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a b s t r a c t

Time-series single-cell RNA sequencing (scRNA-seq) provides a breakthrough in modern biology by
enabling researchers to profile and study the dynamics of genes and cells based on samples obtained
from multiple time points at an individual cell resolution. However, cell asynchrony and an additional
dimension of multiple time points raises challenges in the effective use of time-series scRNA-seq data
for identifying genes and cell subclusters that vary over time. However, no effective tools are available.
Here, we propose scTITANS (https://github.com/ZJUFanLab/scTITANS), a method that takes full advantage
of individual cells from all time points at the same time by correcting cell asynchrony using pseudotime
from trajectory inference analysis. By introducing a time-dependent covariate based on time-series anal-
ysis method, scTITANS performed well in identifying differentially expressed genes and cell subclusters
from time-series scRNA-seq data based on several example datasets. Compared to current attempts,
scTITANS is more accurate, quantitative, and capable of dealing with heterogeneity among cells and mak-
ing full use of the timing information hidden in biological processes. When extended to broader research
areas, scTITANS will bring new breakthroughs in studies with time-series single cell RNA sequencing
data.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the development of technologies for cell separation and
sequencing, single-cell RNA sequencing (scRNA-seq) makes it pos-
sible to characterize RNA molecules at a resolution of individual
cells or nuclei on a genomic scale [1], and has opened new avenues
for studies on human physiology and disease pathology [2,3].
Based on a snapshot of the transcriptome of thousands of single
cells in a cell population, scRNA-seq has proven powerful in detect-
ing heterogeneity among individual cells and delineating cell maps
[4-6]. With snapshots of single cells obtained at multiple time
points, time-series scRNA-seq data is capable of providing large
amount of invaluable information for understanding dynamic
processes [7,8]. This wealth of high-dimensional transcriptional
information, however, presents many challenges in analyzing data.
Until recently, no efficient tools were available for identifying
genes and cell subclusters from time series scRNA-seq data that
vary over time, which may be key to evolution or disease
progression.

Recently, a few attempts have been made to identify differen-
tially expressed genes (DEGs) and cell subclusters from time series
scRNA-seq data. A novel microglia type and markers associated
with neurodegenerative diseases (DAM) have been identified by
Hadas et al. [9], and seven cell subclusters that differ during pan-
creatic organ development have been identified by Lauren et al.
[10]. In these attempts, differential expression analysis of individ-
ual genes is often performed on discrete groups of cells in the
developmental pathway, e.g., by comparing clusters of differenti-
ated cell types. Such discrete differential expression approaches
do not exploit the continuous expression resolution provided by
multiple time points, and are incapable of taking full advantage
of the timing information hidden in biological processes such as
development, differentiation, aging, drug response, and disease
development [11]. In contrast, it is often unclear with respect to
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cluster-based methods, as to which clusters should be compared
and how to properly combine the results of several pairwise cluster
comparisons. Moreover, a large number of studies indicate that
cells captured at the same time point can vary considerably [12].
The resulting DEGs and differential cell subclusters identified by
current attempts may be biased by cell asynchrony, since varia-
tions among cells obtained at different time points have not been
considered during analysis. Therefore, development of a new
method for time-series scRNA-seq data that is easy to use, quanti-
tative, and capable of dealing with the heterogeneity among cells is
urgently needed.

As to the heterogeneity among cells, a large number of studies
indicate that cell asynchrony is not completely disordered [13],
and that cell differentiation can be viewed as a continuous process
[14]. When a sufficient number of individual cells are captured, it is
possible to represent all cell states throughout a continuous pro-
cess of development [15]. In this respect, trajectory inference (TI)
methods are superior to discrete cluster-based approaches in that
they can reduce the effect of cell asynchrony by pseudotemporal
reordering of cells. Accordingly, multiple trajectory-based differen-
tial expression analysis methods such as Monocle [13], and trade-
Seq [16] have been developed and successfully applied to exploit
the continuous expression resolution along the trajectory for snap-
shot scRNA-seq data. On the other hand, time-series analysis [17]
that can take into account the information generated at several
time points at the same time, determine expression patterns (such
as cyclical pattern), and identify regulatory factors in a dynamic
biological process in a quantitative and knowledge-free way, will
be a perfect choice for time series scRNA-seq data obtained from
multiple snapshots. At present, time-series analysis is being suc-
cessfully applied in studies focusing on human disease and drug
development [18,19]. Although not applied to scRNA-seq data,
the advantage of time-series analysis in identifying DEGs in
dynamic biological processes based on high-throughput RNA-seq
data has also been revealed [20,21]. Therefore, a strategy for
time-series scRNA-seq data should be developed that can combine
the advantages of TI and time-series analysis methods.

Here we propose scTITANS, a trajectory inference-based
approach to identify DEGs and cell subclusters from time-series
scRNA-seq data. After correcting the asynchrony of single cells
based on TI analysis, a time-dependent covariate is introduced to
identify the DEGs and cell subclusters in dynamic processes. Com-
pared with current attempts, the method is quantitative and cap-
able of dealing with the heterogeneity among cells and making
full use of the timing information hidden in biological processes.
Moreover, scTITANS achieves higher accuracy and has a wide range
of applications.
2. Materials and methods

2.1. Workflow of scTITANS

Fig. 1 illustrates a schematic diagram of the scTITANS method.
After data preprocessing with filtering and normalization, a TI
method is first utilized to construct the trajectory and resolve the
underlying pseudotime. Based on the pseudotime, all single cells
are reordered. For DEGs, a curve is fitted for the dynamic expres-
sion of each gene along the pseudotime, and a time-dependent
covariate is introduced to calculate the q-value that indicates the
significance of the fluctuation of each gene over pseudotime. For
differential cell subclusters, the pseudotime is first separated into
several bins. After assigning single cells in each bin into corre-
sponding clusters, a curve representing the number of cells falling
into each interval is fitted for each subcluster. A time-dependent
covariate is again utilized to evaluate the variations of cell num-
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bers along pseudotime for each cluster. The lower the q-value is,
the more significant the genes or cell subclusters will be.

scTITANS can be performed in two modes. Users who have fin-
ished data preprocessing and TI analysis should provide the data-
set, the detailed metadata for cells and genes resulting from
trajectory analysis, and the root cell type. scTITANS also accepts
raw digital gene expression matrices resulting from tools such as
Cell Ranger (10X Genomics) or those filtered and normalized as
input. A series of example datasets are then utilized to evaluate
the performance of the scTITANS method.

2.2. Data pre-processing

For applications with raw digital gene expression matrices, data
pre-processing is first carried out. For raw gene expression matri-
ces (UMI counts per gene per cell), genes without any counts in
any cell were filtered out. A gene present with two or more tran-
scripts in at least 10 cells was defined as detected. For cell filtering,
cells with the number of genes detected outside the 5th and 95th
percentile were discarded. Moreover, cells with more than 10% of
their UMIs assigned to mitochondrial genes were filtered out
[22]. The matrix was further normalized with the scran R package
using the default implementation of the pool and deconvolute nor-
malization algorithm [23,24]. All the parameters for data prepro-
cessing can be adjusted as needed.

2.3. Trajectory inference analysis

Trajectory inference analysis is a key part of scTITANS. Over 70
TI methods are available, and the accuracy, scalability, stability,
and usability of 45 TI methods have been thoroughly compared
using 110 real and 229 synthetic datasets [25]. Although it has
been proposed that the choice of TI method should depend mostly
on dataset dimensions and trajectory topology [25], it is somewhat
difficult to apply the principle in real applications where the actual
dimensions and topologies are unclear. As a simplified application
of the above principle in scTITANS, we first selected 10 out of the
45 previously evaluated TI methods [25], and evaluated their per-
formance. The TI method with the best performance was then
selected to be used in scTITANS for pseudotime reconstruction.
Because topology is a key factor in the choice of TI method [25],
we selected the 10 TI methods based on criteria such as topology
accuracy higher than 0.8, topology stability higher than 0.5, and
paper quality higher than 0.5 and so on. Paper quality was assessed
using a transparent checklist of important scientific practices such
as ‘publishing’, ‘peer review’, ‘evaluation on real data’ and ‘evalua-
tion of robustness’ [25]. Considering the time and memory con-
strains in real-life applications, methods with less time
consumption and with higher correlations between predicted
and actual time on benchmarking datasets are to some extent pre-
ferred. The selected 10 methods include Monocle[13], Monocle2,
Monocle3, TSCAN [26], SLICER [27], GPfates [28], Slingshot [29],
Destiny [30], Mpath [31], and STEMNET [32]. Their performance
was evaluated in terms of accuracy for identifying true branches
and cell types based on three public datasets (HSMM [13], MEF
[33], and CMP [34]) with definite timepoints and branches from
the NCBI GEO database. After filtering and normalization in the
database, the standardized datasets were downloaded and utilized.
Concisely, HSMM (GSE52529) contained 271 cells with two
branches from the Fluidigm C1 microfluidic system at four time-
points during the development of human primary myoblasts.
MEF (GSE67310) contained 605 cells belonging to 10 cell types col-
lected at five timepoints using the Fluidigm C1 microfluidic sys-
tem. These cells were divided into three branches during the
induced reprogramming from mature fibroblasts to neurons. CMP
(GSE72857) was obtained from the myeloid progenitor cells of



Fig. 1. A schema for the scTITANS method.
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adult mice with FACS sorting and MARS-seq. CMP was a more com-
plex dataset, with 2730 cells belonging to 19 cell types and eight
branches.

After filtering and normalization, scTITANS utilizes Monocle3
[13,35] to construct the trajectory and calculate the pseudotime
for each cell. The Louvain method proposed in Monocle3 allows
reasonable disconnection between trajectories when clustering
cells. The dimension reduction method UMAP introduced in Mon-
ocle3 for the first time improves the accuracy of branch recognition
and operating efficiency. The trajectory length was calculated as
the total number of transcriptional changes experienced by the cell
when it moved from the starting state to the end state. Pseudotime
is the distance between the cell and the starting point along the
shortest path, and was proposed to represent the real state of the
cell in the dynamic process. Among the various cell type annota-
tion methods [34,36], scCATCH [34] was utilized to obtain cell type
annotations.

2.4. Time-dependent covariate analysis

To identify DEGs and differential cell subclusters, single cells
were reordered along the pseudotime resulting from TI analysis,
and a time-dependent covariate [37] was introduced to evaluate
the fluctuations of genes and cell numbers along pseudotime. First,
a curve was fitted for the expression of each gene or the cell num-
bers in each interval for each subcluster along pseudotime (com-
plete model). The null model was a corresponding flat line. A
statistic named q-value was then calculated to compare the two
models. It is a quantification of whether a gene or subcluster
changes significantly with pseudotime. The smaller the q-value,
the more significant the difference between the complete and null
model is.

Taking DEGs as an example, the corresponding section of Fig. 1
illustrates a scatter plot of the expression of an example gene,
where � and y axis represent pseudotime and the relative abun-
dance, respectively. The solid curve is the complete model, which
was fitted and optimized to minimize the difference between the
fitted and actual expression values. The flat dashed line is the null
model. Let yij be the expression level of gene i in cell j, where i = 1,
2, . . ., M genes and j = 1, 2, . . ., N cells. The expression level of gene i
in cell j in the complete model is defined by equation (1):

yij ¼ li ptj
� �þ eij ð1Þ
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where li ptj
� �

is the fitted average expression level of gene i at
the pseudotime ptj, and eij the random deviation. eij was assumed
to be an independent random variable with mean zero and gene-
dependent variance d2i . li ptj

� �
is parameterized with an intercept

plus a p-dimensional linear basis (equation (2)):

li ptj
� � ¼ ai þ bT

i spt ð2Þ

¼ ai þ bi1spt þ bi2spt þ . . .þ bipspt

where spt ¼ s1 ptð Þ; s2 ptð Þ; . . . ; sp ptð Þ� �T is a prespecified p-di-
mensional basis [38-40], ai is the gene-specific intercept, and

bi ¼ bi1; bi2; � � � ; bip

� �T a p-dimensional vector of gene-specific
parameters. The singular value decomposition method was used
to automatically choose the dimension of the basis p and the p-
dimensional vector of gene-specific parameter bi [38]. An F statistic
is further calculated to compare the residuals (SSi) of the complete
and null models. The F statistic of gene i is calculated as follows
(equation (4)).

SSi ¼
XN
j¼1

xrealij � xfittedij

� �2
ð3Þ

Fi ¼ SS0i � SS1i
SS1i

ð4Þ

In equation (3), SS0i is the sum of the squared residuals obtained

from the null model, and SS1i the sum of the squared residuals

obtained from the complete model. SS0i � SS1i quantifies in the

increase in goodness of fit, and dividing this by SS1i provides the
exchangeability of Fi among genes. The null distribution of the
statistic was calculated through a method named bootstrap [41].
The basic idea is that the data are resampled in a way that new ver-
sions of null data are randomly generated for each gene. Using
these null data, statistics are formed exactly as before that simulate
the case where there is no differential expression. Here, the null
data are generated by re-sampling the residuals obtained under
the alternative model fit and adding them back to the null model
fit. Then, a p-value in equation (5) is formed for each gene by mea-
suring the frequency by which the bootstrap null statistics exceed
each observed statistic. Here, B andM represent the number of iter-
ations and genes, respectively.
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pi ¼
XB
b¼1

# j : F0b
j � Fi; j ¼ 1; � � � ;M

n o
M � B ð5Þ

Finally, a statistic q-value is calculated to quantify the signifi-
cance of the difference based on p-values [42]. The estimated q-

value for the ith most significant gene is bq p ið Þ
� �

calculated in equa-

tion (6), where p0 is the proportion of genes that are not differen-
tially expressed.

bq p ið Þ
� �

¼ min
bp0M � p ið Þ

i
; bq p iþ1ð Þ
� � !

; i ¼ M � 1;M � 2; � � � ;1 ð6Þ

The smaller the q-value, the more significant the difference is.

2.5. Evaluation of scTITANS in identifying DEGs and differential cell
subclusters

The performance of scTITANS in identifying DEGs and differen-
tial cell subclusters was evaluated based on different examples of
datasets in the following two aspects. Firstly, scTITANS was evalu-
ated for the performance in identifying DEGs and differential cell
subclusters reported as such in the literature. Then, it was revealed
by example datasets that pseudotime correction in scTITANS
helped to reconstruct the trends for genes and cell subclusters.

With regard to identifying DEGs, a total of five example datasets
deposited in NCBI GEO database, HSMM [13], HHD [43], MPD [10],
CEED [44], and AD [9], were utilized. A short summary for each
dataset is described below; details about the datasets such as spe-
cies and number of cells and genes are summarized in Table 1.
HSMM (GSE52529) was generated from a study on human primary
myoblasts to identify new regulatory factors during cell differenti-
ation. This dataset contained 271 cells obtained with the Fluidigm
C1 microfluidic system at four timepoints and sequenced with a
depth of approximately 4 million reads. HHD (GSE106118) was
obtained from single-cell transcript sequencing on approximately
4,000 heart cells isolated from 18 human embryos at gestation
periods of 5 to 25 weeks. Cells were captured from four areas: left
atrium (LA), right atrium (RA), left ventricle (LV), and right ventri-
cle (RV). Then, a modified single-cell labeling reverse transcription
(STRT) protocol was used for scRNA-seq to obtain the gene expres-
sion profile of each cell. MPD (GSE101099) was obtained from
single-cell transcript sequencing on embryonic murine pancreatic
cells at days 12, 14, and 17 to explore pancreas development; live
cells were collected by fluorescence-activated cell sorting (FACS)
and sequenced with a depth of approximately 30,000 reads. CEED
(GSE126954) was obtained from single-cell transcriptomes of
Caenorhabditis elegans (C. elegans) embryos at approximately 300,
400, and 500 min after the first division. AD (GSE98969) was
obtained from characterized immune cells involved in Alzheimer’s
disease; all immune cells (CD45+) in the mouse brain were classi-
fied by massive parallel single-cell RNA-seq (MARS-seq) at a
sequencing depth of 50 K-100 K reads per cell. The standardized
data were published on the NCBI GEO.

In addition to CEED [44], other three datasets MRD [45], MND
[46], and MEP [46], were selected in this study to evaluate the per-
formance of scTITANS in identifying differential cell subclusters. A
short summary for each dataset is described as follows, with
details about the datasets such as species and number of cells
and genes being summarized in Table 1. MRD (GSE118614) was
obtained from sequencing the Chx10-GFP (+) retinal progenitor
cells across 10 timepoints of mouse retinal development to exam-
ine retinal progenitor cell heterogeneity during development. MND
and MEP (GSE119945) were selected from a study that profiled
over 2 million cells derived from 61 mouse embryos staged
between 9.5 and 13.5 days of gestation by improved single-cell
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combinatorial indexing-based protocol (‘sci-RNA-seq30) to investi-
gate the transcriptional dynamics of mouse development during
organogenesis at single-cell resolution. MND and MEP are subsets
of datasets obtained from glial and epithelial tissues (MEP dataset).
3. Results and discussion

3.1. Monocle3 outperforms other trajectory inference methods

As a key aspect of scTITANS, we first evaluated the performance
of multiple TI methods based on three benchmarking datasets,
HSMM [13], MEF [33], and CMP [34]. Owing to the limitations of
each method, different subsets of TI methods have been success-
fully applied to the three datasets. For HSMM, a dataset containing
271 cells obtained at four timepoints during the development of
human primary myoblasts, results from six methods including
Monocle [13,35], Monocle2 [13,35], Monocle3 [13,35], Slingshot
[29], GPfates [28] and Mpath [31] were obtained. Figure S1a shows
that only Monocle, Monocle3, GPfates, and Mpath successfully
reconstructed the two branches implicated in the 271 cells,
although the trajectory from GPfates was apparently much less
reasonable. It should also be noted that Mpath was able to provide
the trajectory for only the centroid of each cell cluster instead of
each single cell. Therefore, only Monocle and Monocle3 scored in
dataset HSMM. For MEF, a dataset containing 605 cells collected
at five timepoints during the reprogramming from mature fibrob-
lasts to neurons, a total of seven methods, Monocle, Monocle2,
Monocle3, Destiny [30], Slingshot, Slicer [27] and TSCAN [26] were
applied. Figure S1b shows that only Monocle3 reconstructed the
three branches implicated in this dataset. These results indicate
that only Monocle3 scored in this case. For CMP, a dataset contain-
ing 2730 cells obtained from the myeloid progenitor cells of adult
mice, eight methods, Monocle, Monocle2, Monocle3, SLICER,
TSCAN, Destiny, Mpath and STEMNET [32], were successfully
applied. Only Mpath accurately reconstructed the eight branches
implicated in the database and also the trajectory path (Figure S1c).
However, Mpath did not provide a trajectory for each single cell,
which reduces its value in correcting the asynchrony of single cells
for following time-series analysis. Although STEMNET identified
the eight most mature cell types in the end stage of development
with high accuracy, its value is reduced by its inability to provide
information of cell-to-cell transformation during development.
After excluding TSCAN, which failed to provide a reasonable trajec-
tory, and Destiny, which resulted in two branches, the remaining
four methods, Monocle, Monocle2, Monocle3, and SLICER, were
used to reconstruct three branches from the dataset. However, it
is apparent that the trajectory provided by SLICER was not consis-
tent with prior knowledge. Moreover, it should be noted that Mon-
ocle3 surpassed Monocle and Monocle2 in the identification of the
eight cell types with higher accuracy. Therefore, Monocle3 scored
in this case, although its performance was somewhat less than sat-
isfactory. Using the three example datasets, Monocle3 outper-
formed the other methods in reconstructing the true branches
and cell types implicated in single cells, although its performance
was less than perfect. Therefore, Monocle3 was selected as the TI
method in scTITANS.
3.2. Performance of scTITANS in identifying differential genes

Datasets HHD [43], HSMM [13], MPD [10], CEED [44], and AD
[9] were selected to demonstrate the performance of scTITANS in
identifying differential genes. For simplicity, only the results of
CEED are shown. Concisely, cells in the CEED dataset were
clustered using the Louvain algorithm and annotated into 27 cell
types based on the marker genes of each cell type described in



Table 1
Details about the example datasets.

Dataset Category Cell Total gene Average gene Time points Species

HSMM tissue development 384 47,193 7953 4 human
HHD organ development 4898 24,153 4109 12 human
MPD organ development 18,294 20,157 6076 3 mouse
CEED embryo development 84,625 20,222 5402 3 C. elegans
AD disease development 8016 34,016 5789 4 mouse
MND tissue development 22,967 26,183 4435 5 mouse
MEP tissue development 65,449 26,183 4231 5 mouse
MRD organ development 120,804 24,016 3921 10 mouse
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the literature. Next, we reduced the dimensionality of the data,
learned the trajectory graph, ordered the cells by pseudotime using
Monocle3, and identified differential genes using scTITANS. The
performance of scTITANS in identifying differential genes on data-
sets HSMM, MPD, CEED, and AD are shown in supplemental data
and Table S1.

3.2.1. scTITANS performs well in identifying differential genes
Most cells in the early developmental stage of the C. elegans ner-

vous system are early embryonic developmental cells, which dif-
ferentiate and develop into multiple types of mature cells along
the developmental trajectory [44]. Fig. 2(a-b) illustrates the con-
structed trajectory with cells colored by pseudotime and time
points. As shown in the figure, the gradual distribution of different
cell types during pseudotime is consistent with those obtained
during development time. Based on the pseudotime resulting from
the above TI analysis, a curve representing the relative abundance
Fig. 2. The constructed trajectory with cells colored by (a) pseudotime and (b) time
points for dataset CEED.
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of each gene along pseudotime was fitted, and the significance of
the difference between the fitted and flat lines was evaluated
and quantified with q-value. The smaller the q-value, the more sig-
nificant the gene is. Using the scTITANS method, a series of genes
were recognized as differential genes in the CEED dataset. Table 2
shows the top 20 differential genes.

To evaluate the performance of the method in identifying true
differential genes, the importance of the identified differential
genes was further confirmed with literature surveys. Table 2 also
illustrates whether the genes were verified through experiments
or based on the literature. It should be noted that part of the differ-
ential genes is composed of hypothetical proteins, which are
mostly inferred from computational analysis of genomic DNA
sequencing by gene prediction software. Because the functions of
hypothetical proteins cannot be easily determined, they were not
considered in subsequent verifications. Overall, eleven of the top
12 differential genes have been successfully confirmed in this
study. Pab-1 regulates the process of mRNA transportation and
translation. It has been shown that pab-1 plays an important role
in the development of nematodes, including establishment of
mitotic spindles [47], regulation of the mitotic cycle [48] and germ
cell proliferation [49]. Oig-8 is a previously uncharacterized trans-
membrane protein with a single immunoglobulin domain, and
modulates the distinct, neuron-type-specific elaboration of ciliated
endings of different olfactory neurons in nematode C. elegans [50].
Sox-4 is a member of the SOX family, which plays an important
role in the regulation of embryonic development and cell differen-
tiation [51]. The main function of cla-1 is the formation of synaptic
vesicles, involving biological processes such as synaptic assembly
and regulation of calcium-dependent exocytosis [52]. Atf-5 (acti-
vating transcription factor 5) is widely present in mammals, in adi-
pocyte differentiation [53], and in regulation of transcription [54].
Gcy-8 encodes guanylate cyclase, and hlh-4 plays a key role in the
development of the nervous system. It does make sense to recog-
nize the above genes as differential genes in the development of
the C. elegans nervous system. dac-1 is a Ski_Sno domain-
containing protein that belongs to the Ski/Sno family, and a specific
connection has been described between the Ski/Sno family and the
TGF-b signaling pathway [55], the genes of which play a vital role
in development and reproduction. Moreover, it has been reported
that daf-5, another member of the Ski/Sno family, is a transcrip-
tional regulator of genes in the TGF-b superfamily signaling path-
way that play an important role in the development of the
nervous system [56]. Therefore, it is also reasonable to recognize
dac-1 and daf-5 as differential genes during growth and
development.

The performance of scTITANS in identifying DEGs for time-
series scRNA-seq data was further evaluated by the GO biological
processes enriched from the top 20 DEGs for each dataset using
ToppGene [57] (Table S2). CEED, a single-cell transcriptomic data-
set of C. elegans embryos at approximately 300, 400 and 500 min
after the first division, was used as an example dataset. Although
only one of the top 20 DEGs was successfully annotated for CEED,



Table 2
Top 20 differential genes identified in dataset CEED with scTITANS.

Gene short
name

q-value Description Verified by
experiments
or literatures

F18E9.1 1.78E-307 hypothetical protein
K07C5.9 1.76E-306 hypothetical protein
fbxb-70 1.16E-305 FBA_2 domain-containing protein
F22E5.20 6.03E-304 hypothetical protein
ZK792.7 7.73E-304 hypothetical protein
K04D7.6 1.24E-303 hypothetical protein
pab-1 2.07E-303 Polyadenylate-binding protein Y
F40G9.6 7.38E-302 hypothetical protein
odr-2 1.74E-300 hypothetical protein Y
sox-4 2.69E-299 SOX family Y
his-37 7.42E-298 Histone H4 Y
cla-1 1.67E-297 Protein clarinet Y
aqp-12 6.12E-295 AQuaPorin or aquaglyceroporin

related
Y

glb-18 2.27E-294 GLOBIN domain-containing
protein

Y

F53G12.4 8.72E-294 hypothetical protein
atf-5 2.05E-291 ATF family Y
oig-8 1.07E-286 Ig-like domain-containing

protein
Y

gcy-8 2.01E-196 Receptor-type guanylate
cyclase gcy-8

Y

dac-1 2.75E-184 Ski_Sno domain-containing
protein

hlh-4 1.75E-35 Helix-loop-helix protein 4 Y
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the GO biological processes such as ascending aorta morphogene-
sis, ascending aorta development and septum primum develop-
ment are typical processes during development. Corresponding
results for the other four datasets further confirmed the perfor-
mance of scTITANS in identifying differential genes from time-
series scRNA-seq data. Details on the percentage of the top 20
genes verified by literature surveys and the top 10 enriched GO
biological processes using ToppGene for CEED and other datasets
are shown in Table S2. We also performed DEG analysis between
time points for each of the five example datasets using a function
suitable for bulk RNA-seq data provided in R package ‘edge’[58].
In this kind of analysis, cells from the same time point were consid-
ered as biological or technical replications, and the differences in
genes among multiple time points were evaluated. Table S3 illus-
trated the top 20 DEGs identified by ‘edge’ for each dataset.
Table S4 illustrated the percentages of genes among the top 20
DEGs verified with literatures using scTITANS and ‘edge’, the p-
values and statistical power for the fisher exact tests comparing
the performance of the above two methods for each example data-
set. As shown in Table S4, the percentages of verified genes using
scTITANS were significantly higher than that obtained using ‘edge’
for three datasets HSMM, HHD, and MPD with high confidence
(p-value < 0.05, power greater than 0.9). The percentage of verified
genes for scTITANS (92%) can still be considered to be higher than
that of ‘edge’ (25%) for dataset CEED with a p-value slightly higher
than 0.05 (p-value 0.06, power 0.98). Although the better
performance of scTITANS over ‘edge’ (80% versus 40%) is not so
significant for dataset AD (p-value 0.30), the corresponding low
power (0.60) somehow implies that the p-value in this case may
be not so reliable due to the limited number of genes considered.
In other words, such results indicate that scTITANS outperforms
‘edge’ in that it picks up a higher percentage of verified genes.
3.2.2. Pseudotime correction in scTITANS helps to reconstruct gene
expression trends

Gene expression trends implied in time-series scRNA-seq data
are key to the performance of scTITANS. Thus, we further evaluated
the contribution of pseudotime correction to scTITANS in recon-
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structing the true gene expression trends in time-series data. As
shown in Fig. 3, pseudotime correction in scTITANS (Fig. 3a) recon-
structed the trends of genes that were obviously differentially
expressed among multiple time points (Fig. 3b). Gcy-8 encodes
guanylate cyclase, which is critical to the thermal sensitivity of C.
elegans. It has been reported that the expression of gcy-8 gradually
increases with the development of the chemosensory neuron sys-
tem [59], and then decreases with age and the reduction in the
nematode’s thermal sensitivity to the outside world. scTITANS
can successfully characterize the abovementioned process,
although the decrease of gcy-8 was somewhat marginal (Fig. 3a
and 3b). Moreover, scTITANS reconstructed gene expression trends
that are hidden by cell asynchrony, especially genes whose expres-
sion levels changed non-linearly during development. Genes daf-7
(q = 2.21E-32), neg-1 (q = 1.11E-42), ced-4 (q = 1.51E-59), and mec-
8 (q = 1.90E-32) were recognized as differential genes by scTITANS,
but showed no obvious perturbations along development. As
shown in Fig. 3c, the expression of daf-7 increased first and then
decreased, and was apparently different from the flat line fitted
with real time points (Fig. 3d). Similar results apply for genes
neg-1, ced-4 and mec-8. It has been reported that daf-7 is closely
related to the development of the nervous system in that it is a
development-regulated growth factor that regulates the transcrip-
tion and apoptotic processes [60], plays an important role in larval
development, and has a greater impact on the development of
molting and excretory ducts [61]. Several lines of evidence support
that neg-1 [62], ced-4 [63], and mec-8 [64] play important roles in
the developmental process. Therefore, all the above results confirm
that single-cell reordering based on TI analysis in scTITANS helps
to reconstruct the true gene expression trends from real time-
series data. Corresponding results for the other four datasets that
support the same conclusion are provided in supplemental data.

3.3. Performance of scTITANS in identifying differential cell subclusters

Datasets MRD [45], MND [46], MEP [46], and CEED [44] were
selected to demonstrate the performance of scTITANS in identify-
ing differential cell subclusters. For simplicity, only the results of
MRD are provided in the main manuscript. Concisely, cells were
first clustered using the Louvain algorithm and annotated with
the marker genes of each cell type reported in the literature. After
filtering retinal pigment epithelium (RPE)/margin/periocular mes-
enchyme/lens epithelial cells owing to low cell counts, 14 cell
types were considered for further analysis. Next, we reduced the
dimensionality of the data, learned the trajectory graph, and
ordered the cells by pseudotime using Monocle3. The performance
of scTITANS in identifying differential cell subclusters on datasets
MND, MEP and CEED are shown in supplemental data, Table S5,
and Figures S1 and S2.

3.3.1. scTITANS performs well in identifying differential cell subclusters
Fig. 4a illustrates the cell subclusters obtained in this study

with Monocle3 for dataset MRD, a dataset sequenced from retinal
progenitor cells across 10 timepoints of mouse retinal develop-
ment. Consistent with experimental findings, retinal progenitor
cells (RPCs), neurogenic Cells, and mature cell types such as ama-
crine cells, bipolar cells, and cones, were successfully clustered
and annotated. After TI analysis and splitting the pseudotime into
many time intervals, the curve of cell numbers in each interval was
fitted along the pseudotime for each subcluster, and the q-value
was calculated to identify differential subclusters. The q-values
for the differential cell subclusters are provided in Table 3 in an
ascending order.

We then performed literature verification on the identified dif-
ferential subclusters (Table 3). RPCs are the earliest cells the arise
during the development of the retina. Many studies indicate that



Fig. 3. The trends of genes along pseudotime time and real time points. (a-b) An illustration of the performance of pseudotime correction in scTITANS in reconstructing the
trends of genes that are obviously differentially expressed along development. (c-d) An illustration of the performance of pseudotime correction in reconstructing the trends
for genes which are masked by cell asynchrony.
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RPCs have the ability to differentiate into different mature cell
types during development [65]. It has been reported that early
RPCs are capable of generating only radial glial cells (RGCs) and
amacrine, horizontal and photoreceptor cells, whereas late RPCs
can generate only rod, bipolar and muller cells [66]. Although the
difference in competence between early and late RPCs is not clear,
the progenitors are thought to progressively change their
competence states. Neurogenic cells are reported to differentiate
into all major retinal neuronal subtypes, with the exception of
horizontal cells [66]. RGCs are transformed from epithelial cells,
which directly or indirectly generate all neurons and produce glial
cells in later stages of development [67]. Finally, the retina
gradually differentiates into various mature cell types, such as
amacrine cells, bipolar cells, cones, which play various roles in
the formation and transmission of vision. Therefore, it is reason-
able to classify early RPCs, late RPCs, neurogenic cells, and RGCs
as differential subclusters. In this case, red blood cells were charac-
terized as less critical during retinal development, although
numerous scientific studies have shown that blood vessels are nec-
essary to maintain the normal physiological activities of retina.
Generation of neural tube walls accompanied by angiogenesis
4138
occurs early during retina development. Therefore, the number of
blood cells does not change significantly during the differentiation
process [68], which is consistent with the results obtained by our
method.

3.3.2. Pseudotime correction in scTITANS helps to reconstruct the
trends for cell subclusters

Pseudotime correction helps in the reconstruction of the trends
for cell subclusters. Fig. 4b and 4c shows the fitted trends along
pseudotime and real time points for three cell subclusters,
respectively. scTITANS identified the cell clusters that were clearly
differentially expressed among multiple time points, such as ‘early
RPCs’. Moreover, scTITANS also identified differential cell clusters
masked by cell heterogeneity, such as ‘neurogenic cells’ and ‘reti-
nal ganglion cells’, that demonstrated no clear perturbations along
real time points. It has been reported that retinal ganglion cells,
responsible for integrating visual information and transmitting it
to the central nervous system, should gradually increase during
development [69]. The successful characterization of this trend
confirms that cell reordering by pseudotime in scTITANS helps to
reconstruct the trends for cell subclusters.



Fig. 4. (a) An illustration of the cell subclusters obtained in this study. (b-c) An illustration of the trends for cell subclusters along pseudotime and real time points.

Table 3
Differential cell subclusters for dataset MRD.

Cell type q-value Verified with literatures

Neurogenic Cells 6.57E-87 Y
Early RPCs 1.31E-13 Y
Retinal Ganglion Cells (RGCs) 2.37E-06 Y
Bipolar Cells 7.14E-05
Cones 7.14E-05
Late RPCs 7.14E-05
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Based on several example datasets, scTITANS was confirmed
quantitatively and performed well in identifying differential genes
and cell subclusters by dealing with the heterogeneity among cells
and making full use of the timing information hidden in biological
processes. One major feature of scTITANS is that trajectory
reference analysis is used to reconstruct pseudotime, based on
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which, single cells are reordered to preclude the potential biases
resulting from cell asynchrony. Time-series analysis was then
integrated with TI analysis to uncover the regulatory factors
implied in dynamic biological processes in a quantitative way.
Time-series analysis has been successfully applied in studies
focusing on human disease and drug development [18,19].
Therefore, time-series analysis clearly takes full advantage of the
time-series information involved in dynamic processes. Moreover,
its advantage in identifying differential genes in dynamic
biological processes based on high-throughput RNA-seq data has
also been revealed [20,21]. Considering the fact that gene
expression changes continuously along pseudotime, time-series
analysis is a perfect choice to mine the information hidden
behind the time-series single-cell sequencing data. Thus, ‘time-
dependent covariate’ was then selected as the second crucial part
of scTITANS.
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The performance of scTITANS was evaluated and confirmed
based on two aspects. On the one hand, literature verification
was utilized to evaluate the capability of scTITANS in identifying
genes and cell subclusters that have been shown to play key roles
during development. On the other hand, pseudotime correction
was revealed to be helpful in reconstructing the trends for genes
and cell subclusters that were clearly differentially expressed or
masked by cell asynchrony along real time points. Based on strict
design and evaluation strategies, the outstanding performance of
scTITANS in identifying differential genes and cell subclusters from
time-series scRNA-seq data was confirmed with high reliability. It
should be noted that scTITANS successfully identified odr-2 as a
differential gene for dataset CEED, which was originally identified
as a hypothetical protein during genome analysis by bioinformatic
tools, and then confirmed to regulate AWC signaling within the
neuronal network required for chemotaxis [70]. In this case, five
of the top-ranked six differential genes are hypothetical proteins
with p-values smaller than that of odr-2. Although no reports are
available on their roles in the development of the C. elegans ner-
vous system, the successful example of odr-2 indicates that special
attention should be paid to them in future studies. Moreover, the
performance of scTITANS was affected by the performance of TI
analysis. Owing to the shortcomings involved in trajectory analysis
[25], the performance of scTITANS may be less satisfactory in situ-
ations where only raw expression matrices are provided.
4. Conclusion

scTITANS combines the advantage of TI and time-series analyses
for the first time to identify DEGs and differential cell subclusters for
time-series scRNA-seq data. By reordering single cells along
pseudotime resulting from TI analysis, the biases associated with
asynchrony of single cells can be fully excluded from subsequent
time-series analysis. Compared with current attempts, scTITANS is
more accurate, quantitative, knowledge-free, and capable of dealing
with heterogeneity among cells and making full use of the timing
informationhidden inbiological processes.Whenextended to larger
datasets and broader research areas, scTITANS will cause new
breakthroughs in studies using single-cell sequencing.
5. Availability

All code is available at https://github.com/ZJUFanLab/scTITANS.
Supplementary Data are available online.
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