTX accumulation during the early development
of T. alboplumbeus from fertilized eggs to hatched larvae [192]. After fertilization, TTX
concentration in the developing embryos continuously increased. Immunohistochemical
studies of T. rubripes and T. alboplumbeus larvae with anti-TTX antibodies showed even
distribution of TTX over the body surface; no specific reaction was observed in internal
organs [193,194]. Predation experiments with fertilised eggs and larvae of the above-
mentioned pufferfish species and juveniles of different fish species showed that, despite low
TTX content in eggs and larvae, predators promptly spat out the swallowed prey [193,194].
Nagashima et al. [195] traced the dynamics of TTX content during the development of T.
rubripes for up to 98 days after hatching. The concentration of TTX per gram of body weight
decreased during the growth and development of the animal, while the total content of the
toxin increased.

3.2. Amphibia

TTX accumulation during the ontogeny of amphibians has mostly been studied in
the Salamandridae family. The presence of a substance with a neuroparalytic effect in the
embryos and eggs of newts was discussed as early as the 1930s [196–198]. While studying
the growth of the eyes in newts, an accidental discovery was made: the transplantation of
the eye vesicles of T. torosa embryos into Ambystoma tigrinum embryos led to temporary
paralysis of the latter [197]. Parabiosis experiments with the embryos of two species of
newts showed that the paralytic effect of the eggs decreased when the T. torosus yolk was
eliminated and the effect completely disappeared when self-feeding juveniles formed. The
authors also reported the paralytic effect of the extracts of the embryos, larvae, eggs, and
blood of T. torosus females. The genus Taricha remains the most widely studied genus
with respect to TTX accumulation during embryonic development. TTX has been found
in the ovaries, testes (trace amounts), eggs, and embryos of T. torosa [64,65,199]; eggs of T.
granulosa [65,200–203]; and Taricha rivularis [65]. TTX has also been found in the ovaries
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of Cynops ensicauda [66], egg clutches of Cynops orientalis [204], and eggs of Paramesotriton
hongkongensis and N. viridescens [65]. Hanifin et al. [202] noted a positive correlation between
the TTX contents in the dorsal skin and the egg clutches of T. granulosa. TTX concentrations
in egg clutches differ between specimens [202], but clutches produced by the same female
at different times contained eggs with similar levels of toxicity [200]. Moreover, TTX in the
egg clutches of T. granulosa is unevenly distributed, and the amount of TTX decreases from
the beginning to the end of the clutch [201].

The total amount of TTX in T. granulosa eggs does not significantly change during
embryonic development, and the toxin is mostly concentrated in the embryo and not
in the jelly coat [201]. Gall et al. analyzed the TTX content at different developmental
stages of the T. granulosa larvae and evaluated their palatability to the predatory dragonfly
nymphs Anax junius [203]. TTX concentration is the highest in newly hatched newt larvae,
declines at 4 weeks of age, and remains relatively constant until the end of development
(28 weeks). The palatability of newts was correlated with toxicity, given that older larvae
and juveniles were preyed on more frequently than the new hatchlings [203]. Another study
suggested that TTX secreted by newt skin could act as a deterrent signal, allowing larvae to
avoid cannibalism from adults [205]. Behavioural experiments showed that adult T. torosa
skin secretions or pure TTX triggered the avoidance of predation of the larvae. Similar
behavioral responses were mostly observed in 3–5-week-old larvae and disappeared by the
seventh week of development. Based on electrophysiological recordings and the lack of
response to TTX in T. torosa larvae with a blocked nasal cavity, the authors claimed that
the olfactory epithelium of the larvae possessed TTX-sensitive cells. Sato et al. [21] found
TTX-positive immunoreaction in the pharynx and stomach of C. pyrrhogaster hatched larvae.
In C. pyrrhogaster, artificially grown from eggs, TTX was detected only up to 22 weeks after
hatching; older newts (from 36 to 70 weeks) did not possess TTX [206]; however, wild newts
of the same age contained TTX. In a similar study involving C. orientalis, TTX was detected
in adult wild newts and their egg clutches, but not in artificially reared larvae [204].

3.3. Mollusca

TTX has been found in the eggs, egg sacs, and larvae of the gastropod
P. maculata [122,123,125,139,167] and blue-ringed octopuses [96,207–209]. An early study
revealed low TTX concentrations in the egg sacs and 2-week-old larvae of P. maculata [122].
Furthermore, Wood et al. showed that the egg-laying season of P. maculata corresponded
with the seasonal peaks of TTX concentrations (June–August) [124]. In another study,
the authors revealed a correlation between TTX concentration in first-laid egg masses
and adults of P. maculata; TTX concentration on a per wet weight basis in the egg masses
released at the beginning of spawning was always higher than that in the spawning indi-
viduals [123]. In the egg sacs of P. maculata, TTX was localised in the eggs rather than in the
surrounding matrix [167].

After the identification of TTX as the main component of the venom of H. maculosa [92],
a TTX-like substance was isolated from the eggs of the octopus [207]. Williams et al. traced
TTX concentrations at different developmental stages of the octopus H. lunulata, from
undifferentiated eggs to hatched paralarvae [96,208]. TTX was present at all studied stages,
increasing in concentration from the last stages of embryonic development (2–3 weeks after
egg deposition) to the hatching of the formed paralarva (4 weeks after egg deposition). No
correlation was observed between maternal TTX levels and larval developmental stage.
TTX has also been found in the paralarvae of H. fasciata [209].

3.4. Others

High TTX concentrations, comparable to those in adults, have been found in the
eggs and larvae of the marine flatworm P. multitentaculata [16,160,166,210–212] and eggs of
Stylochoplana sp. [125], Planocerid sp. [163], and the terrestrial flatworm B. adventitium [165].
In P. multitentaculata larvae, TTX was found to be distributed over the body surface [212].
In P. reticulate eggs, the TTX concentration was not calculated, but the toxin was detected
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using immunohistochemistry with monoclonal anti-TTX antibodies [155]. In two immuno-
cytochemical studies on marine ribbon worms, TTX was found in the cytoplasm of C.
simula [155] and C. cf. simula eggs [156]. TTX has also been found in the eggs of the horse-
shoe crab C. rotundicauda [178,213–217] and the crab A. floridus [177]. However, the fate of
TTX during embryogenesis in these animals remains unknown.

The pattern of TTX content in larval development has been described for the ectopara-
sitic copepod C. fugu: TTX is absent in planktonic larvae; at chalimus stage I and during
subsequent feeding on the mucus of the host body, TTX appears in all tissues of the larva
except the cuticle, gut, and some muscles; at chalimus stage IV and in adult animals, TTX
is retained in the whole body except the reproductive system [181].

3.5. Concluding Remarks

Studies of TTX dynamics during individual development of TTX-bearing animals aim
to clarify the role of the toxin in the offspring survival. Numerous studies showing high
levels of TTX in the ovaries and eggs of TTX-bearing animals during maturation/spawning
season suggest the participation of the maternal toxin in a fate of offspring. Predation and
behavioral experiments with newts and pufferfish showed that TTX might functioning as a
chemical defense against predators and, in some cases, cannibalism by older individuals.
These studies revealed a positive correlation between the survival rate and TTX content
in larvae or juveniles of TTX-bearing species. However, immunohistochemical studies
did not reveal specialized cellular or subcellular structures allowing embryos or larvae of
TTX-bearers retain TTX, indicating that the maternal toxin accumulated in the yolk during
eggs maturation could be lost in the course of individual development. TTX dynamics
studies show that concentration of the toxin in pufferfish and newts remains stable or
increases during embryogenesis, and sharply decreases after hatching. The resorption of
yolk during larval development can explain a rapid decrease in TTX level, but mechanisms
retaining the toxin remain unclear. In this context, investigations of molecular basis of
retention and maturation-dependent transportation of TTX are required. On the other hand,
TTX appearance and role in the individual development of other TTX-bearing animals
remains to be elucidated.

4. TTX Accumulation and Depletion Studies

The aim of TTX accumulation and depletion studies is to unveil the sources of the
toxin. These studies usually involve oral or injectional administration of TTX to non-toxic
lab-reared TTX-bearing animals (Table 1).
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Table 1. Summary of the experimental studies on tetrodotoxin (TTX) administration to non-toxic individuals of TTX-bearing animals.

Species Method of TTX Admn. TTX Source Assayed
Organs/Tissues

Most Toxic
Organs

Time of TTX
Admn.

Observation Period
after TTX Admn.

Accumulated
TTX (%) Reference

Takifugu rubripes Oral

CRY
EXT
TISS

Liver
Skin

Gonad
Muscle
Spleen
Kidney

GB

Liver
Spleen GB 20 days NA NA [218]

BACT
Liver
Skin

Intestine
Liver 30 days NA NA [219]

TISS EXT CRY
Liver
Skin

Viscera

Liver
Skin 60 days 45 days Up to 30% [220]

EXT

Liver
Skin
Brain

Olfactory
Eye

NA 5 days NA NA [55]

CRY

Liver
Skin

Gonad
Muscle

GIT

Liver One time 24 h Up to 84% [221]

TISS
Liver
Skin

Intestine “Rest”

Liver
Skin 9 days NA NA [222]

CRY
Liver
Skin

Muscle
NA 28 days NA NA [223]
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Table 1. Cont.

Species Method of TTX Admn. TTX Source Assayed
Organs/Tissues

Most Toxic
Organs

Time of TTX
Admn.

Observation Period
after TTX Admn.

Accumulated
TTX (%) Reference

Intraperitoneal injection CRY

Liver
Skin

Muscle
Intestine
Spleen
Kidney
Heart
Blood
Brain
Eye

Bone
Gill

Mucus
GB

Liver
Skin

Muscle intestine
One time 6 days ~35% [224]

Intramuscular
injection

CRY
TISS

Liver
Skin

Muscle
Blood

Skin One time 7 days Up to 80% [54]

TISS Liver
Blood NA One time 12 h 68 ± 4% [225]

TISS

Liver
Skin

Gonad
Muscle

Liver
Gonad One time 5 days ~70% [226]

CRY

Liver
Skin

Muscle
Spleen
Kidney
Blood

GB

Liver
Skin One time 24 h ~50% [227]

CRY
Liver
Skin

Muscle

Liver
Skin One time 24 h Up to 40% [56]



Toxins 2022, 14, 576 16 of 34

Table 1. Cont.

Species Method of TTX Admn. TTX Source Assayed
Organs/Tissues

Most Toxic
Organs

Time of TTX
Admn.

Observation Period
after TTX Admn.

Accumulated
TTX (%) Reference

Hepatic vein injection TISS

Liver
Skin

Muscle
Spleen
Kidney
Blood

Liver One time 60 min Up to 76% [228]

Hepatic portal vein
injection

TISS Liver
Blood

NA One time 300 min

84 ± 6%

[229]Hepatic vein injection 70 ± 9%

Gastrointestinal tract
injection 49 ± 17%

Takifugu
rubripes/Takifugu

alboplumbeus
hybrid

Intramuscular
injection CRY

Liver
Skin

Gonad
Muscle
Blood

Skin
Gonad One time 3 days Up to 65% [230]

Takifugu rubripes/Takifugu
porphyreus hybrid

Oral

CRY

Liver
Skin

Muscle
Blood
GIT

Liver
Skin

One time 5 days

Up to 45%

[231]Intramuscular
injection Up to 74%
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Table 1. Cont.

Species Method of TTX Admn. TTX Source Assayed
Organs/Tissues

Most Toxic
Organs

Time of TTX
Admn.

Observation Period
after TTX Admn.

Accumulated
TTX (%) Reference

Takifugu alboplumbeus
Oral

CRY

Liver
Skin

Gonad
Muscle
Bone

Viscera

Liver
Skin 30 days 170 days ~50% [232]

TISS

Liver
Skin

Gonad
Muscle

Intestine
Bone

Viscera

Liver
Skin 30 days 240 days ~ 70% [233]

FWL Body NA 2 days

NA NA [210]
FWA

Liver
Skin

Gonad
Intestine
“Rest”

Liver 2 days

Intramuscular
injection CRY Body NA One time 16 days Up to 35–40% [234]

Takifugu pardalis Oral TISS

Liver
Skin

Gonad
Muscle

Intestine

Liver
Skin gonad One time 3 days Up to 55% [235]
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Table 1. Cont.

Species Method of TTX Admn. TTX Source Assayed
Organs/Tissues

Most Toxic
Organs

Time of TTX
Admn.

Observation Period
after TTX Admn.

Accumulated
TTX (%) Reference

Takifugu obscurus Oral MOL

Liver
Skin

Muscle
Intestine
Kidney

Gills
Blood

GB
AB

Liver
Skin 28 days 67 days Up to 40% [236]

Cynops pyrrhogaster Oral

EXT Body NA 9 days 6 days NA [72]

NT-EXT Body
Viscera Body One time 28 days ~39% [237]

TISS

Liver
Skin

Gonad
Intestine

Tail

Tail 70 days NA NA [21]

Charonia lampas Oral SF DG
Body DG 7–28 days 40 days ~33% [238]

Pleurobranchaea maculata Oral MOL-EXT

Gonad
Stomach
Mantle
“Rest”
Eggs

Mantle
Stomach eggs 39 days NA ~9% [139]

Nassarius globosus
Oral TISS Muscle

Viscera
Viscera 8 cycles: 1 day (TTX) + 4 days (no food)

<4%
[239]

Reticunassa festiva <2%
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Table 1. Cont.

Species Method of TTX Admn. TTX Source Assayed
Organs/Tissues

Most Toxic
Organs

Time of TTX
Admn.

Observation Period
after TTX Admn.

Accumulated
TTX (%) Reference

Paphies australis Oral CRY DG + Siphon
“Rest” DG + Siphon 12 days NA 0.5–1% [240]

Mytilus galloprovincialis Oral FWL

Gonad
Muscle

Gill
Mantle

MG
“Rest”

MG 1 day 28 days NA [212]

NA, not applicable; CRY, crystalline TTX; EXT, extract of pufferfish tissues (ovary or liver); TISS, puffer-fish toxic tissues (minced ovary or liver, eggs); BACT, bacterial cells; FWA,
adult flatworm; FWL, flatworm larvae; MOL, mollusc homogenate; SF, starfish tissues; MOL-EXT, mollusc tissue extract; NT-EXT, newt extract; GB, gallbladder; AB, air bladder; GIT,
gastrointestinal tract; DG, digestive gland; MG, midgut gland.
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4.1. Actinopterygii

The first feeding experiment with non-toxic cultured pufferfish was conducted in
1981 [218]. Toxic pufferfish ovaries, methanol extract, and crystalline TTX were used as
sources of TTX for non-toxic T. rubripes. The liver, skin, muscles, gonads, spleen, kidneys,
and gallbladder of fish fed ovaries became toxic on the fifth day of the experiment, and by
the 20th day, the toxicity gradually increased. In the fish of the methanol extract-feeding
group, organ toxicity was lower than that in the other groups, but they became toxic by
the end of the experiment. Interestingly, the fish fed crystalline TTX remained nontoxic.
However, T. alboplumbeus juveniles fed crystalline TTX acquired toxicity and retained 30%
of the administered toxin for 5 months [232]. TTX was found in the liver, skin, and ovaries
of animals. In the work of Honda et al. T. rubripes of different ages accumulated TTX by
ingesting both pufferfish tissues and their extracts and purified TTX [220]. The accumulated
TTX was retained in pufferfish tissues for at least 45 days after the TTX-containing diet was
completed. T. alboplumbeus juveniles fed highly toxic pufferfish livers accumulated up to
70% of the administered dose of the toxins [233]. The pattern of accumulation of TTX and its
analog in the liver, skin, and intestines varied significantly. In the liver, the concentration of
TTX accumulated during 30 days of the TTX-containing diet gradually decreased over the
next 210 days of diet without TTX, whereas the content of 4,9-anhydro-TTX remained stable
throughout the experimental period. In the skin, the contents of both toxins on the 30th day
of the experiment were low and gradually increased toward the end of the observation
period. In the intestine, TTX and 4,9-anhydroTTX were maintained at the same level
throughout the experiment. Moreover, the selective pattern of TTX or paralytic shellfish
toxins accumulation from the diet of pufferfish species naturally bearing one or the other
toxin was revealed [235]. When T. pardalis was administered TTX and decarbamoylsaxitoxin
(dsSTX), TTX accumulated in the liver, ovaries, and skin of the animal, and only trace
amounts of dsSTX were detected in the intestine. In a similar experiment with TTX and
STX, STX had accumulated in the ovaries and skin of the freshwater pufferfish Pao suvattii.

Intraperitoneal injection of tritiated TTX into T. rubripes lead to TTX accumulation in
most tissues within an hour, with the highest level in the ventral skin [224]. The TTX levels
in the liver and muscles were significantly low. On the sixth day of the experiment, TTX
radioactivity levels decreased in most tissues, except for the skin and gallbladder. After
intramuscular injection of TTX, 4-epiTTX, and 4,9-anhydro-TTX, T. alboplumbeus juveniles
retained 34–40% of the toxins on day 16 after administration [234]. T. rubripes juveniles
intramuscularly injected with pure TTX or toxic ovary extract retained approximately 60%
of the injected toxin after 1–4 h [54]. After 8–12 h, TTX concentration decreased and again
increased to 60–80% after 24–168 h. Low TTX concentrations were retained in the liver,
whereas most of the toxin accumulated in the skin and was localized in the basal cells of
the epidermal layer. Several subsequent studies have shown that in the first hours after
intramuscular injection of TTX to pufferfish, most of TTX accumulated in the liver, and then
a substantial part of the toxin has been transported to the skin and/or ovaries [227,230,231].
As the concentration of TTX in the liver decreased, the toxin appeared in the gallbladder,
indicating excretion by the bile ducts [227]. Tatsuno et al. showed that TTX concentration
in the skin and liver of T. rubripes increased with an increase in the dose of intramuscularly
administered toxin, but the TTX accumulation ratio (ratio of accumulated TTX in each
tissue to the administered dose) differed significantly between the tissues [56]. In the liver,
the TTX accumulation ratio did not depend on the administered dose, whereas in the skin,
it decreased with an increase in the dose.

Tatsuno et al. [221] found that the TTX distribution profile in T. rubripes in the first
24 h after toxin administration was dependent on the developmental stage of the liver.
Individuals with a high hepatosomatic index retained 84% of the administered TTX, which
mostly accumulated in the liver. Younger fish with an undeveloped liver retained only
31% of the administered TTX, mostly in their skin. In 3-month-old T. obscurus juveniles, up
to 73% of accumulated TTX was localized in the skin, whereas less than 20% of the toxin
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occurred in the liver [236]. In vitro experiments with liver tissue slices incubated in TTX
solution demonstrated that, unlike other fish, the pufferfish liver was able to accumulate
TTX [118,241–243]. However, no difference was observed in TTX uptake between the livers
of juvenile and adult pufferfish [244]. A recent study examined the TTX uptake ability
of the liver, skin, and intestines of young (8 months old) and adult (20 months old) T.
rubripes individuals [57]. The TTX uptake ability of the liver and intestines did not differ
significantly between the two age groups, but the skin of young fish accumulated almost
twice as much TTX as the skin of the adult.

In most experiments, other than pure TTX, toxic pufferfish organs or their extracts were
used, and in a few studies, other TTX-bearing organisms were used as a source of the toxin
(Table 1). In an early experiment, cultured T. rubripes (10 individuals) and T. alboplumbeus
(three individuals) were fed a diet enriched with the TTX-producing bacterium Shewanella
putrefaciens [219]. However, after 30 days of feeding, only one T. rubripes individual
contained TTX in its liver. The successful toxification of T. alboplumbeus was achieved
in a predation experiment with the flatworm P. multitentaculata [210]. TTX was detected
in the liver, skin, and intestines of the pufferfish. Interestingly, the fish fed a weakly toxic
planocerid ingested almost all the TTX, whereas the fish fed a highly toxic worm ingested
only approximately 20% of the toxin. Zhang et al. did not reveal a direct effect of TTX
concentration in Nassarius semiplicata on toxin accumulation in T. obscurus fed molluscs [236].
The accumulation ratio of TTX ranged from 35.76% in pufferfish fed moderately toxic
molluscs to 40.20% when fed low-toxicity molluscs.

4.2. Amphibia

Studying the distribution of TTX in the tissues and organs of several species of newts,
Wakely et al. found similar TTX levels in the body of T. torosa kept in the laboratory for
1 year and newly caught animals [64]. Several subsequent studies have shown that newts
can retain TTX for a long period in captivity. Thus, the weight and general toxicity of T.
granulosa kept in captivity for 167 days decreased, but the toxicity per gram of body weight
remained almost the same [245]. In a study by Hanifin et al., TTX levels in the skin of T.
granulosa not only remained unchanged, but also increased by an average of 20% after a
year of maintenance in laboratory [73]. Wild-caught T. granulosa continued to produce
eggs containing substantial amounts of TTX for 3 years in captivity [200]. In lab-reared T.
granulosa juveniles kept on a non-toxic diet for 3 years, slow TTX accumulation in the skin
during the first 2 years was observed [246]. In the third year, there was a sharp increase
in toxicity. However, the authors noted that wild-caught T. granulosa juveniles were more
toxic. Opposite results were obtained by Yotsu-Yamashita et al. in their experiments with
N. viridescens [71]. Six years in captivity led to a complete loss of TTX, and only trace
amounts of the toxin were detected in newts after 3 years. Long-term TTX retention under
experimental conditions has also been observed in Atelopus frogs. Atelopus oxyrhynchus
and Atelopus subornatus contained TTX, 4-epiTTX, and 4,9-anhydroTTX after more than
3 years in captivity [83,85]. At the same time, A. varius reared in the laboratory for more
than 2 years did not contain TTX [247].

Juveniles of C. pyrrhogaster fed toxic pufferfish ovary extracts accumulated substantial
amounts of TTX and retained them for a week, while the levels of the accumulated toxin
differed between populations [72]. Recent studies on C. pyrrhogaster fed TTX and/or its
putative biosynthetic intermediates showed that ingested compounds accumulated in
the animals, but their conversion to other TTX analogs did not occur [21,237]. TTX has
been detected in the tail, intestine, liver, skin, and ovaries of experimental animals [21].
Immunohistochemical studies of C. pyrrhogaster juveniles after feeding showed the presence
of TTX in the epithelial cells of the intestine, mucoid skin cells, and ovaries; in the tail, TTX
was localized in the mucoid skin cells and dermis [21].
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4.3. Mollusca

Narita et al. conducted the first feeding experiment with the non-toxic gastropod
Charonia sauliae [238]. The molluscs were fed TTX-bearing specimens of the starfish,
A. polyacanthus. The digestive glands became toxic after a week of feeding, and the
average TTX accumulation was 33%. An increase in the dose of TTX led to an increase
in the total amount of accumulated toxin. When toxified molluscs were subsequently
maintained on a TTX-free diet, no TTX metabolism and/or excretion from the body was
observed. In a feeding experiment with P. maculata, TTX was detected in all the tissues
within an hour of feeding [139]. The molluscs initially accumulated about 32% of the
administered TTX, and the percentage of accumulated TTX gradually decreased to 9% on
the 39th day of the experiment. High TTX concentrations were detected in the mantle of the
molluscs. Biessy et al. conducted an interesting feeding experiment with P. australis using
encapsulated TTX [240]. The bivalves fed agar-gelatine capsules with TTX bound to humic
acid for 13 days actively accumulated toxins at concentrations exceeding the allowable
norms in food products. However, the level of accumulated TTX did not exceed 0.5–1% of
that contained in the food. When non-toxic marine snails Nassarius (Pliarcularia) globosus
and Reticunassa festiva were fed toxic ovaries of T. vermicularis, the TTX accumulation
ratios were 4% and 2%, respectively [239]. The non-toxic mussels Mytilus galloprovincialis
were toxified after feeding on toxic P. multitentaculata larvae; TTX was detected only in
the intestines of the animals [212]. Long-term maintenance of molluscs on a non-toxic
diet after a week of feeding on planocerid larvae resulted in a sharp decrease in the
TTX concentration.

In a study by McNabb et al. [122], toxic P. maculata specimens maintained in aquaria
retained TTX for 26 d. In a large-scale study with P. maculata kept on a TTX-free diet for
126 days, the average TTX concentrations in the molluscs declined over time [123]. The
depuration time differed among organs, with the fastest depuration observed in the heart
and the slowest, in the gonads. The foot, mantle, and stomach were depleted of TTX at the
same rate. Depuration of TTX during long-term maintenance without the toxin (150 days)
has also been found in P. australis [248]. The siphons had the highest TTX concentrations
during the entire observation period. The lowest concentrations of TTX and fast depuration
were detected in the digestive glands, whereas after 21 days, only trace amounts of the
toxin remained.

4.4. Non-TTX-Bearing Animals

An early study of the skin toxicity of T. granulosa revealed its activity against various
vertebrates, including mammals of the orders Rodentia, Carnivora, and Eulipotyphla; birds
of the order Passeriformes; reptiles of the order Squamata; and the newt itself [249]. As
a result of forced or voluntary feeding on newt body parts or injection of the newt skin
extract, all tested animals showed symptoms characteristic of TTX poisoning. However,
snakes of the genus Thamnophis were resistant to TTX. Williams et al. [250] suggested that
snakes that fed on highly toxic newts had substantial amounts of TTX in their tissues.
Thamnophis sirtalis that fed on toxic T. granulosa specimens for 5 weeks retained TTX in the
liver for 7 weeks and in the kidneys for 3 weeks [250]. Moreover, TTX was detected in the
liver of T. sirtalis one month after ingestion of only one newt. In an experiment of oral TTX
administration to newly hatched T. sirtalis, the half-life of TTX excreted from the liver was
8 days [97]. The authors found that 99% of a single TTX dose in the experiment would be
eliminated from the snake’s body within 61 days.

Gall et al. [251] examined the ability of aquatic macroinvertebrates sympatric with T.
granulosa to consume toxic newt eggs. Among the animals tested, only caddisfly Limnephilus
flavastellus larvae could consume substantial quantities of toxic eggs, without this affecting
their further development. Another study involving wild-caught L. flavastellus larvae and
lab-reared larvae additionally fed with T. granulosa eggs showed higher toxin levels in the
latter [252]. Interestingly, wild-caught larvae kept on a TTX-free diet retained the toxin for
up to 134 days, even during metamorphosis and adult stage.
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4.5. Concluding Remarks

Despite numerous studies elucidating the ways of TTX accumulation in marine and
terrestrial animals and ecosystems, the problem of TTX biogenesis remains unresolved.
Additionally, if the generally accepted hypothesis of TTX origin in nature is its bacterial
production, as a source of toxin in animals, symbiotic microflora (endogenous), diet (ex-
ogenous), or combination of both factors are considered. TTX production by symbiotic
and free-living bacteria and problems concerning the contribution of the microbiome in
the toxification of the animal have been widely discussed in other reviews [1,5,191,253]
and are not considered in this work. Here, we discuss challenges facing authors in the
interpretation of experimental studies revealing TTX origin in animals.

Most scientific evidence indicates different toxification patterns between terrestrial and
marine animals. Experiments with the long-term maintenance of wild-caught TTX-bearing
newts on a TTX-free diet revealed endogenous acquisition of the toxin. In the similar
experiments with marine molluscs, rapid TTX depuration was observed. Difficulties occur
comparing results of this type of studies even within amphibias. Thus, species of the genus
Taricha and some Atelopus frogs kept in laboratory for a long period retain or even increase
TTX level, while N. viridescens and A. varius lose the toxicity. The main problem facing
researchers is the measurement of the initial TTX concentration in the experimental animal.
The average concentration of TTX within a given population or the toxin content in a small
patch of skin are usually used as a starting point for investigation. At the same time, TTX
content can significantly vary both within population and on different skin parts of one
animal. As a consequence, it is difficult to trace actual depuration rate of TTX.

Feeding experiments held on marine and terrestrial animals and results of observations
clearly indicate that TTX-bearers can accumulate exogenous TTX, through the food web.
Using different methods of TTX administration, researches traced TTX kinetics inside
animal body. All of these studies are based on the unique experimental designs different in
basic parameters, such as time of TTX administration, observation period, and even organs
investigated. Disparate data, on the one hand, significantly expand the understanding of
TTX migration inside animals, and on the other hand, do not provide the understanding
of common patterns and exact mechanisms of TTX accumulation. Different approaches,
including a unified design of experiments and studies of separate organs or tissues, could
potentially improve the TTX kinetics understanding. For instance, an in vitro experiment
with pufferfish liver tissue slices revealed the involvement of carrier-mediated transport
system in TTX uptake [118]. Future researches elucidating the molecular aspects of TTX
transport in TTX-bearing animals are needed.

5. Conclusions

Figure 6 summarizes the currently available data on the localization of TTX in the
bodies of TTX-bearing animals in the natural environment and experimental conditions.

The data obtained indicate that TTX can be absorbed into the body through the gas-
trointestinal tract. Cases of poisoning and feeding experiments showed that the migration
rate of TTX from the intestinal cavity was quite high. The concentration of TTX detected
in the intestinal extracts of TTX-bearing animals was minimal, indicating that TTX does
not remain in the intestinal epithelium for a long time. High TTX concentrations in the
intestines of the pufferfish species Lagocephalus and nemerteans may be related to the
consumption of large quantities of TTX-bearing objects and/or slow migration of TTX
through the intestines [13,35,151]. From the intestinal cavity, TTX is absorbed by phagocytic
enterocytes [155,156].

Furthermore, TTX migration within the body depends on the development and fea-
tures of the circulatory system. In animals with well-developed circulatory systems, most
of the TTX enters the bloodstream and is distributed throughout the body. In most ex-
periments with oral TTX administration to pufferfish, TTX was first detected in the liver
and then in other organs and tissues (Table 1). In animals with a simple or absent circula-
tory system, TTX was mostly detected in organs localized near the anterior intestine. In
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nemerteans, the anterior parts of the body wall, proboscis, and intestines contained high
levels of TTX [151]. In molluscs, the most toxic organs were the digestive and/or salivary
glands adjacent to the esophagus and/or stomach (Figures 3–5). Relatively high levels
of TTX have also been found in organs that penetrate hemal vessels (gills and heart) and
lacunae (mantle, leg, gonads, and siphon).
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TTX-bearing animals kept on a TTX-free diet can retain TTX in the integument and
excrete it with mucus and eggs for a long time. The data obtained suggest the presence
of a reservoir for TTX in the animal body. The liver, which contains high concentrations
of TTX, can be a toxin reservoir in TTX-bearing vertebrates. The liver, which obtains
TTX through the blood, retains a large amount of the toxin and slowly releases the excess
through the gallbladder into the gastrointestinal tract, where it is reabsorbed. A similar
mechanism of TTX reabsorption has been suggested for the pufferfish T. rubripes [227].
Molluscs probably do not possess a TTX reservoir because the toxin quickly depurates
under TTX-free conditions [123]. An experiment with electric stimulation and long-term
maintenance in aquaria showed that, in nemerteans, the body wall could serve as a storage
compartment for TTX [153].
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The organs that release TTX in the environment include the gonads, excretory organs
(kidneys or protonephridia), integument, and venom glands. In these organs, unidirec-
tional transport of TTX can be assumed. TTX detection in the protonephridia of marine
worms [158,159] and kidneys of pufferfish [218,224,227,228] indicates that the toxin is re-
leased through the excretory system. In the gonads, TTX is predominantly associated
with egg-yolk granules and is released during yolk resorption during embryonic devel-
opment [81,196,198,203]. In the glandular cells of the integument and venom glands, TTX
was associated with secretory granules (Figures 1–4 and 6). In the ribbon worm K. alboros-
trata, the migration of TTX through the organelles of protein synthesis (nuclear membrane,
cisterns of the endoplasmic reticulum, and young glandular granules) to mature secretory
granules and subsequent excretion into the environment was traced.

Other possible pathways for TTX entry into animals remain unclear. Based on the data
obtained from nemerteans and pufferfish, TTX absorption through epithelial cells in the
skin can be assumed. In C. cf. simula, the apical part of ciliated skin cells gradually stained
for TTX: the distal part of the cell stained brightly, and the intensity gradually decreased
toward the proximal part of the cell [156]. Small amounts of TTX have also been detected in
the surface epithelial cells of T. alboplumbeus [53]. However, additional studies are needed
to elucidate the mechanisms of TTX entry into the cells of the integumentary epithelium.
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