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Abstract

Background

Lymphatic filariasis (LF) is a neglected tropical disease caused by the filarial nematodes

Wuchereria bancrofti, Brugia malayi and Brugia timori. The Global Program to Eliminate LF

uses mass drug administration (MDA) of anti-filarial drugs that clear microfilariae (Mf) from

blood to interrupt transmission by mosquitos. New diagnostic tools are needed to assess

the impact of MDA on bancroftian filariasis, because available serologic tests can remain

positive after successful treatment.

Methodology/Principal findings

We identified Wb-bhp-1, which encodes a W. bancrofti homologue of BmR1, the B. malayi

protein used in the Brugia Rapid antibody test for brugian filariasis. Wb-bhp-1 has a single

exon that encodes a 16.3 kD protein (Wb-Bhp-1) with 45% amino acid identity to BmR1.

Immunohistology shows that anti-Wb-Bhp-1 antibodies primarily bind to Mf. Plasma from

124 of 224 (55%) microfilaremic individuals had IgG4 antibodies to Wb-Bhp-1 by ELISA.

Serologic reactivity to Wb-Bhp-1 varied widely with samples from different regions (sensitiv-

ity range 32–92%), with 77% sensitivity for 116 samples collected from microfilaremic indi-

viduals outside of sub-Saharan Africa. This variable sensitivity highlights the importance of

validating new diagnostic tests for parasitic diseases with samples from different geographi-

cal regions. Individuals with higher Mf counts were more likely to have anti-Wb-Bhp-1 anti-

bodies. Cross-reactivity was observed with a minority of plasma samples from people with

onchocerciasis (17%) or loiasis (10%). We also identified, cloned and characterized BmR1

homologues from O. volvulus and L. loa that have 41% and 38% identity to BmR1, respec-

tively. However, antibody assays with these antigens were not sensitive for onchocerciasis

or loiasis.
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Conclusions

Wb-Bhp-1 is a novel antigen that is useful for serologic diagnosis of bancroftian filariasis.

Additional studies are needed to assess the value of this antigen for monitoring the success

of filariasis elimination programs.

Author summary

Lymphatic filariasis (LF) is a highly disabling and stigmatizing disease caused by parasitic

worms that are transmitted by mosquitoes. There is a coordinated global effort to elimi-

nate LF based on mass drug administration (MDA) of donated anti-filarial medications.

Improved methods are needed to determine when transmission of the infection has been

interrupted in previously endemic areas so that MDA can be safely stopped. This paper

reports the discovery and characterization of a novel W. bancrofti antigen, Wb-Bhp-1,

which is a homologue of the Brugia malayi protein used in antibody tests to monitor filari-

asis elimination in areas of Asia where LF is caused by Brugia species. We show that a test

for IgG4 antibodies to Wb-Bhp-1 was fairly specific for W. bancrofti infection. However,

the sensitivity of this test varied by the geographic origin of the samples. Sensitivity was

highest for samples collected in the Indo-Pacific region and lowest for samples collected

in Côte d’Ivoire. Geographic differences in the parasite or the human immune responses

to infection may account for this variability. This range in sensitivity highlights the impor-

tance of validating new diagnostic tests for parasitic diseases with samples from different

geographical regions.

Introduction

Lymphatic filariasis (LF) is a deforming and disabling disease caused by parasitic nematodes

that are transmitted by mosquitoes. Since its inception in 2000, the Global Programme to

Eliminate LF has made impressive progress by reducing the estimated numbers of infected

people from 120 million to 51 million [1]. This accomplishment demonstrates the effectiveness

of the mass drug administration (MDA) strategy, which involves distributing anti-filarial med-

ications to kill the larval stage of the parasite (microfilariae, Mf). The combination of ivermec-

tin, diethylcarbamazine (DEC) and albendazole (IDA) is currently the most effective MDA

regimen for clearing Mf, but results in slow clearance of filarial antigenemia [2,3]. The drug

combinations used for MDA depend on whether there are other co-endemic parasitic infec-

tions in an area. Improved diagnostic tests are needed to better identify areas where MDA has

been successful enough that it can be halted. Indeed, the World Health Organization (WHO)

lists the development of improved diagnostics as an important priority in their 2020 Roadmap

for LF elimination by 2030 [4].

Current guidelines call for transmission assessment surveys (TAS) after five or more rounds

of MDA to determine whether MDA can be halted in a given area. TAS rely on detection of

circulating filarial antigen (CFA) in the blood with tests such as the Filariasis Test Strip (FTS)

or, in areas with brugian filariasis, on detection of anti-filarial antibodies with the Brugia

Rapid test [5]. CFA tests are useful for mapping endemic areas and for assessing the impact of

MDA on filariasis transmission in sentinel groups. However, TAS surveys have been shown to

be insensitive tools for this purpose in some settings [6–8]. Furthermore, CFA tests in adults
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are a lagging indicator of MDA success, because CFA often remains detectable in human

blood for years after treatment has cleared Mf [3,9].

Antibodies to some filarial antigens become detectable in blood sooner after exposure or

infection than Mf or CFA [10]. Furthermore, antibody assays may be more sensitive than tests

for CFA or Mf for detecting filarial infections or exposure to infection in children [9,11]. Usu-

ally, school-aged children are sampled during TAS. Therefore, antibody tests might be useful

to detect whether children have been exposed to filarial parasites. Similarly, an antibody test

that correlates well with the presence of microfilaremia could be useful for use in post-MDA

population surveys. There are several available antibody tests for LF; the most commonly used

commercially available tests detect antibodies to the filarial antigens Bm14, BmR1 or Wb123

[12–16]. The Brugia Rapid test, which is used in Brugia endemic areas, detects IgG4 antibody

to the Brugia malayi protein BmR1 [16]. The function of BmR1 is unknown, but it is expressed

in Mf and female worms [17,18]. The main drawback of the Bm14 or Wb123 antibody tests is

that antibodies to those antigens remain detectable for years after clearance of the infection

[13,15]. In contrast, antibodies to BmR1 often clear by 2 years after treatment, making anti-

BmR1 antibody testing especially useful for MDA stopping decisions in areas with brugian fila-

riasis [15,19]. The development of an antibody test for W. bancrofti that cleared within a few

years after treatment could be very useful for MDA stopping decisions for bancroftian

filariasis.

Based on the utility of the BmR1 antibody test, we hypothesized that antibody tests based

on BmR1 homologues might be useful for diagnosis of other filarial parasites that infect

humans, such as W. bancrofti, Onchocerca volvulus, and Loa loa. Approximately 40% of the

global LF burden is in sub-Saharan Africa, where the latter two parasites are often co-endemic

with W. bancrofti [20]. Indeed, some antibody tests for LF detect antibodies in serum samples

from patients with onchocerciasis and/or loiasis that could lead to inaccurate assessments of

LF endemicity in co-endemic areas, similar to what has been reported for CFA tests in Central

Africa [21–23]. Thus, species specificity is especially important for diagnostic tests in areas of

Africa with multiple co-endemic filarial infections.

Previously identified BmR1 homologues had 99–100% sequence identity to BmR1, and anti-

bodies to these homologues did not prove to be sensitive or specific for bancroftian LF, oncho-

cerciasis or loiasis [24]. This is a much higher degree of sequence identity than found in many

other homologous genes in W. bancrofti, B. malayi and O. volvulus. Because there has been fur-

ther sequencing of filarial parasite genomes since that publication, we hypothesized that addi-

tional BmR1 homologues might be present that have less sequence identity and that might be

useful for sero-diagnosis. This paper reports the identification and partial characterization of

these newly identified BmR1 homologues and early studies of their diagnostic potential.

Methods

BmR1 homologue identification and characterization

The BmR1 protein is encoded by the B. malayi gene Bm17DIII [16]. We identified a W. ban-
crofti BmR1 homologue, Wb-bhp-1, with a BLAST search for homologues of BmR1 on the

WormbaseParasite database (Parasite.wormbase.org last accessed 3/18/21). We identified a

second W. bancrofti BmR1 homologue, Wb-bhp-2, by an analysis of recently published W.

bancrofti genomes [25]. BmR1 homologues from O. volvulus and L. loawere likewise identified

using BLAST for homologues of BmR1 on WormbaseParasite. Amino acid alignment for

these BmR1 homologues was conducted by ClustalV in MegAlign version 15 (DNAStar,

Madison WI, USA). Percent identity was calculated for Wb-Bhp-1, Ov-Bhp-1 and Ll-Bhp-1

based on the amino acids conserved with BmR1 in the region of overlap.
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Genetic variation analysis

We analyzed previously published W. bancrofti genomic data from Haiti, Mali, Kenya, and

PNG to assess sequence variation in Wb-Bhp-1 and Wb-Bhp-2 [25]. Sequencing reads were

retrieved from the SRA (accession SRP056210 and SRP168632), adapter-trimmed using

Trimmomatic v0.39 [26], and aligned to the W. bancrofti genome assembly (GenBank acces-

sion: GCA_005281725.1) using BWA-MEM v0.7.17 [27]. Polymerase chain reaction and

optical duplicates were removed using Picard tools v2.22.0 and single-nucleotide variants

were called via local de novo assembly of haplotypes using GATK v4.2.2 [28,29]. Variants

were quality-filtered as previously described, and coding effects were predicted using SnpEff

v5.0 [30,31]. VCFtools was used to summarize the variant allele frequencies in each popula-

tion [32].

Cloning and protein expression

All kits were used according to the manufacturer’s instructions. PCR amplification of each

BmR1 homologous gene was conducted using blunt end PCR with Phusion DNA polymer-

ase (New England Biolabs, Ipswich MA, USA), with an annealing temperature of 52˚C and

using the primers listed in S1 Table. Wb-bhp-1 was amplified from W. bancrofti Mf genomic

DNA obtained in Côte d’Ivoire from a person with W. bancrofti infection and no other filar-

ial infection. It was possible to amplify this gene from genomic DNA as it had only 1 exon.

Wb-bhp-2 was amplified from double-stranded DNA synthesized by Integrated DNA Tech-

nologies based on available sequence for Wb-bhp-2 in WormbaseParasite (IDT, Coralville

IA, USA). Ov-Bhp-1 was amplified from O. volvulus adult worm complementary DNA

(cDNA) from Uganda. Ll-Bhp-1 was amplified from double-stranded DNA synthesized by

Integrated DNA Technologies based on available sequence for Ll-bhp-1 in WormbasePara-

site (IDT).

PCR products were visualized by agarose gel electrophoresis, and ligated into linearized

pET100D plasmid, which incorporates an amino-terminal polyhistidine tag and an 8 amino

acid Xpress tag (Invitrogen, Waltham MA, USA). The resultant vectors (S1 Table) were

sequenced (Genewiz, South Plainfield NJ, USA), with sequence analysis on SeqManPro

(DNAStar). Each plasmid was transformed into the BL21 E. coli strain for protein production.

These strains were grown at 37˚C in Luria broth with 50 ug/ml ampicillin to optical density at

600nm of 0.6, then induced with 1mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) for 2

hours. Cells were collected by centrifugation at 4700rpm then subjected to a freeze/thaw cycle

at -80˚C. Cell pellets were then lysed with CelLyticB (Sigma, St Louis MO, USA) and benzo-

nase. Protein was purified from the clarified cell extract using cobalt or nickel His-select affin-

ity gel purification column (Sigma). Protein was eluted in 250mM imidazole and further

purified using an Electro-Eluter (Bio-Rad, Hercules CA, USA). Dialyzed eluted fractions were

concentrated with an Amicon Ultra 3.5 kD MWCO cutoff filter (MilliporeSigma, Burlington

MA, USA). Protein purity was assessed by SDS-PAGE electrophoresis followed by staining

with SimplyBlue SafeStain (Invitrogen). Purified protein was quantified by bicinchoninic acid

analysis (Bio-Rad).

Antibody production

One BALB/c mouse was immunized with 20 μg of recombinant Wb-Bhp-1 in complete

Freund’s adjuvant and boosted 1 month later with 20 μg of Wb-Bhp-1 in incomplete Freund’s

adjuvant. Immune serum was collected 9 days after the boost. Serum from an unimmunized

BALB/c mouse serum was used as a negative control.
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Tissue fixation and immunohistochemistry

Immunochemistry was performed on fixed and sectioned B. malayi parasites recovered at vari-

ous stages of development from intraperitoneally infected jirds, as well as on fixed and sec-

tioned O. volvulus nodules, which were originally obtained from an onchocerciasis patient in

Ghana [33,34]. The parasites were fixed in either 4% formaldehyde or in 80% ethanol then

embedded in paraffin. Immunostaining was conducted with the alkaline phosphatase anti-

alkaline phosphatase (APAAP) method as previously described [33]. Primary antibody dilu-

tions of 1:100 to 1:1000 were assessed, and the dilutions 1:200 and 1:500 were found to provide

the best signal over background. Polyclonal rabbit anti-mouse IgG 1:25 (Dako, Santa Clara

CA, USA) was used as the secondary antibody, then mouse APAAP of at a dilution of 1:40

(Sigma) was applied. The chromatogen Fast Red (Sigma) was used as the substrate and the

slides were counter stained with hematoxylin (Merck, Darmstadt Germany). Slides were

examined on an Olympus -BX40 microscope and photographed on an Olympus DP70 micro-

scope digital camera (Olympus, Tokyo Japan).

Immunoblot analysis

Purified recombinant proteins were separated by SDS-PAGE and transferred to nitrocellulose

membranes (Bio-Rad). Membranes were blocked with 5% milk, then were probed with either

antisera to the Xpress epitope (Invitrogen) at 1:4000 dilution or with patient sera diluted at

1:100. Blots were then incubated with secondary antibody anti-mouse IgG-alkaline phospha-

tase (Promega, Madison WI, USA), or anti-human IgG4-pFc’- alkaline phosphatase (Southern

Biotech, Birmingham AL, USA) at 1:4000. Antibody binding was visualized by incubating

blots in SigmaFast BCIP/NBT alkaline phosphatase substrate (Sigma).

Indirect ELISA

96 well vinyl round bottom plates were coated with 100ul of 0.5 ug/ml of Wb-Bhp-1 in 0.06M

carbonate buffer pH 9.6, covered and incubated at 37˚C overnight in a humidified box. Plates

were washed twice in PBS-Tween (PBST), then blocked with PBST-5% heat inactivated fetal

calf sera (FCS) at 37˚C for 1 hour. Human sera diluted at 1:100 in PBST-5% FCS was then

added and plates were incubated at 37˚C for 2 hours. Plates were washed 5 times with PBST,

then anti-human IgG4-pFc’-HRP (Southern Biotech) diluted at 1:4000 in PBST-5% FCS was

added and plates were incubated at 37˚C for 1 hr. Plates were washed in PBST 5 times before

adding the substrate o-phenylenediamine dihydrochloride (Thermo Fisher Scientific, Wal-

tham MA, USA). The colorimetric reaction was stopped with 4M H2SO4 and plates were read

at 490 nm with a BioTek ELx808 plate reader (Thermo Fisher Scientific). A positivity cutoff of

OD490 > 0.2 was chosen to maximize sensitivity and specificity. Data were analyzed in Excel

(Microsoft, Redmond WA, USA) and Prism version 9 (GraphPad, San Diego CA, USA). Bioti-

nylated Wb-Bhp-1 peptide fragments (synthesized by LifeTein, Somerset NJ, USA) were used

for ELISA as described above, on a plate coated with 10ug/ml streptavidin (Sigma).

Human samples

De-identified sera and plasma samples were from individuals infected with a single filarial par-

asite unless otherwise noted. We tested sera or plasma from patients infected with W. ban-
crofti, B. malayi, O. volvulus and L. loa (Table 1). De-identified non-endemic control sera were

obtained from Barnes Jewish Hospital clinical lab in St. Louis, Missouri. Since the St. Louis

population has low rates of travel or emigration from regions endemic for filarial infections,

these samples were presumed to be from non-exposed individuals.
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Ethics statement

Sera from patients infected with W. bancrofti were collected during the studies cited in

Table 1. All clinical samples were de-identified and data regarding the samples and infections

were labeled by study identification number only. De-identified non-endemic control sera

samples were obtained de-identified from the Barnes-Jewish-Christian Hospital Clinical labo-

ratory in St Louis. The Washington University in St Louis Human Research Protection Office

(an institutional review board) determined that work with these de-identified samples did not

constitute human subjects research.

Statistical analysis

Statistical analysis was conducted in Prism Version 9 (GraphPad). Comparisons between anti-

body levels from groups of patients utilized Kruskal-Wallis one-way analysis of variance.

Results

Identification and production of BmR1 homologues

We identified two W. bancrofti homologues of Bm17DIII, the B. malayi gene that encodes

BmR1. The first encodes a hypothetical protein (Genbank accession number EJW70263.1,

UniProt ID J9DKX0). We named this gene Wb-bhp-1 according to the recommended filarial

nomenclature [45]. We amplified this gene from W. bancrofti genomic DNA and the gene was

Sanger sequenced and submitted to Genbank (accession number OL692807). Interestingly,

Wb-bhp-1 has only one exon while Bm17DIII has two. We also identified another BmR1

homologue in W. bancrofti, termed Wb-bhp-2, which has two exons like Bm17DIII. The

homologue from O. volvulus, OVOC7606.1, encodes a hypothetical protein (UniProt ID

A0A2K6WDP0). We named this gene Ov-bhp-1. The best hit from L. loa was EN70_10598 and

encodes a hypothetical protein (UniProt ID A0A1I7V734_LOALO). We named this gene Ll-
bhp-1. Both Ov-bhp-1 and Ll-bhp-1 contain 2 exons.

Because the functions of BmR1 and these newly identified homologues are unknown, we

named these homologues BmR1 homologous protein (Bhp), with the homologue in each spe-

cies identified by the standard species acronym [45]. Wb-Bhp-1 has 45% amino acid identity

to the portion of BmR1 encoded by the second exon. Ov-Bhp-1 and Ll-Bhp-1 have 41% and

42% amino acid identity to BmR1, respectively. The amino acid alignments of these newly

Table 1. Sera characteristics.

Infection Location of sera collection Number of sera Filarial co-infections Diagnosis method Citation

W. bancrofti India 26 Absent Mf count by blood smear or filtered blood [35]

Sri Lanka 39 Absent Mf count of filtered blood [36]

Egypt 28 Absent Mf count of filtered blood [37]

Papua New Guinea 23 Absent Mf count of filtered blood [2,3]

Côte d’Ivoire 108 M. perstans possible Mf count of filtered blood [38,39]

B. malayi Kerala, India 12 Absent Mf count by blood smear or filtered blood [35,40]

O. volvulus Uganda 12 M. perstans possible Mf count of skin snip [41]

Cameroon 10 M. perstans possible Mf count of skin snip [42]

Nigeria 10 M. perstans possible Mf count of skin snip [43]

L. loa Cameroon 29 59% M. perstans Mf count by blood smear [44]

Non-endemic control St. Louis, USA 48 Absenta Not applicable

a Non-endemic control serum from USA presumed free from filarial infection

https://doi.org/10.1371/journal.pntd.0010407.t001
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identified homologues to BmR1 are shown (Fig 1). They are unlike previously identified

BmR1 homologues which had 99–100% amino acid identity to BmR1 [24]. BmR1 also has

homologues in more distantly related nematodes including Dirofilaria immitis and Toxocara
canis. However, those homologues demonstrate only 22–33% amino acid identity to BmR1

and 22–28% identity to Wb-Bhp-1 [46,47].

In order to evaluate Wb-Bhp-1 as a diagnostic candidate, we cloned Wb-bhp-1 into an

expression vector that incorporates an amino-terminal His tag and Xpress epitope to allow for

protein localization. This recombinant protein has a predicted molecular weight of 20.4 kilo-

daltons (kD), and was purified utilizing the N-terminal His tag. The protein was visualized at

the expected molecular weight by SDS-PAGE and immunoblot analysis with anti-Xpress anti-

body (Fig 2A and 2B). A dimer of the recombinant protein is also visible (Fig 2B). Wb-Bhp-2

was also characterized but is not presented here because of its lower assay specificity relative to

Wb-Bhp-1, as discussed below.

Immunohistochemical localization of BmR1 homologues

Unlike B. malayi Bm17DIII, nothing was known about expression profile of Wb-bhp-1, or the

localization of Wb-Bhp-1 in filarial worms. We raised polyclonal mouse antibodies to Wb-

Bhp-1 in order to further characterize this protein. Because W. bancrofti adult worms and Mf

are challenging to obtain, we utilized B. malayi parasites for localization studies. Mouse anti-

Wb-Bhp-1 antibodies bound to the stretched Mf in adult female worms of B. malayi (Fig 3D

and 3E). There was no staining of B. malayi oocytes, morula, or pretzel stage Mf (Fig 3B and

3C). There was slight diffuse staining of B. malayi L3 stage parasites that we believe represents

background staining (Fig 3G). There was no staining of B. malayi Mf by control mouse serum

(Fig 3A). There was no staining in male worms. Mouse antibodies to recombinant Wb-Bhp-1

Fig 1. Alignment of BmR1 homologous proteins. Amino acid alignment by MegAlign and percent identity to B. malayi BmR1 of the following BmR1

homologous proteins:W. bancrofti Wb-Bhp-1 (45%) and Wb-Bhp-2 (55%),O. volvulus Ov-Bhp-1 (41%), and L. loa Ll-Bhp-1 (42%). Amino acid residues

conserved with BmR1 are shaded black.

https://doi.org/10.1371/journal.pntd.0010407.g001
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also bound to Mf in O. volvulus nodules, especially those free in the nodule rather than in

utero (Fig 3H). These results suggest that antibodies to recombinant Wb-Bhp-1 cross reacted

with B. malayi and O. volvulus homologous proteins.

Antibodies to Wb-Bhp-1 detectible in sera from people with W. bancrofti
microfilaremia.

We screened sera from people infected with W. bancrofti, and 12 of 13 (92%) reacted with

Wb-Bhp-1 by immunoblot. We then evaluated patient sera by ELISA. IgG4 subclass was used

in the ELISA as this IgG subclass is usually the most specific for anti-filarial diagnostics

[13,23]. We also developed and evaluated an anti-IgG ELISA, but it was less specific than the

IgG4 ELISA. We tested 224 sera from individuals with W. bancrofti microfilaremia collected

in Sri Lanka, India, Papua New Guinea, Egypt and Côte d’Ivoire (Table 1). One hundred and

twenty four of 224 (55%) sera had anti-Wb-Bhp-1 IgG4 ELISA titers above the threshold of 0.2

OD490 (Fig 4A). Median antibody levels and proportion of individuals with anti-Wb-Bhp-1

IgG4 antibodies varied significantly between samples from different countries (Fig 4B). Sam-

ples from Sri Lanka demonstrated a median OD490 value of 2.7, as well as 95% sensitivity, the

highest from any location, while samples from Côte d’Ivoire had the lowest median OD490 at

0.03, and the lowest sensitivity at 32%. Because the assay had low sensitivity with the initial 56

samples from Côte d’Ivoire, we tested an additional 51 sera collected from a different cohort of

Mf positive individuals in Côte d’Ivoire. The second set of samples had similar median OD490

and percent positivity to the first sera set. Fig 4 shows results for all the samples from Côte

d’Ivoire.

Anti-IgG4 ELISA OD values were positively correlated with Mf count (Fig 5A). This analy-

sis included 198 samples where Mf counts were performed by membrane filtration. This analy-

sis does not include samples from India where Mf counts were performed with blood smears

that do not provide comparable counts to membrane filtration. The sensitivities of anti-Wb-

Bhp-1 IgG4 ELISA for samples from people with Mf counts of 1 to 30 (Log Mf of 0–1.49), 31

to 999 (Log Mf of 1.5–2.99), and� 1000 per ml of blood (Log Mf of� 3) were 35%, 50%, and

74%, respectively. Sample sets from all locations included plasma from people with a range of

Mf counts. However, 56% of the Sri Lanka samples were from people with Mf counts� 1000

per ml, while only 6% of samples from Côte d’Ivoire had Mf counts in that range. This differ-

ence in Mf count for samples from various locations contributed to the wide variation in

Fig 2. Characterization of BmR1 homologous proteins. (A) SDS-PAGE and SimplyBlue SafeStain analysis of recombinant Wb-Bhp-1 (predicted

20.4 kD), Ov-Bhp-1 (predicted 27 kD), and Ll-Bhp-1 (predicted 26.5 kD). (B) Immunoblot analysis of Wb-Bhp-1, Ov-Bhp-1, Ll-Bhp-1 with anti-

Xpress antibody, which targets the amino-terminal Xpress epitope of these recombinant proteins.

https://doi.org/10.1371/journal.pntd.0010407.g002
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Fig 3. Immunolocalization of BmR1 homologues. This figure shows immunohistochemical results from worm sections that were processed as

described in the Methods. A B. malayi female worm section stained with normal mouse sera showed no labeling (A). B. malayi female worm sections

stained with anti-Wb-Bhp-1 demonstrated no staining in morula (B) or pretzel stage larvae (C) but staining of stretched Mf (DE). B. malayi L3 stage

demonstrated minimal staining with normal mouse sera (F) and minimal staining in a diffuse pattern with anti-Wb-Bhp-1 sera (G). O. volvulus nodule

stained with anti-Wb-Bhp-1 demonstrated staining of Mf within the nodule (H). Annotations: Mf (arrow), uterus (ut), and intestine (i), which has

intrinsic alkaline phosphatase. Scale bar indicates 20 micrometers.

https://doi.org/10.1371/journal.pntd.0010407.g003
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median OD490 and sensitivity that we observed in ELISA results for samples from different

countries, but does not explain it completely. There were significantly different median values

and sensitivities of the anti-Wb-Bhp-1 IgG4 ELISA in samples from people from Sri Lanka

and Côte d’Ivoire even after stratifying by Mf count (Fig 5B). All samples from different

regions were collected from microfilaremic patients who had no recent history of treatment

for lymphatic filariasis.

We investigated whether there was sequence variability in the Wb-bhp-1 gene from W. ban-
crofti isolated in different endemic areas. A recent study on W. bancrofti genomes utilized 47

single worms isolated from Haiti, Mali, Kenya and Papua New Guinea [25]. Our analysis

showed that there is sequence variability within various Wb-bhp-1, with 11 single nucleotide

polymorphisms compared to the sequence of Wb-bhp-1 sequenced for this work, 9 of which

Fig 4. Anti-Wb-Bhp-1 IgG4 ELISA sensitivity and specificity. Graphs show the individual OD490 for the anti-Wb-Bhp-1 IgG4 ELISA. Median

values are indicated by the black bar. Positivity cutoff of 0.2 is indicated by the dotted black line. PNG: Papua New Guinea. CDI: Côte d’Ivoire. (A)

ELISA data for sera from people with the indicated filarial infection, or non-endemic controls (Table 1). Median ELISA data from each filarial

infection are statistically different by Kruskal-Wallis test with p< 0.0001. (B) ELISA data from individuals with W. bancrofti infection from the

specified country of origin. Median OD490 and overall percent positivity for each country are significantly different by Kruskal-Wallis, with p<0.0001.

https://doi.org/10.1371/journal.pntd.0010407.g004

Fig 5. Anti-Wb-Bhp-1 IgG4 ELISA dependence on Mf count. Graphs show the individual OD490 for the anti-Wb-Bhp-1 IgG4

ELISA. Median values are indicated by black bar. Positivity cutoff of 0.2 is indicated by the dotted black line. Data are color

coded by country of origin for the sera. PNG: Papua New Guinea. CDI: Côte d’Ivoire. (A) OD490 titers plotted against the log of

Mf count. Values are significantly correlated by Spearman, with r = 0.2982, p<0.0001. (B) OD490 titers from individuals with W.

bancrofti infection from the specified country of origin stratified by log of Mf count. Median OD490 and overall percent positivity

for each column are significantly different by Kruskal-Wallis, with p< 0.0001.

https://doi.org/10.1371/journal.pntd.0010407.g005
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are missense mutations (S1 Fig). One of these polymorphisms is within a region predicted to

be a surface epitope on BmR1 [48].

IDA is the most effective therapeutic regimen known for clearingW. bancroftiMf, but it can-

not be used inO. volvulus endemic regions because it contains DEC. The anti-Wb-Bhp-1 IgG4

ELISA might be especially useful for monitoring LF elimination from a community after MDA

with IDA. Therefore, we calculated the sensitivity of the anti-Wb-Bhp-1 IgG4 ELISA using sera

from countries where IDA can be used for MDA (this excluded the samples from Côte d’Ivoire

which is endemic forO. volvulus). The sensitivity of the anti-Wb-Bhp-1 IgG4 ELISA was 77% for

the 116 samples from IDA eligible countries (Sri Lanka, India, Papua New Guinea and Egypt).

Specificity of the Wb-Bhp-1 IgG4 ELISA

Anti-Wb-Bhp-1 antibody levels in sera from people infected with O. volvulus and L. loa are

shown (Fig 4A). Five of 30 (17%) onchocerciasis samples and 3 of 29 (10%) of loiasis samples

had IgG4 antibodies to Wb-Bhp-1 by ELISA. Thus, the Wb-Bhp-1 ELISA has an estimated

specificity of 83% for samples from Mf-positive people with onchocerciasis and 90% for people

with loiasis. We also tested samples from people with B. malayi microfilaremia for anti-Wb-

Bhp-1 antibodies. W. bancrofti and B. malayi are closely related parasites, and the Brugia

Rapid test has 50–70% sensitivity for W. bancrofti infection, depending on the format of the

diagnostic used [49,50]. However, only 3 of 12 (25%) samples from people with B. malayi
infection had antibodies reactive to Wb-Bhp-1 (Fig 4A).

We also identified another BmR1 homologue in W. bancrofti, Wb-Bhp-2. This antigen is

less promising as a diagnostic because of lower specificity compared to Wb-Bhp-1, with 20%

of onchocerciasis, 10% of loiasis patient sera and 4.3% of control sera containing cross reactive

antibodies to Wb-Bhp-2. It is possible that the increased cross reactivity of Wb-Bhp-2 is due to

surface epitopes encoded by the first exon of Wb-bhp-2.

In silico structural analysis of BmR1 identified three putative surface exposed epitopes [48].

We examined whether the corresponding regions on Wb-Bhp-1 might be epitopes that could

provide increased specificity in a peptide ELISA. We tested biotinylated peptides of the 2 pre-

dicted surface epitopes within Wb-Bhp-1 with the amino acid sequences RERDIPQ-

QEIQNKLDGIADSFNDT and VNGTCASEK. Unfortunately, IgG4 ELISA using these

biotinylated peptides demonstrated that 6 of 9 (67%) people with onchocerciasis and 2 of 5

(40%) of people with loiasis also contained antibodies to these peptides.

Because Mansonella perstans is co-endemic with other filarial infections in Africa, it is pos-

sible that it may contribute to cross-reactivity. Some of the sera used in the study were

obtained from people with onchocerciasis and loiasis who were also infected with M. perstans,
(Table 1). However, only 1 of 14 (7%) samples from people co-infected with loiasis and M. per-
stans had antibodies to Wb-Bhp-1, suggesting that the rate of cross-reactivity among co-

infected individuals is not higher than among those with L. loa alone.

We identified antibodies reactive to Wb-Bhp-1 by IgG4 ELISA in 2 of 60 samples from

St. Louis (USA), a non-endemic region for these filarial infections in humans (Fig 4A). We

cannot exclude the possibility that these deidentified samples were from immigrants or travel-

ers with prior exposure to filarial infections. However, if we assume that none of these serum

donors had such exposures, the specificity of the anti-Wb-Bhp-1 IgG4 ELISA was 96.7% with

non-endemic control serum samples.

Antibodies to Ov-Bhp-1 and Ll-Bhp-1

As described above, we also cloned and expressed Ov-bhp-1 and Ll-bhp-1 to evaluate their

potential as diagnostic candidates for onchocerciasis and loiasis. The soluble proteins Ov-Bhp-
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1 and Ll-Bhp-1 had the expected molecular weights of 27 and 26.5 kD, respectively, based on

SDS-PAGE and immunoblot analysis with anti-Xpress antibody (Fig 2A and 2B). We then

performed immunoblot analyses with sera from patients with onchocerciasis and loiasis

(Table 1), and representative immunoblots are shown (Fig 6A and 6B). Only 3 of 17 (17.6%)

onchocerciasis samples and 10 of 29 (34%) of loiasis samples contained antibodies to Ov-Bhp-

1 or Ll-Bhp-1, respectively. These results suggest that the BmR1 homologues Ov-Bhp-1 and

Ll-Bhp-1 are not useful diagnostic antigens for onchocerciasis or loiasis.

Discussion

Antibody-based diagnostic tests could be quite useful as assessment tools for LF elimination

programs. They can be formatted into inexpensive lateral flow assays that are especially useful

in low resource settings. Antibodies to some filarial antigens could be more sensitive than CFA

tests or Mf for demonstrating infection or exposure in surveys of school children [9,11]. How-

ever, children are sometimes not valid sentinels for this purpose in areas where filarial infec-

tions are much more common in adults than in children. Antibody tests that correlate well

with the presence of microfilaremia would be quite useful for assessing the risk of ongoing

transmission in areas that have received several rounds of MDA. This is especially true for

areas that have received MDA with the triple drug regimen IDA, because CFA tends to persist

long after Mf have been cleared by IDA. Assays like the Brugia Rapid test that reverts to nega-

tive relatively quickly after effective treatment might be especially useful for assessing the risk

of ongoing transmission after MDA with IDA [16]. In this study, we identified, cloned, puri-

fied and characterized Wb-Bhp-1, a BmR1 homologue from W. bancrofti. Immunolocalization

studies showed that anti-Wb-Bhp-1 antibodies bind to protein in B. malayi Mf. This result was

consistent with the expression patterns reported for Bm17DIII and BmR1 [17,18,51–53]. Anti-

Wb-Bhp-1 antibodies bound to a target in O. volvulus Mf, reinforcing the link between this

antibody and filarial Mf.

The variable sensitivity of the Wb-Bhp-1 ELISA with W. bancrofti sera from different coun-

tries was unexpected, and it is only partially explained by the relationship between ELISA

results and Mf density. More work is needed to explain why the ELISA was less sensitive for

W. bancrofti samples from Côte d’Ivoire, and samples from other areas in sub-Saharan Africa

need to be tested to verify whether this low sensitivity is a problem in other parts of Africa.

Geographic variability in Wb-bhp-1 might explain this finding. However, our analysis of Wb-
bhp-1 sequences in parasites collected in diverse locations did not reveal enough sequence

Fig 6. Identification of human antibodies to Ov-Bhp-1 and Ll-Bhp-1. (A) Representative immunoblot results for

Ov-Bhp-1with sera from people with onchocerciasis. (B) Representative immunoblot analysis of Ll-Bhp-1 with sera

from people with loiasis. Lanes 1 and 16 used anti-Xpress control antibody. Lanes 2–15 show immunoblot results with

sera from people with the specified infection.

https://doi.org/10.1371/journal.pntd.0010407.g006
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variation to explain the variability in antibody responses that we observed. Côte d’Ivoire is the

only country with samples in this study where LF is co-endemic with onchocerciasis. However,

it is unclear why coinfection with onchocerciasis would reduce antibody responses to Wb-

Bhp-1.

On the positive side, the Wb-Bhp-1 ELISA had a sensitivity of 77% for samples from micro-

filaremic individuals in Sri Lanka, India, Papua New Guinea and Egypt, which are all areas

that do not have co-endemic onchocerciasis. Therefore, Wb-Bhp-1 serology may be especially

useful in countries where IDA can be used to accelerate LF elimination. Additional studies will

be needed to assess the value of this test for population-based sero-surveys with samples from

children and adults before and after MDA.

Specificity testing showed that the Wb-Bhp-1 ELISA had low-level cross-reactivity with

samples from people with onchocerciasis or loiasis. This is essential for an assay to be useful

for LF serology in many areas in sub-Saharan Africa. The relatively low sequence identity of

homologues in O. volvulus and L. loa likely contributes to the specificity of the Wb-Bhp-1

ELISA. Interestingly, few sera from people with onchocerciasis or loiasis contained antibodies

to the homologous proteins Ov-Bhp-1 or Ll-Bhp-1. It is possible that there are differences in

localization, or expression of these proteins in those parasites that impact host antibody

responses.

In conclusion, these studies have shown that Wb-Bhp-1, a W. bancrofti homologue of BmR1,

is a promising microfilarial antigen for diagnosis of bancroftian filariasis. Additional studies are

needed to characterize the effect of treatment and MDA on antibody levels in individuals and

on antibody prevalence in populations. Results of those studies will determine the practical

value of Wb-Bhp-1 antibody testing as a surveillance tool for LF elimination programs.
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