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Simple Summary: With the rapid development of technology, artificial intelligent become a major
breakthrough that can help human with laborious job. Previously cardiac imaging in Daphnia was
also suffer from laborious and tedious process to extract some information from it. Thus the aim of
this study was to develop a simple artificial intelligent based method to help anyone in this field
to perform analysis in fast, reliable, and less tedious manner. In this study, we compare U-Net and
Mask RCNN and found out that Mask RCNN was perform better than U-Net in cardiac chamber
area estimation. From this data, several parameter like heart rhythm, stroke volume, ejection fraction,
fractional shortening, and cardiac output can be extracted. The validation was done by comparing
the normal and Roundup exposed group and it show that Roundup can increase the stroke volume,
cardiac output, and the shortening fraction of Daphnia magna.

Abstract: Water fleas are an important lower invertebrate model that are usually used for ecotoxicity
studies. Contrary to mammals, the heart of a water flea has a single chamber, which is relatively big
in size and with fast-beating properties. Previous cardiac chamber volume measurement methods
are primarily based on ImageJ manual counting at systolic and diastolic phases which suffer from
low efficiency, high variation, and tedious operation. This study provides an automated and robust
pipeline for cardiac chamber size estimation by a deep learning approach. Image segmentation
analysis was performed using U-Net and Mask RCNN convolutional networks on several different
species of water fleas such as Moina sp., Daphnia magna, and Daphnia pulex. The results show that
Mask RCNN performs better than U-Net at the segmentation of water fleas’ heart chamber in every
parameter tested. The predictive model generated by Mask RCNN was further analyzed with the
Cv2.fitEllipse function in OpenCV to perform a cardiac physiology assessment of Daphnia magna
after challenging with the herbicide of Roundup. Significant increase in normalized stroke volume,
cardiac output, and the shortening fraction was observed after Roundup exposure which suggests the
possibility of heart chamber alteration after roundup exposure. Overall, the predictive Mask RCNN
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model established in this study provides a convenient and robust approach for cardiac chamber size
and cardiac physiology measurement in water fleas for the first time. This innovative tool can offer
many benefits to other research using water fleas for ecotoxicity studies.

Keywords: water flea; deep learning; cardiac physiology; U-Net; Mask RCNN

1. Introduction

Cladocera, commonly known as water fleas, belong to the subclass Phyllopoda of
the class Crustacea [1]. They are lower invertebrate animals often shaped like flat disks
with small sizes ranging from 0.2 to 3 mm in length. They are widely distributed in the
global freshwater ecosystem and have a vital role in the aquatic food chain as one of fish’s
primary natural food sources [2]. Cladocera is an essential component of microcrustacean
zooplankton, which are sensitive indicators of environmental changes. They provide early
warnings by demonstrating a prompt response to environmental changes [3].

Most of the order Cladocera belongs to the suborder Anomopoda, which is principally
comprised of the families Daphniidae (the Genus Daphnia) and Moinidae (Genus Moina) [1],
which are the common water flea crustacea used for ecotoxicological testing [4–7]. With
sufficient food and aeration, they are easily cultured in the laboratory. High availability,
rapid reproduction, and economic feasibility are the reasons for selecting this animal
model for a toxicity test [8]. They have high sensitivity toward various chemical pollutants
found in the environment, such as metals, pesticides, and pharmaceuticals [9–12]. The
Organization for Economic Cooperation and Development (OECD) has described the
international guidelines of standard bioassays using freshwater cladocerans to determine
the toxicity of chemicals and pollutants [13]. The ecotoxicological assessment is based on
easily measurable endpoints such as lethality, growth, reproduction, immobilization, or
behavior [14]. Another important parameter, cardiovascular function, is also usually used
as an indicator of toxicity evaluation. A previous study displayed that the water flea’s
heartbeat, cardiac output, and heartbeat regularity are significantly reduced when exposed
to the pesticide imidacloprid [15]. It is plausible to detect and measure cardiovascular
performance with their body transparency, which is suitable for ecotoxicity assay [16,17].

Digital imaging processing (DIP) is a well-known subject for analyzing image datasets [18].
Unlike task-based methods, deep learning (DL) comprises machine learning data process-
ing [19]. It has efficient results, especially on larger datasets. The big data world is using
DL for many of its applications. It has been considered that neural networks are sig-
nificantly designed to converge computer vision programs with DL applications. The
traditional approaches in DL are used for video sequencing and image processing. Digital
data acquisition is a common practice in medical informatics with the help of DL. Heart
chamber size measurement and volumetric behaviors are established using the DL models.
Two-dimensional convolutional neural networks (CNN) are the principle neural network
extension that converges pixel-based instant segmentation. Kernel slides with 2D networks
convolve the layer to the previous with height and width, which is used to extract the
features of the image. The Deep Convolutional Neural Networks (DCNNS) are integrated
with high-level performance in image classification with soaring heights array [20].

Good classification and segmentation algorithms always help researchers find accurate
test cases in the desired image. In the field of computer vision, several different methods
such as U-Net [21,22], Mask RCNN [23], and YOLO [24,25] have been developed in the
past decade, which put the image classification world in more conducive manners [26]. In
previous studies conducted by Karatzas et al. [27], the Mask RCNN method has been tested
to detect heart malformation in Daphnia. Zhao et al. also utilized the U-Net architecture
to segment cardiac chamber in magnetic resonance images [28]. A further study by Dong
et al. showed that U-Net could also be used for video segmentation for cardiac MRI video
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with state-of-the-art performance [29]. All those studies have proven that the deep learning
approach was beneficial for cardiac chamber segmentation.

Previous studies measured the cardiac performance endpoints in water fleas based
on image-based methods (Table 1). Multiple endpoints such as heart rate, cardiac output,
ejection fraction, fractional shortening, and heartbeat regularity can be extracted. Heart
size, contraction capacity, and heart shape malformation due to toxicants have also been
studied [17]. All these endpoints were achieved based on the manual analysis of heart
images and calculating the cardiac chamber size during heart relaxation (diastole) and con-
traction (systole) [30]. Therefore, cardiac physiology, as well as morphology observation, is
fundamental in cardiac performance evaluation. Both quantitative and qualitative methods
are essential to detect possible alterations of heart function in this animal model due to
exposure to hazardous or toxic substances within the ecotoxicology field. Based on Table 1,
we learned that most of the previous cardiac physiology measurement methods were
conducted using manual counting or ImageJ-based methods. However, slow and complex
operation processing is the major drawback that makes previous methods unsuitable for
high-throughput toxicity assessment. Thus, the incorporation of deep learning will really
benefit everyone in this feld of study as a fast and reliable performance can be achieved
with help of machine learning.

Table 1. Comparison of previous cardiac physiology measurement methods in Cladocera.

Reference Recording Instrument Software/Tools Animal model Obtainable Result

This study
High-speed CCD

camera mounted to an
inverted microscope

U-Net and Mask
RCNN convolutional

Networks

D. magna, D. pulex, and
Moina sp.

Cross sectional area change,
heart rate, stroke volume,
ejection fraction, fraction

shortening, cardiac output,
and heartbeat regularity

[31]
Spencer microscope

devised with
stroboscope

Stroboscope or
stopwatch for manual

counting with the
naked eye

D. magna Heart rate

[32]

Inverted microscope,
digital video camera,

and videotape recorder
assembled to computer

Echocardiography D. magna

Irregularity of cardiac
rhythm, cardiac area in

systole/diastole, and beats
per min.

[33] Digital camera attached
to a microscope Manual counting D. pulex Heart rate

[34] Panasonic DMC-LZ8
camera

Movie maker was used
to play the recording
video in slow motion,
then manual counting

(beats/min) was
conducted

Simocephalus vetulus Heart rate

[35]
a digital camera Nikon

D3100 mounted
on a microscope.

Tracker®software D. magna
Heart rate, diastole/systole

heart area ratio, duration
of diastole

[36]
microscope (CKX41SF,
Olympus) equipped
with a digital camera

GOM player and
ImageJ software D. magna Heart size, contraction

capacity, and heart rate
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Table 1. Cont.

Reference Recording Instrument Software/Tools Animal model Obtainable Result

[27]

Nikon
stereomicroscope,

model SMZ800 Digital
Sight, fitted with a

D5-Fi2 camera

Image capture by
NIS-Elements software
and image analysis by

machine learning
(R-CNN)

D. magna Heart malformation
detection

[15]
High-speed CCD

camera mounted to an
inverted microscope

ImageJ Time Series
Analyzer plug-in

D. magna, D. similis,
and Moina sp.

Heart rate, blood flow rate,
stroke volume, ejection

fraction, fractional
shortening, cardiac output,

and heartbeat regularity

[37]
High-speed CCD

camera mounted to an
inverted microscope

ImageJ Kymograph
plug-in D. magna

Heart rate, stroke volume,
ejection fraction, fraction

shortening, cardiac output,
and heartbeat regularity

[38]
High-speed CCD

camera mounted to an
inverted microscope

OpenCV D. magna Heart rate and
heartbeat regularity

As mentioned above, the drawback of the previous assessment method was the slow
and complex operation. In addition, it is also prone to human error as most of the process
was conducted by human operator. Thus, the main focus of this study was to develop a
machine learning based tool to undertake the assessment of cardiac physiology in water
fleas. This study will compare the performance of U-Net and Mask RCNN on cardiac
image segmentation for water fleas after being trained with a video of water fleas’ heart
chamber. Later the optimized convolutional networks will be used to predict the cardiac
chamber size of water fleas, and from this, data several cardiac physiology parameters can
be obtained. The successful establishment of this novel approach can significantly boost the
throughput for cardiac physiology and toxicity studies in water fleas while also reducing
the possibility of error caused by human mistake.

2. Materials and Methods
2.1. Water Flea Culture

This study used three water flea species Daphnia magna, Daphnia pulex, and Moina sp.
Cultures of D. magna and D. pulex were obtained from the National Chiayi University stock
center, and Moina sp. was obtained from the National Pingtung University stock center.
The water fleas were kept in 10 L plastic tanks and supplied with baker yeast as food, and
the temperature was maintained at ±24 ◦C. To maintain the healthy culture conditions,
half of the old culture water was removed weekly and replaced with freshwater.

2.2. Chemical Exposure

The roundup (41% w/v) was purchased from Yih Fong Chemical Corp. (Taichung,
Taiwan) and then diluted into 1000 ppm stock concentration using ddH2O and kept at
4 ◦C until the time of exposure. At the time of exposure, D. magna was placed into a 5 cm
petri dish. The stock solution was further diluted using Daphnia culture water until the
concentration of 5 ppm. The exposure was performed for 24 h. The Daphnia culture water
was used to reduce the shock due to sudden water temperature change caused by the
different water used for the experiment. All protocols and procedures involving Daphnia
were approved by the Committee for Animal Experimentation of the Chung Yuan Christian
University (Approval No. 109001, issue date 15 January 2020).



Animals 2022, 12, 1670 5 of 19

2.3. Video Acquisition

For cardiac chamber size estimation, the videos of water fleas were captured using
a high-speed charged coupled device (CCD) camera (AZ Instrument, Yuyao, Taiwan),
mounted onto an inverted microscope (Sunny Optical Technology, Yuyao, China). The
LPlan objective lens with 20× magnification was used to capture the video at high quality.
Videos were recorded for 10 s at a frame rate of 200 frames per second (fps) and later
converted to 30 fps to create slow-motion videos with a total of 2000 frames using HighBest
Viewer software (AZ Instrument, Taichung City, Taiwan). For the mounting solution, 3%
methylcellulose was used to immobilize water fleas before recording the cardiac chamber.

2.4. Training Dataset Preparation

After recording, the video format was converted into .avi format with VirtualDub
software (Available online: http://www.virtualdub.org/, accessed on 26 June 2022) and
then processed using ImageJ [39]. A total of ten frames were selected from the video as
the dataset and outputted in .png format at an interval of 200 frames for each video. The
training dataset was prepared by marking the image extracted from the video using ImageJ.
The border of the heart chamber was marked with pencil tools using ImageJ, and the
marked images were saved in .png format (Figure A1). When the image set was not big
enough, image augmentation was used to increase the size of the training image [40,41].
The image augmentation methods performed included cropping, flipping, grid distortion,
elastic transform, optical distortion, and brightness contrasting [42]. In total, 600 images
were included as a training dataset, and manual labeling was performed on the given
dataset. The training dataset was used separately to train both Mask-RCNN and U-Net
models. The code used for

2.5. Performance Validation

The four following parameters were used for deep learning performance evaluation:
Dice coefficient, Intersection over Union (IOU), sensitivity, and specificity. Given the
number of true positives (TP), false positives (FP), and false negatives (FN) in the pixel-wise
classification of the predicted mask, the Dice coefficient is defined as Dice = 2TP

2TP+FP+FN .
The IOU is defined as IOU = TP

TP+FP+FN . The sensitivity (also called recall) is defined as
sensitivity = TP

TP+FN . The specificity is defined as specificity = TN
TN+FP . Those four important

parameters were collected and measured for the U-Net and Mask RCNN methods.

2.6. Volumetric Estimation of Water Flea’s Heart

In calculating the volume of the water flea heart chamber, the Open source Computer
Vision (OpenCV) library was used for ellipse fitting and point detection of the long and
short axis of the water flea’s heart chamber [43]. The black-white frame-by-frame image
exported from Mask-RCNN was used as the basis for volumetric assessment to reduce the
background noise present in the original image. The basic concept was initiated by finding
contour boundaries using Python’s fit ellipse function [44]. Contour is defined as the line
surrounding the water flea’s heart chamber. Contour can be presented in multiple ways as
polygons and Freeman chain codes [45]. In OpenCV, contours are mostly computed using
binary images as it was easier to define contrast in respective images. Once contour was
computed, the next step was to fit an ellipse with a diameter range of the water flea’s heart
chamber. Cv2.fitEllipse function in OpenCV was used to estimate the x and y coordinates
of the ellipse diameter [46]. Finally, the short and long axes that fit the heart chamber
area were extracted and exported into .csv format automatically in the respective folder
(Figure A2).

2.7. Computer Hardware Requirement

The proposed experimental design was implemented using the deep learning library
Pytorch [47] on a desktop computer running the Linux operating system with AMD Ryzen
9 5900X Computer Processing Unit (CPU), 128- gigabyte Random Access Memory (RAM),

http://www.virtualdub.org/
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64 Terrabyte hard disk storage, and RTX3090 24G VRAM Graphic Processing Unit (GPU).
Although a lower computer specification could also be used for the study, a high-speed
GPU card is necessary to complete the design and testing of the model faster.

2.8. Cardiac Performance Analysis

In validating this newly developed method in detecting the cardiac rhythm, the heart
rate and the heart rate variability were calculated and then compared with the previously
published ImageJ method [15]. In calculating the heart rate using the newly developed
method, the size of the heart chamber from time to time was exported and then processed
using OriginPro 2019 software (Originlab Corporation, Northampton, MA, USA). The
timing of the heart muscle relaxation was extracted using the OriginPro 2019 software,
and the average time interval between each relaxation was calculated. Later the heart rate
per minute was calculated by dividing 60 with the average time interval. Calculating the
heart rate using the method was performed by detecting the difference in brightness at the
Region of Interest (ROI). In this case, the heart chamber using Time Series Analyzer V3
Plugin is available in ImageJ software (https://imagej.nih.gov/ij/plugins/time-series.html,
accessed on 26 June 2022). Later the data were also processed similarly by using OriginPro
2019 software to get the timing of heart muscle relaxation. The Poincare Plot Plugin on
OriginPro 2019 software was used to calculate the heart rate variability, and the sd1 and
sd2 generated were noted and compared statistically. In calculating the cross-section area
change, the following formula was used: EDV area−ESV area

EDV area × 100%. (EDV, end diastolic
volume; ESV, end systolic volume). Other cardiac physiology parameters such as stroke
volume, cardiac output, shortening fraction, and ejection fraction were calculated using the
same concept and formulas described in the previous study [15].

2.9. Statistical Calculation

Statistical analysis was performed using GraphPad Prism (GraphPad Inc., La Jolla, CA,
USA). Depending on the data distribution, a paired t-test or Wilcoxon test was performed
to calculate the statistical significance between the method used, and a student t-test and a
Mann–Whitney test was performed to calculate the significance between the control and
the treatment group [48,49].

3. Results
3.1. Overview of Experimental Design and Training Dataset Preparation

In this study, the collection of water flea heartbeat videos was captured by using
high-speed CCD. The high-speed CCD setup with 200 fps frame rate can capture superfast
heartbeat in water fleas with less information loss [15]. Later, images were frame-by-frame
outputted from the video, and the heart’s outlooking was manually labeled as a training
dataset. Two predictive models of mrcnn_predict.py (source code is provided in Supple-
mentary File S1) and unet_predict.py (source code is provided in Supplementary File S2)
were established after extensively training by Mask RCNN or U-net methods, respectively.
The performance of both predictive models was tested to predict the heart size (area) of the
water flea. Once we got the heart area prediction data, the major and minor axis length
could be extracted using the Cv2.fitEllipse function (axis.py, source code is provided in
Supplementary File S3) in OpenCV. Finally, cardiac physiology endpoints such as cardiac
rhythm, heartbeat regularity, heart 2D/3D area, cardiac output, stroke volume, fractional
shortening, and ejection fraction, could be obtained by using the mathematic calculation
function in excel (the entire experimental design is summarized in Figure 1).

https://imagej.nih.gov/ij/plugins/time-series.html
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Figure 1. Experimental workflow for water flea heart size prediction by using a deep learning ap-
proach. Two different convolutional networks of U-Net and Mask RCNN were used for comparison.

3.2. Training and Validation Performance

We evaluated deep learning’s performance by comparing the dice and loss curves
in the training and validation processes. In order to train our U-Net and Mask RCNN
models, we prepared 540 D. magna images and their ground truth segmentation images
as the dataset. In the training stage, 60 of the 540 images in the dataset were used as the
validation set, and the remaining 480 images were used as the training set. Each image in the
validation and training set was augmented into 15 images using image processing methods
such as affine transform, rotation, flip, and deformation. Therefore, there are 7200 images
for training and 900 images for verification. For training by the U-Net method, the dice
coefficient increased exponentially from the first steps and reached the maximal plateau
after about 4300 steps. The loss curve reached the minimal level after about 3000 steps. The
dice coefficient reached the maximal plateau after about 3600 steps for validation. Similarly,
the loss curve showed a minimal level of about 3600 steps (Figure 2A). For validation
by the Mask RCNN method, the dice coefficient gradually increased starting from the
first step and reaching the maximal plateau after about 25,000 steps. The loss curve also
appeared from the first step and reached the minimal level after 40,000 steps (Figure 2B).
The high dice coefficient for both training (Figure 2C) and validation (Figure 2D) processes
suggests that the trained U-Net and Mask RCNN might predict heart size for D. magna
with high accuracy.
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Figure 2. The Dice and loss curves for the U-net and Mask RCNN method for D. magna heart size pre-
diction. The Dice and loss curve for the U-Net method at either training (A) or validation (B) process.
The Dice and loss curve for the Mask RCNN method at either training (C) or validation (D) process.

3.3. Testing Process

To test whether the optimized training networks for either U-Net or Mask RCNN are
suitable for heart size prediction in water fleas, we initially used 60 images from D. magna
as a testing dataset. We also determined whether the optimized networks have broad ap-
plication utility to predict heart chamber size for other water flea species. Four parameters
in terms of Dice coefficient, IOU, sensitivity, and specificity were used for performance
evaluation, given the number of true positives (TP), false positives (FP), and false negatives
(FN) in the pixel-wise classification of the predicted mask. Figure 3 shows a comparison
of the prediction power between Mask RCNN (Figure 3A) and U-Net (Figure 3B). The
prediction results were consistent with the ground truth in three tested water fleas using
Mask RCNN. On the contrary, only D. magna showed consistent results between prediction
and ground truth by the U-Net method. The other two closely related water fleas of D.
pulex and Moina sp. displayed inconsistent ground truth and prediction results. Therefore,
Mask RCNN’s performance is better than U-Net for heart size prediction in water fleas.
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Figure 3. Image segmentation done using Mask RCNN (A) and U-Net (B) to predict heart size in
water fleas. The white area show the predicted position of heart chamber. Three water flea species of
D. magna, D. pulex, and Moina sp. were tested and the heart size for ground truth, and prediction is
shown for comparison.

Next, we conducted a detailed quantitative comparison of the heart size prediction
performance between Mask RCNN and U-Net among three water fleas in terms of Dice
coefficient, IOU, sensitivity, and specificity. Results showed that the optimized Mask
RCNN model trained by D. magna performed well and predicted heart chamber size with
good performance for D. pulex and Moina sp. based on the high score obtained from Dice
coefficient, IOU, sensitivity, and specificity (Table 2). On the contrary, U-net only displayed
a qualified prediction power on D. magna, and relatively low prediction power on D. pulex
and Moina sp. For example, based on IOU, Mask RCNN maintained relatively high scores
of 0.940 ± 0.015, 0.919 ± 0.020, and 0.874 ± 0.083 for D. magna, D. pulex, and Moina sp.,
respectively. For U-Net, the IOU scores sharply declined from 0.872 ± 0.070 for D. magna to
0.707 ± 0.161 for D. pulex and 0.526 ± 0.228 for Moina sp. Therefore, the optimized Mask
RCNN model established in this study can be applied to water flea’s heart size prediction
with high accuracy which is supported by statistical analysis.

Table 2. Comparison of prediction power of U-Net and Mask RCNN for cardiac size prediction in
different water flea species.

Dice Coefficient IOU Sensitivity Specificity N

U-Net

D. magna 0.930 ± 0.042 0.872 ± 0.070 0.946 ± 0.084 0.987 ± 0.009 60

D. pulex 0.817 ± 0.124 0.707 ± 0.161 0.804 ± 0.173 0.989 ± 0.006 100

Moina sp. 0.659 ± 0.209 0.526 ± 0.228 0.732 ± 0.207 0.970 ± 0.029 100

Mask RCNN

D. magna 0.969 ± 0.008 0.940 ± 0.015 0.967 ± 0.019 0.995 ± 0.005 60

D. pulex 0.958 ± 0.011 0.919 ± 0.020 0.945 ± 0.025 0.998 ± 0.001 100

Moina sp. 0.930 ± 0.054 0.874 ± 0.083 0.961 ± 0.032 0.994 ± 0.009 100

3.4. Analysis of Heart Cardiac Size Change over Time in Three Water Fleas by Mask RCNN

Since the trained Mask RCNN networks displayed good performance on heart size
prediction in three tested water fleas of D. magna, D. pulex, and Moina sp., we evaluated
whether it can be applied to measure cardiac rhythm and cardiac size change over time.
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We first outputted a 10 s high-speed video at 200 fps frame-by-frame into the image series
to reach this goal. Later, 2000 frames were output as a testing dataset to perform heart size
prediction using Mask RCNN. Finally, the cardiac rhythm plot was generated by plotting
heart size as the y-axis and time as the x-axis. Using this approach, we found that the
trained Mask RCNN network works as a universal tool for heart size prediction and cardiac
rhythm detection for all three water flea species tested in this study (Figure 4). By analyzing
the heart chamber size variation over time, it was able to recapitulate heartbeat rhythm
for three tested water fleas. For example, D. magna (455 bpm, pink color) and D. pulex
(460 bpm, green color) were found with a similar level of heartbeat rate which was faster
than that detected in Moina sp. (208 bpm, blue color) (Figure 4). Videos for heart chamber
prediction of D. magna, D. pulex, and Moina sp. can be found in Videos S1–S6.
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Figure 4. Use Mask RCNN to study cardiac rhythm in water fleas. Three water flea species of
D. magna (pink color), D. pulex (green color), and Moina sp. (blue color) were tested, and the cardiac
rhythm and heart size change dynamic can be elucidated by the Mask RCNN method.

3.5. Validation of Cardiac Physiology Alterations in D. magna after Herbicide Exposure

We performed data validation for our newly developed deep learning method and
previously reported ImageJ method for the next step. The result showed that no significant
difference in heart rate was found in both the control (p = 0.9677) and roundup (p = 0.4982)
treatment between deep learning and ImageJ-based methods (Figure 5A). However, after
comparing the cross-sectional area change using our developed method and manual
counting using ImageJ, we found that the deep learning method predicted heart size was
significantly larger than the manual method conducted by ImageJ for both the control
(p = 0.003) and Roundup treatment (p = 0.0125) (Figure 5B). We estimated they were around
6–8% bigger when the deep learning method was conducted. In the case of heart rate
variability, no significant different was found in the sd1 (Control p = 0.2026 & Roundup
p = 0.5144) (Figure 5C) and sd2 (Control p = 0.4458 & Roundup p = 0.3119) (Figure 5D) in
both the treatment groups. These results strongly suggest that the newly developed deep
learning method can give similar results to the already established ImageJ method except
in the cross-sectional area change.
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Figure 5. Comparison of cardiac physiology parameters after incubation in 5 ppm Roundup for 24 h
using either the Mask RCNN or ImageJ method. The data were shown as a box and whisker plot with
mean ± min to max values. The statistical significance was compared using either paired t-test (A) or
Wilcoxon test (B–D) to analyze the intra-treatment result and using t-test (A) and Mann–Whitney test
(B–D) to analyze the inter-treatment result (* p<0.05, *** p<0.001). The open box represented the Mask
RCNN method, and the shaded box represented the ImageJ method.

The last step was performed by analyzing other cardiac physiology parameters such
as the stroke volume, ejection fraction, shortening fraction, and cardiac output by using the
ellipse fitting from the OpenCV and point detection to get the distance of the long and short
axes of the heart chamber. After getting the distance of both chambers, the calculation was
performed by assuming the heart chamber has a three-dimensional ellipsoid shape, and
the body size was normalized the volume to get a more accurate measurement of the heart
pumping ability [15]. In this study, we observed a significant increase in the stroke volume
(p < 0.0001), cardiac output (p < 0.0001), and the shortening fraction (p < 0.0078) of D. magna
after incubation of 5ppm Roundup (Figure 6A,B,D). However, no significant difference was
observed in the ejection fraction after incubation in 5 ppm of Roundup compared to the
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control, which suggests that at 5 ppm concentration, Roundup can increase the heart size
of D. magna without significantly changing the pumping capability of the heart chamber.
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Figure 6. Comparison of cardiac physiology parameters after incubation in 5 ppm of Roundup for
24 h. The heart size was first predicted by Mask RCNN, and later the long and short axes of the
cardiac chamber was predicted by OpenCV. Next, we used long and short axis lengths to assess
cardiac physiology by measuring stroke volume (A), cardiac output (B), shortening fraction (C),
and ejection fraction (D). The data were shown as mean ± SD, and the statistical significance was
compared using an unpaired student t-test (** p < 0.01, **** p < 0.0001).

4. Discussion

Several methods currently available in the literature may be suitable for marking the
edge of the heart chamber. In this study, U-Net [21,22] and Mask RCNN [23] methods
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were adopted to conduct cardiac size prediction in water fleas as those two tools have been
successfully reported to perform heart segmentation in humans [50–53]. We discovered that
the heart chamber detection in water fleas using Mask RCNN shows superior performance
in comparison to U-Net. U-net is a generic deep-learning solution for image detection
and segmentation and can be used for biomedical image data analysis. U-Net uses the
U-shaped network structure first to capture the features of the images and reconstruct the
required partitions based on these features [22]. The U-Net architecture contains a U shape
path. The image enters one end of the U shape network to go through the encoding part
of the network (also called the contracting path). The encoding part is used to capture
the features of the input images, and during this step, the spatial information is reduced
while the feature information is increased. Then the information of the input image is sent
to the decoding part (also called the expansive path). At the expansive path, the feature
collected during the contracting step was combined through a high-resolution sequence of
up-convolutions and concatenations to construct the segmentation image [22]. Therefore,
U-Net’s method of fusing low-level and high-level image features may have a chance to
mark the heart chamber’s edge successfully.

Unlike U-Net, Mask RCNN was used to solve instance segmentation problems in
computer vision. Mask RCNN consists of two stages. The first step is to propose the
region which contains the object based on the input image. Then in the second stage, it will
predict the class of object, make the boundaries of the object, and generate a mask at pixel
level based on the proposal from the first stage [54]. Compared to U-Net, which performs
better on semantic segmentation, Mask RCNN performs better than U-net, for instance, in
segmentation [55]. Several studies suggest that the combination of Mask RCNN and U-Net
can outperform a single component only, which could be explored more to increase the
accuracy of the image segmentation [56–58].

Our training result suggests that the Mask-RCNN model in this study performs better
than the U-Net model in defining the heart chamber boundary. A similar case happened
when both models were challenged to perform nuclei segmentation, which shows that
Mask-RCNN has better precision than U-Net [59]. Another study also reported that U-Net
yielded more false-positive results when detecting the immunofluorescence images of kidney
biopsies from lupus nephritis patients than Mask-RCNN [60]. Although U-net has higher
accuracy, the limitation of U-Net observed in the study was the obstruction of detection when
labeled data has edge noise, thus yielding false-positive segmentation [59,61]. However, it
can be said that both U-Net and Mask-RCNN models might have similar outputs if the
training dataset has more viable point boundary determination. In conclusion, the accuracy
and effectiveness of each model depend upon the targeted images that are being classified
and segmented.

Another thing that could be observed in this study is the significant difference between
manual counting using ImageJ and the Mask RCNN-based method to calculate the cross-
section area change of the cardiac chamber. This might be because by using Mask RCNN,
the calculation of the cross-sectional area change was based on the maximum and minimum
cross-sectional area of the heart chamber from the whole cardiac cycle recorded in the video.
On the contrary, the calculation was only based on randomly selected images from a few
cardiac cycles for manual counting. Thus, the calculation using manual counting has a
lower cross-sectional area change than the automated Mask RCNN method.

It is also worth noting that some limitations were noticed in this deep learning-based
study. As the developed tool was based on detecting the edge of the heart chamber, the
clarity of the heart chamber edge plays a crucial role in the accuracy of cardiac chamber
prediction. In the case of Daphnia and Moina sp., the brood chamber was located right
beside the heart chamber. Thus if the samples are in the breeding period, the accuracy of
the tools would be compromised when the brood was positioned overlapping the heart
chamber (Figure A3 & Video S7) [62]. Another type of limitation is the presence of some
parasites near the heart chamber. This problem could also reduce the clarity of the heart
chamber, making it harder for deep learning to analyze the heart chamber [63]. Compared
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to the ImageJ-based method in which the selection of ROI can be made anywhere as long
as it has distinct dynamic pixel change, our tool only works accurately if the whole heart
chamber can be detected. However, this problem can be overcome by selecting the water
fleas with an empty brood chamber or those which are parasite free, ensuring that heart
chamber edge is undisturbed.

5. Conclusions

In conclusion, it can be said that Mask-RCNN performed better than U-Net in esti-
mating D. magna cardiac chamber size. Higher Dice coefficient, specificity, and sensitivity
show that the Mask-RCNN model was superior in Daphnia cardiac chamber segmentation.
Furthermore, the segmentation result could also be used to calculate several cardiac perfor-
mance parameters such as heart rate, heart rate variability, and cross-sectional area change,
while with the addition of the ellipse fitting function from OpenCV, more parameters such
as stroke volume, cardiac output, shortening fraction, and ejection fraction could also be
calculated. Several limitations such as the dependency on the heart chamber clarity and
the presence of obstruction nearby the heart chamber could decrease the accuracy of the
segmentation, but both problems could be solved by selecting and sorting the Daphnia
before recording the heart chamber. Overall, this study suggests that deep learning could
help analyze cardiac physiological parameters in Daphnia. Although in this study, fully
automated analysis was not yet achieved, in the future, fully automated high throughput
analysis could be achieved by incorporating essential function in several software by using
our trained network as the foundation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12131670/s1. File S1. Python script used to calculate heart
size of water fleas by Mask-RCNN. File S2. Python script used to calculate heart size of water fleas by
U-Net. File S3. Python script used to calculate the length of major and minor axis of heart in water
fleas. Video S1. D. magna heartbeat video deposited at YouTube: https://www.youtube.com/watch?
v=NwB-Hyf47qo (accessed on 29 July 2021). Video S2. D. pulex heartbeat video deposited at YouTube:
https://www.youtube.com/watch?v=jTCGQ8yzZbM (accessed on 29 July 2021). Video S3. Moina sp.
heartbeat video deposited at YouTube: https://www.youtube.com/watch?v=LjX1xQXG38I (accessed
on 29 July 2021). Video S4. D. magna heartbeat video tracked with Mask RCNN deposited at YouTube:
https://www.youtube.com/watch?v=DBuLshjuMTU (accessed on 29 July 2021), Video S5. D. pulex
heartbeat video tracked with Mask RCNN deposited at YouTube https://www.youtube.com/watch?
v=RGf5naSgcVE (accessed on 29 July 2021), Video S6. Moina sp. heartbeat video tracked with Mask
RCNN deposited at YouTube https://www.youtube.com/watch?v=RVRKXvpFq74 (accessed on 29
July 2021). Video S7. Bias for heart size prediction in Moina sp. by Mask RCNN. In this video, the
heart size prediction power will be interfered by embryos in the breeding chamber due to loss of
sharp edge of heart. Video has been deposited at YouTube https://www.youtube.com/watch?v=
MoRyMSYCNNY (accessed on 29 July 2021).
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Figure A2. Detection of the short (minor) and long (major) axes of the heart chamber using fit
ellipse function in OpenCV. The heart images at either diastolic or systolic phases were used for
long and short axis length extraction. The binary images before (left panel) and after (right panel)
performing the Cv2.fitEllipse function in OpenCV were listed for side-by-side comparison. Scale bar
was provided for size estimation.
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7. Tkaczyk, A.; Bownik, A.; Dsudka, J.; Kowal, K.; Ślaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A
review. Sci. Total Environ. 2020, 763, 143038. [CrossRef] [PubMed]

http://doi.org/10.3390/w11050929
http://doi.org/10.1016/j.chemosphere.2015.04.033
http://www.ncbi.nlm.nih.gov/pubmed/25957140
http://doi.org/10.5620/eht.e2017007
http://www.ncbi.nlm.nih.gov/pubmed/28331171
http://doi.org/10.1016/j.scitotenv.2020.143038
http://www.ncbi.nlm.nih.gov/pubmed/33127157


Animals 2022, 12, 1670 17 of 19

8. Harris, K.D.; Bartlett, N.J.; Lloyd, V.K. Daphnia as an emerging epigenetic model organism. Genet. Res. Int. 2012, 2012, 147892.
[CrossRef]

9. de Oliveira, L.L.D.; Antunes, S.C.; Gonçalves, F.; Rocha, O.; Nunes, B. Acute and chronic ecotoxicological effects of four
pharmaceuticals drugs on cladoceran Daphnia magna. Drug Chem. Toxicol. 2016, 39, 13–21. [CrossRef]

10. Pociecha, A.; Wojtal, A.Z.; Szarek-Gwiazda, E.; Cieplok, A.; Ciszewski, D.; Kownacki, A. Response of Cladocera fauna to heavy
metal pollution, based on sediments from subsidence ponds downstream of a mine discharge (S. Poland). Water 2019, 11, 810.
[CrossRef]

11. Sarma, S.; Nandini, S. Review of recent ecotoxicological studies on cladocerans. J. Environ. Sci. Health Part B 2006, 41, 1417–1430.
[CrossRef]

12. Suhett, A.L.; Santangelo, J.M.; Bozelli, R.L.; Steinberg, C.E.W.; Farjalla, V.F. An overview of the contribution of studies with
cladocerans to environmental stress research. Acta Limnol. Bras. 2015, 27, 145–159. [CrossRef]

13. [OECD] Organization for Economic Co-operation and Development. Guideline for testing of chemicals. Daphnia sp., Acute
immobilisation test. In OECD Guidel. No 202; OECD: Paris, France, 2004.

14. Peake, B.M.; Braund, R.; Tong, A.Y.; Tremblay, L.A. Impact of pharmaceuticals on the environment. In The Life-Cycle of
Pharmaceuticals in the Environment; Peake, B.M., Braund, R., Tong, A.Y.C., Tremblay, L.A., Eds.; Woodhead Publishing: Sawston,
UK, 2016; pp. 109–152.

15. Santoso, F.; Krylov, V.V.; Castillo, A.L.; Saputra, F.; Chen, H.-M.; Lai, H.-T.; Hsiao, C.-D. Cardiovascular performance measurement
in water fleas by utilizing high-speed videography and imagej software and its application for pesticide toxicity assessment.
Animals 2020, 10, 1587. [CrossRef]

16. Bekker, J.M.; Krijgsman, B. Physiological investigations into the heart function of Daphnia. J. Physiol. 1951, 115, 249. [CrossRef]
[PubMed]

17. Bownik, A. Physiological endpoints in daphnid acute toxicity tests. Sci. Total Environ. 2020, 700, 134400. [CrossRef] [PubMed]
18. Ahmed, B.; Gulliver, T.A.; Alzahir, S. Image splicing detection using mask-RCNN. Signal Image Video Process. 2020, 14, 1035–1042.

[CrossRef]
19. Pu, Y.; Gan, Z.; Henao, R.; Yuan, X.; Li, C.; Stevens, A.; Carin, L. Variational autoencoder for deep learning of images, labels and

captions. Adv. Neural Inf. Process. Syst. 2016, 29, 2352–2360.
20. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolu-

tional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]
21. Falk, T.; Mai, D.; Bensch, R.; Çiçek, Ö.; Abdulkadir, A.; Marrakchi, Y.; Böhm, A.; Deubner, J.; Jäckel, Z.; Seiwald, K. U-Net: Deep

learning for cell counting, detection, and morphometry. Nat. Methods 2019, 16, 67–70. [CrossRef]
22. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference

on Medical image Computing and Computer-Assisted Intervention, Proceedings of the 18th International Conference, Munich, Germany, 5–9
October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

23. Kido, S.; Hirano, Y.; Hashimoto, N. Detection and classification of lung abnormalities by use of convolutional neural network
(CNN) and regions with CNN features (R-CNN). In Proceedings of the 2018 International Workshop on Advanced Image
Technology (IWAIT), Chiang Mai, Thailand, 7–9 January 2018; pp. 1–4.

24. Chang, Y.; Song, B.; Jung, C.; Huang, L. Automatic segmentation and cardiopathy classification in cardiac mri images based on
deep neural networks. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 1020–1024.

25. Ünver, H.M.; Ayan, E. Skin lesion segmentation in dermoscopic images with combination of YOLO and grabcut algorithm.
Diagnostics 2019, 9, 72. [CrossRef]

26. He, P.; Zuo, L.; Zhang, C.; Zhang, Z. A value recognition algorithm for pointer meter based on improved Mask-RCNN. In
Proceedings of the 2019 9th International Conference on Information Science and Technology (ICIST), Hulunbuir, China, 2–5
August 2019; pp. 108–113.

27. Karatzas, P.; Melagraki, G.; Ellis, L.J.A.; Lynch, I.; Varsou, D.D.; Afantitis, A.; Tsoumanis, A.; Doganis, P.; Sarimveis, H.
Development of deep learning models for predicting the effects of exposure to engineered nanomaterials on Daphnia Magna.
Small 2020, 16, 2001080. [CrossRef]

28. Zhao, M.; Wei, Y.; Lu, Y.; Wong, K.K. A novel U-Net approach to segment the cardiac chamber in magnetic resonance images with
ghost artifacts. Comput. Methods Programs Biomed. 2020, 196, 105623. [CrossRef]

29. Dong, S.; Zhao, J.; Zhang, M.; Shi, Z.; Deng, J.; Shi, Y.; Tian, M.; Zhuo, C. DeU-Net: Deformable U-Net for 3D Cardiac MRI Video
Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Proceedings of the 23rd
International Conference, Lima, Peru, 4–8 October 2020; Springer: Cham, Switzerland, 2020; pp. 98–107.

30. Silva, C.E.S.; Ferreira, L.D.C.; Peixoto, L.B.; Monaco, C.G.; Gil, M.A.; Ortiz, J. Study of the myocardial contraction and relaxation
velocities through Doppler tissue imaging echocardiography: A new alternative in the assessment of the segmental ventricular
function. Arq. Bras. Cardiol. 2002, 78, 206–211. [CrossRef]

31. Baylor, E. Cardiac pharmacology of the cladoceran, Daphnia. Biol. Bull. 1942, 83, 165–172. [CrossRef]
32. Villegas-Navarro, A.; Rosas, L.E.; Reyes, J.L. The heart of Daphnia magna: Effects of four cardioactive drugs. Comp. Biochem.

Physiol. Part C Toxicol. Pharmacol. 2003, 136, 127–134. [CrossRef]

http://doi.org/10.1155/2012/147892
http://doi.org/10.3109/01480545.2015.1029048
http://doi.org/10.3390/w11040810
http://doi.org/10.1080/03601230600964316
http://doi.org/10.1590/S2179-975X3414
http://doi.org/10.3390/ani10091587
http://doi.org/10.1113/jphysiol.1951.sp004669
http://www.ncbi.nlm.nih.gov/pubmed/14898510
http://doi.org/10.1016/j.scitotenv.2019.134400
http://www.ncbi.nlm.nih.gov/pubmed/31689654
http://doi.org/10.1007/s11760-020-01636-0
http://doi.org/10.1109/TPAMI.2017.2699184
http://doi.org/10.1038/s41592-018-0261-2
http://doi.org/10.3390/diagnostics9030072
http://doi.org/10.1002/smll.202001080
http://doi.org/10.1016/j.cmpb.2020.105623
http://doi.org/10.1590/S0066-782X2002000200009
http://doi.org/10.2307/1538141
http://doi.org/10.1016/S1532-0456(03)00172-8


Animals 2022, 12, 1670 18 of 19

33. FernáNdez-GonzáLez, M.A.; Gonzalez-Barrientos, J.; Carter, M.J.; Ramos-Jiliberto, R. Parent-to-offspring transfer of sublethal
effects of copper exposure: Metabolic rate and life-history traits of Daphnia. Rev. Chil. Hist. Nat. 2011, 84, 195–201. [CrossRef]

34. Mishra, A.; Shukla, S.; Chopra, A. Physiological responses of heart of tailless fresh water flea Simocephalus vetulus (Crustacea-
cladocera) under copper sulphate stress. CIBTech J. Zool 2016, 5, 52–59.

35. Bownik, A. Protective effects of ectoine on physiological parameters of Daphnia magna subjected to clove oil-induced anaesthesia.
Turk. J. Fish. Aquat. Sci. 2016, 16, 691–701. [CrossRef]

36. Jeong, T.-Y.; Asselman, J.; De Schamphelaere, K.A.; Van Nieuwerburgh, F.; Deforce, D.; Kim, S.D. Effect of β-adrenergic receptor
agents on cardiac structure and function and whole-body gene expression in Daphnia magna. Environ. Pollut. 2018, 241, 869–878.
[CrossRef]

37. Kurnia, K.A.; Saputra, F.; Roldan, M.J.M.; Castillo, A.L.; Huang, J.-C.; Chen, K.H.-C.; Lai, H.-T.; Hsiao, C.-D. Measurement of
Multiple Cardiac Performance Endpoints in Daphnia and Zebrafish by Kymograph. Inventions 2021, 6, 8. [CrossRef]

38. Farhan, A.; Kurnia, K.A.; Saputra, F.; Chen, K.H.-C.; Huang, J.-C.; Roldan, M.J.M.; Lai, Y.-H.; Hsiao, C.-D. An OpenCV-Based
Approach for Automated Cardiac Rhythm Measurement in Zebrafish from Video Datasets. Biomolecules 2021, 11, 1476. [CrossRef]

39. Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next
generation of scientific image data. BMC Bioinform. 2017, 18, 529. [CrossRef]

40. Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic data augmentation using GAN for improved
liver lesion classification. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, USA, 4–7 April 2018; pp. 289–293.

41. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]
42. Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image

augmentations. Information 2020, 11, 125. [CrossRef]
43. Jin, S.; Zedong, H.; Yuan, L. Software implementation of corn grain morphology detection based on OpenCV. In Proceedings of

the 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Yangzhou, China, 20–22 October
2017; pp. 412–415.

44. Hart, K.A.; Rimoli, J.J. MicroStructPy: A statistical microstructure mesh generator in Python. SoftwareX 2020, 12, 100595.
[CrossRef]

45. Marengoni, M.; Stringhini, D. High level computer vision using opencv. In Proceedings of the 2011 24th SIBGRAPI Conference on
Graphics, Patterns, and Images Tutorials, Alagoas, Brazil, 28–30 August 2011; pp. 11–24.

46. Zhang, Z.; Ryoo, D.; Balusek, C.; Acharya, A.; Rydmark, M.O.; Linke, D.; Gumbart, J.C. Inward-facing glycine residues create
sharp turns in β-barrel membrane proteins. Biochim. Biophys. Acta (BBA)-Biomembr. 2021, 1863, 183662. [CrossRef] [PubMed]

47. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
Differentiation in Pytorch. Available online: https://openreview.net/pdf?id=BJJsrmfCZ (accessed on 28 June 2022).

48. MacFarland, T.W.; Yates, J.M. Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer International
Publishing: Cham, Switzerland, 2016.

49. Watt, T.A.; McCleery, R.H.; Hart, T. Introduction to Statistics for Biology; CRC Press: Boca Raton, FL, USA, 2007.
50. Liu, T.; Tian, Y.; Zhao, S.; Huang, X.; Wang, Q. Automatic whole heart segmentation using a two-stage u-net framework and an

adaptive threshold window. IEEE Access 2019, 7, 83628–83636. [CrossRef]
51. Shu, J.-H.; Nian, F.-D.; Yu, M.-H.; Li, X. An improved mask R-CNN model for multiorgan segmentation. Math. Probl. Eng. 2020,

2020, 8351725. [CrossRef]
52. Tong, Q.; Ning, M.; Si, W.; Liao, X.; Qin, J. 3D deeply-supervised U-net based whole heart segmentation. In International Workshop

on Statistical Atlases and Computational Models of the Heart, Proceedings of the 8th International Workshop, STACOM 2017, Held in
Conjunction with MICCAI 2017, Quebec City, Canada, 10–14 September 2017; Springer: Cham, Switzerland, 2017; pp. 224–232.

53. Zhang, J.; Du, J.; Liu, H.; Hou, X.; Zhao, Y.; Ding, M. LU-NET: An Improved U-Net for ventricular segmentation. IEEE Access
2019, 7, 92539–92546. [CrossRef]

54. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the 2017 IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

55. Zhang, X.; An, G.; Liu, Y. Mask R-CNN with feature pyramid attention for instance segmentation. In Proceedings of the 2018 14th
IEEE International Conference on Signal Processing (ICSP), Beijing, China, 12–16 August 2018; pp. 1194–1197.

56. Dogan, R.O.; Dogan, H.; Bayrak, C.; Kayikcioglu, T. A Two-Phase Approach using Mask R-CNN and 3D U-Net for High-Accuracy
Automatic Segmentation of Pancreas in CT Imaging. Comput. Methods Programs Biomed. 2021, 207, 106141. [CrossRef]
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