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1 Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland, 2 Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern,

Switzerland

Abstract

Autophagy in the protozoan parasite, Trypanosoma brucei, may be involved in differentiation between different life cycle
forms and during growth in culture. We have generated multiple parasite cell lines stably expressing green fluorescent
protein- or hemagglutinin-tagged forms of the autophagy marker proteins, TbAtg8.1 and TbAtg8.2, in T. brucei procyclic
forms to establish a trypanosome system for quick and reliable determination of autophagy under different culture
conditions using flow cytometry. We found that starvation-induced autophagy in T. brucei can be inhibited by addition of a
single amino acid, histidine, to the incubation buffer. In addition, we show that autophagy is induced when parasites enter
stationary growth phase in culture and that their capacity to undergo starvation-induced autophagy decreases with
increasing cell density.
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Introduction

When eukaryotic cells encounter stress conditions, such as

nutrient starvation, they begin to recycle cellular contents using

macroautophagy, henceforth referred to as autophagy. During this

process, cells engulf cytoplasm containing proteins to be degraded

by a double membrane structure, the autophagosome. It originates

at the phagophore assembly site and, upon completion, fuses with

the lysosome, where the cargo is hydrolyzed together with the

inner membrane of the autophagosome (reviewed in [1]). In

addition to bulk protein degradation, autophagy can also be

directed towards organelles, as in mitophagy (reviewed in [2]),

pexophagy (reviewed in [3]) or, as ancient defense mechanism,

towards endosomes (xenophagy [4]).

The classical and most widely used marker for autophagy is the

modification of the autophagy core protein, Atg8. Processing of

Atg8 has been characterized in detail in Saccharomyces cerevisiae,

where it is essential for autophagy and is mediating autophago-

some expansion [5] and membrane tethering and hemifusion in

vitro [6]. During progression of autophagy, Atg8 is modified more

than once. Soon after synthesis [7], Atg8 is cleaved by the cysteine

protease, Atg4, to expose a glycine residue at the protein’s C-

terminus, which upon induction of autophagy becomes covalently

modified by phosphatidylethanolamine (PE), catalyzed by Atg7

and Atg3 [7,8]. This modification changes the biophysical

properties of Atg8 leading to altered sub-cellular distribution: the

small, hydrophilic, 13.5 kDa protein receives a hydrophobic

membrane anchor, causing re-localization from the cytosol to

autophagosomes. Using tagged forms of Atg8, this process can be

visualized by immunofluorescence microscopy and is reflected by

puncta formation [8,9]. PE-anchored Atg8 remains on the outer

leaflet of both the outer and the inner membrane of the

autophagosome until hemifusion of autophagosome and lysosome

is completed. Finally, the sub-population of Atg8 located on the

outer membrane is released by Atg4 [7], whereas the Atg8 on the

inner membrane is degraded by lysosomal hydrolases together

with the inner membrane [10].

Autophagy represents an ancient mechanism that has been well

conserved among eukaryotic cells [11]. It is also present in

protozoan parasites [12], i.e. unicellular eukaryotes that have been

placed at the bottom of the eukaryotic tree [13]. In parasites,

autophagy may be of special importance because of its likely

involvement in cell differentiation. Protozoan parasites commonly

have complex life cycles during which they encounter vastly

different environments, such as a mammal or insect vector. Thus,

differentiation between one life cycle form and another represents

a crucial event for parasite proliferation and survival. The

involvement of autophagy during parasite differentiation has been

demonstrated in Trypanosoma cruzi [14] and Leishmania mexicana

[15], suggesting that it may represent a potential target to fight

parasite infections [16]. In addition, protozoan parasites have been

proposed as model organism to identify a minimal machinery

required for autophagy [17]. Initial bioinformatic analyses have

shown that the Trypanosoma brucei genome may contain only about

half of Atg proteins found in S. cerevisiae [18]. In a subsequent

study, however, the supposedly absent Atg12-Atg5-Atg16-pathway

has been identified for syntenic genes in Leishmania [19]. Finally,

since protozoan parasites branched early during evolution [13,20],
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their autophagic machinery may give insight into the evolution of

autophagy, which in turn may help elucidate drug targets that may

inhibit the process.

T. brucei, the model parasite used in this study, is the causative

agent of sleeping sickness, or human African trypanosomiasis, a

disease that puts an estimated 70 million people at risk of

contracting serious health problems [21]. The related animal

disease, Nagana, results in the loss of an estimated US$4.75 billion

in gross domestic product in Africa [22]. T. brucei cycles between

cattle or humans, depending on the subspecies, and the insect

vector, the tsetse fly [23]. Proliferative forms from the mammalian

and the insect stage are grown in culture as bloodstream and

procyclic forms, respectively.

In earlier work, autophagy in T. brucei has been demonstrated

using electron microscopy. As a response to harmful compounds

(dihydroxyacetone [24] and spermine [25]), the formation of

double-membrane vesicles has been reported. More recently, Atg8

has been used as reporter to monitor autophagy in T. brucei

procyclic forms [26]. The T. brucei genome encodes two genes for

Atg8 (TbAtg8.1 and TbAtg8.2), present as tandem genes on

chromosome 7. The predicted proteins share a region of very high

homology at the C-terminus, but have distinct N-termini.

TbAtg8.1 ends in glycine, suggesting that the first processing

event involving Atg4 may not be required for its functionality,

whereas TbAtg8.2 contains an extra cysteine residue at the C-

terminus, requiring cleavage by Atg4 as in other organisms.

Processing of TbAtg8.1/8.2 during autophagy has been studied

before by expressing tagged forms of the proteins in procyclic

trypanosomes. In [26], a fusion protein between yellow fluorescent

protein (YFP) and TbAtg8.2 was used to show autophagosome

formation. This was corroborated in a more detailed study [27] by

expressing fusion proteins between TbAtg8.1 or TbAtg8.2 and

YFP or a 10 amino acid tag of S. cerevisiae Ty1 virus-like particle

(Ty1), respectively. Re-localization from the cytosol to puncta was

demonstrated for both tagged proteins using fluorescence micros-

copy [27]. In addition, TbAtg8 lipidation was shown by protein

analysis using SDS-urea polyacrylamide gel electrophoresis and

immunoblotting [27]. However, although both methods, i.e.

quantifying puncta formation using fluorescence microscopy and

gel electrophoresis followed by immunoblotting, represent reliable

techniques to follow autophagy, they are laborious and time-

consuming and thus, not well suited to analyze larger samples

numbers. Recent work in mammalian cells has demonstrated that

flow cytometry may represent a method of choice to follow and

measure autophagic flux (autophagosome formation and degra-

dation) [28,29]. Based on the observation that GFP fluorescence is

rapidly lost in the hydrolytic and acidic environment of the

lysosome [30,31], GFP-tagged LC3, the mammalian homolog of

Atg8, has been used to monitor and quantify degradation of

autophagosomal content [28].

In the present study, we establish and validate flow cytometry as

a tool to measure autophagy in T. brucei. Our results demonstrate

that the method can be used to analyze the effects of larger sample

numbers, i.e. all proteinogenic amino acids, on autophagic activity

and measure autophagy during different growth phases of

trypanosomes in culture. Interestingly, we found that that the

presence of a single amino acid, histidine, prevents puncta

formation and autophagy in T. brucei procyclic forms

Materials and Methods

Unless otherwise stated, all reagents were of analytical grade

and purchased from Sigma Aldrich (Buchs, Switzerland) or Merck

(Zug, Switzerland). Restriction enzymes were from Fermentas

(now Thermo Fisher Scientific, Waltham, MA, USA), and

antibiotics were from Sigma Aldrich, Invivogen (San Diego, CA,

USA), or Invitrogen (now Life Technologies, Zug, Switzerland).

BioMax MS films were from Kodak (now Carestream, Gland,

Switzerland) and general purpose blue films were from Care-

stream (Gland, Switzerland).

Cell cultures and transfection
T. brucei strain Lister 427 procyclic forms were cultured at 27uC

in SDM-79 [32] supplemented with 5% (v/v) heat-inactivated fetal

bovine serum (FBS; Gibco, Lucerne, Switzerland). For transfec-

tion, parasites (46107 cells) were harvested (15006g, 10 min) at a

density of 16107 cells/mL. Cells were washed once in ZM buffer

(132 mM NaCl, 8 mM KCl, 8 mM Na2HPO4, 1.5 mM KH2PO4,

0.5 mM magnesium acetate, 0.09 mM calcium diacetate, pH 7.0)

and electroporation was carried out with 10-15 mg of linearized

plasmid DNA in 500 mL ZM buffer using a BTX electro cell

manipulator 600 (Axon Lab, Baden, Switzerland) and one pulse

(1.5 kV charging voltage in high voltage mode and 186 V
resistance) in 0.2 cm Gene Pulser cuvettes (Bio-Rad Laboratories,

Cressier, Switzerland). Two hours post transfection, cells were

diluted 1:5 and 1:25 and plated in 24-well plates (BD Biosciences,

Allschwil, Switzerland) to obtain clones. After 24 h of culture,

transfectants were selected for antibiotic resistance by addition of

10 mg/mL blasticidin S HCl (for HA-TbAtg8) or 15 mg/mL G418

(for GFP-TbAtg8) to the culture medium.

Construction of GFP- and HA-tagged TbAtg8.1 and
TbAtg8.2

Tagged versions of TbAtg8.1 (Tb927.7.5900) and TbAtg8.2

(Tb927.7.5910) were expressed in T. brucei procyclic forms as

follows. To tag the proteins with hemagglutinin (HA), the amino

acid sequence YPYDVPDYA (see Table S1 for nucleotide

sequence) was attached to the N-termini of the genes during

PCR. The constructs were then cloned into the T. brucei expression

vector pCorleone ([33], a kind gift of I. Roditi, University of Bern)

between HindIII and BamHI sites. To tag the proteins with green

fluorescent protein (GFP), expression vector pG-EGFP-DLIIc was

used ([34], a kind gift of I. Roditi, University of Bern). The vector

is a modified version of the pGaprone expression vector [35],

containing enhanced GFP (eGFP) with a BamHI site at the 39 end

of eGFP allowing convenient tagging. Both forms of TbAtg8 were

amplified by PCR and introduced into the vector at the 39 end of

the eGFP open reading frame using BamHI. The forward primers

(see Table S1) used for cloning contained a BglII restriction site,

which is compatible with BamHI and is rendered non-functional

after ligation, allowing easy screening for correct orientation of the

insert. After ligation and sequencing (Microsynth, Balgach,

Switzerland), plasmids were purified using Midiprep kits (Qiagen,

Hombrechtikon, Switzerland) and digested with NotI and SalI

(pCorleone) or SpeI (pG-EGFP-DLIIc), respectively. Before trans-

fection, plasmids were purified by phenol-chloroform-precipitation

and resuspended in water.

Fluorescence microscopy
For fluorescence microscopy, 26106 cells of T. brucei procyclic

forms were centrifuged for 5 min at 15006g, resuspended in

100 mL phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM

KCl, 10 mM Na2HPO4, 1.76 mM KH2PO4, pH 7.4), spread on

Superfrost Plus (Thermo Fisher Scientific) microscopy slides and

allowed to adhere for 10 min. Parasites were fixed with

formaldehyde solution (4% in PBS) for 10 minutes, washed three

times for 5 min with cold PBS and air-dried. Cover slides were
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mounted with Vectashield mounting medium containing 49,6-

diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlin-

game, CA, USA) and sealed with nail varnish. Fluorescence

microscopy was performed using a Leica AF6000 system with a

HCX PL APO 1006/1.40 oil-immersion objective. Pictures were

acquired with Leica LAS AF software (Version 2.1.0; Leica

Microsystems) and processed using ImageJ (Version 1.44o;

National Institutes of Health, USA). Puncta were counted either

by using acquired z-stacks or by hand, involving a modified

telegraph key allowing one-handed counting.

Immunofluorescence microscopy
For immunofluorescence microscopy, 26106 cells were allowed

to adhere to microscopy slides for 10 min. Parasites were fixed

with formaldehyde solution (4% in PBS) for 10 min, washed with

cold PBS, and permeabilized with 0.2% (w/v) Triton X-100 in

PBS. After blocking with 2% (w/v) bovine serum albumin in PBS

for 30 min, the primary antibody in blocking solution was added

for 45 min. Antibodies used were mouse monoclonal anti-HA

(Covance, Princeton, NJ, USA), mouse monoclonal anti-p67, and

rabbit anti-TbCatL (both kind gifts of J.D. Bangs, University of

Buffalo) at dilutions of 1:250, 1:1000 and 1:500, respectively. After

washing, the corresponding secondary fluorophore-conjugated

goat anti-mouse Alexa Fluor 594 or goat anti-rabbit Alexa Fluor

594 (Invitrogen) antibodies were added at dilutions of 1:1000 in

blocking solution for 45 min. After washing and drying, cover

slides were mounted and examined by fluorescence microscopy as

described above.

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and
immunoblotting

Whole cell lysates were separated by SDS-PAGE using 10% (for

GFP-TbAtg8) or 12% (for HA-TbAtg8) acrylamide gels. For

immunoblotting, proteins were transferred onto Immobilon P

polyvinylidene difluoride membranes (Millipore, Billerica, MA,

USA) by semi-dry blotting for 75 min at 2.5 mA/cm2. Mouse

monoclonal antibodies against GFP (Roche Diagnostics, Rotkreuz,

Switzerland) or HA (Covance) were used at a dilution of 1:3000.

Mouse monoclonal antibody against eukaryotic elongation factor

1A (eEF1A; Upstate, Lake Placid, NY) was used at a dilution of

1:5000. Primary antibodies were detected using rabbit anti-mouse

IgG conjugated to horseradish peroxidase (Dako, Baar, Switzer-

land), at a dilution of 1:5000, by enhanced chemiluminescence

(Pierce, Lausanne, Switzerland).

Induction of autophagy by starvation of parasites in
gHBSS

To induce autophagy, T. brucei procyclic forms were centrifuged

at 15006g for 10 min and resuspended in an appropriate volume

of pre-warmed gHBSS (137 mM NaCl, 5.4 mM KCl, 0.25 mM

Na2HPO4, 0.44 mM KH2PO4, 1.3 mM CaCl2, 1 mM MgSO4,

4.2 mM NaHCO3, 1 g/L glucose, pH 7.3; [27]) to a concentra-

tion of 56106 cells/mL. Unless stated otherwise, incubation was

carried out for 2 h at 27uC. Autophagy inhibitors chloroquine

(Sigma) and bafilomycin A1 (Invivogen) were added at indicated

concentrations where applicable. Bafilomycin was added to the

tube in ethanol and then dried to exclude the vehicle from

interfering with measurements. In starvation experiments, amino

Figure 1. Re-location of GFP-TbAtg8 during starvation. T. brucei procyclic forms constitutively expressing GFP-TbAtg8.1, GFP-TbAtg8.2, or free
GFP were starved for 2 h in gHBSS. (A) Fluorescence microscopy of representative parasites. (B, C) Fluorescent puncta were analyzed and quantified
as puncta per cell (B) and cells containing one or more puncta (C). The numbers of counted cells in (B) were 419, 422, 78, 70, 76 and 101 for individual
bars from left to right. The numbers for GFP-TbAtg8.1 cells are from four independent experiments, those for GFP-TbAtg8.2 and free GFP cells from
single experiments. Error bars in (B) indicate standard error of the mean.
doi:10.1371/journal.pone.0093875.g001
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acids were added to gHBSS from stock solutions in HBSS (Table

S2). Glucose concentrations were adjusted where necessary.

Flow cytometry
After starvation, parasites were diluted to 36105 cells/mL in

cold PBS and immediately analyzed by flow cytometry using a BD

FACScan (Becton Dickinson, Allschwil, Switzerland). To assess

fluorescence intensity, channel FL1 (530615 nm) was used. The

fluorescence intensity of unchallenged cells was set to a geomet-

rical mean of approximately 103 relative fluorescence units by

adjusting the photodiode gain. Non-fluorescent cells were gated

out. All analyses were carried out using flow cytometry analysis

software FlowJo (Tree Star Inc., Ashland, OR, USA).

Results

GFP-TbAtg8.1 and GFP-TbAtg8.2 as markers to monitor
autophagy by flow cytometry in T. Brucei

In a recent report, YFP- and Ty1-tagged forms of TbAtg8.2

constitutively expressed in T. brucei procyclic forms were described

as suitable markers to monitor autophagy [27]. Metabolic

starvation in gHBSS induced a re-location of the tagged proteins

from the cytosol to punctate structures, which were counted using

fluorescence microscopy. We now show that N-terminally GFP-

tagged TbAtg8.1 is similarly suited to monitor autophagy in T.

brucei. In unchallenged parasites, constitutively expressed GFP-

TbAtg8.1 and GFP-TbAtg8.2 localize to the cytosol of T. brucei

procyclic forms. During starvation in gHBSS, both tagged forms

re-located to punctate structures (Fig. 1A). In control cells

expressing free GFP, no re-location of the signal was observed

(Fig. 1A). Quantification of puncta after starvation for 2 h revealed

that the number of puncta per cell as well as the number of cells

with one or more puncta increased several fold (Fig. 1B, C).

Microscopic examination and counting of puncta is not only

time-consuming but also error-prone as it typically includes a

limited number of cells only. Thus, we studied if autophagic flux

could also be monitored by flow cytometry. Our results show that

the fluorescence intensity of T. brucei procyclic forms stably

expressing GFP-TbAtg8.1 or GFP-TbAtg8.2 decreased after 2 h

of starvation in gHBSS (Fig. 2A, upper and middle panel). In

contrast, no change in signal was observed for parasites expressing

cytosolic GFP (Fig. 2A, lower panel). Quantification of the signal

using the geometrical means of fluorescence intensity demonstrates

a continuous decrease in fluorescence intensity during starvation in

Figure 2. Decrease of GFP-TbAtg8 fluorescence during starvation. T. brucei procyclic forms expressing GFP-TbAtg8.1, GFP-TbAtg8.2 or free
GFP were starved in gHBSS and analyzed by flow cytometry (A, B) and SDS-PAGE/immunoblotting (C). (A) Flow cytometry of unstarved (solid) and
starved (dashed) cells after 2 h of starvation; the lines show signals in the FL1 channel. (B) Geometrical means of GFP signals during starvation (for 0
and 2 h see A) relative to the intensity at time point 0 minutes. Symbols represent GFP-TbAtg8.1 (N), GFP-TbAtg8.2 (&) and free GFP (¤). Error bars
indicate standard deviations from three independent experiments. (C) Immunoblots of parasite lysates during starvation using antibodies against GFP
(upper panels), or eukaryotic elongation factor 1A (lower panels) as loading control. For GFP-TbAtg8.1 (left panels), 36107 parasites were loaded per
time point, for GFP-TbAtg8.2 (right panels), 56106 parasites were loaded. Molecular mass markers are indicated in kDa in the margin.
doi:10.1371/journal.pone.0093875.g002
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parasites expressing GFP-TbAtg8.1 or GFP-TbAtg8.2, but not

GFP, reaching approximately 50% of the starting fluorescence

(Fig. 2B).

In parallel, we analyzed possible changes in the levels of GFP-

tagged TbAtg8.1 and TbAtg8.2 using SDS-PAGE and immuno-

blotting. The results show that the amounts of both proteins

progressively decreased during starvation (Fig. 2C). A similar

Figure 3. Re-location of HA-TbAtg8 during starvation. T. brucei procyclic forms constitutively expressing HA-TbAtg8.1 were starved for
indicated times in gHBSS. (A) Sub-cellular localization was visualized by antibodies against the HA epitope. DNA was visualized by DAPI (cyan). DIC,
differential interference contrast. (B) At each time point, the numbers of puncta were counted by examining 100 cells (upper panel) and the number
of cells containing puncta were determined. Error bars indicate standard error of the mean.
doi:10.1371/journal.pone.0093875.g003

Figure 4. Localization of GFP-TbAtg8 puncta. T. brucei procyclic forms expressing GFP-TbAtg8.1 or GFP-TbAtg8.2 were starved for 2 hours in
gHBSS. GFP-TbAtg8 is shown in green. Lysosomes were stained with antibodies against p67 or TbCatL and are shown in red. DNA was visualized by
DAPI, shown in blue. DIC, differential interference contrast.
doi:10.1371/journal.pone.0093875.g004
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observation has previously been reported for TbAtg8.1 and

TbAtg8.2 linked to other tags [27].

To exclude that the observed effects on GFP-tagged reporter

proteins during starvation were related to the relatively large GFP

proteins linked to the much smaller TbAtg8 proteins, we also

generated T. brucei procyclic forms constitutively expressing HA-

tagged TbAtg8 reporters. Analysis of HA-TbAtg8.1 by immuno-

fluorescence microscopy showed a similar re-localization of the

protein to punctate structures (Fig. 3A). Quantification of puncta

(Fig. 3B, upper panel) showed similar results as for GFP-TbAtg8.1

(Fig. 1B,C). Our data using HA-tagged TbAtg8 are also in line

with a previous study involving Ty1- and YFP-tagged TbAtg8.1

Figure 5. Effect of amino acid supplementation on GFP-TbAtg8.1 fluorescence during starvation. T. brucei procyclic forms expressing
GFP-TbAtg8.1 were incubated for 2 h in gHBSS supplemented with different amino acids or mixtures of amino acids. (A) GFP-TbAtg8.1 fluorescence
was recorded by flow cytometry and expressed relative to the value obtained in the presence of all amino acids (indicated by the dashed line). (B)
Dependence of GFP-TbAtg8.1 fluorescence on histidine concentration; 6 indicates the histidine concentration in the standard T. brucei culture
medium and the buffer containing all amino acids. The numbers in (A) and (B) are from at least three and two, respectively, independent
experiments. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0093875.g005

Figure 6. Effect of histidine supplementation on puncta formation and GFP-TbAtg8.1 levels. T. brucei procyclic forms expressing GFP-
TbAtg8.1 were incubated for 2 h in gHBSS, supplemented with histidine, glutamine or valine as indicated. Fluorescent puncta were analyzed and
quantified as puncta per cell (A) and cells containing one or more puncta (B). The results are from two independent experiments, in which at least 100
cells per incubation condition were analyzed. Error bars indicate standard errors of the mean. (C) Immunoblots of parasite lysates obtained after
incubation of cells in the absence or presence of amino acids and probed with antibodies against GFP (lower panel), or eukaryotic elongation factor
1A (upper panel) as loading control. Each lane contains 56106 cell equivalents. Molecular mass markers are indicated in kDa in the margin.
doi:10.1371/journal.pone.0093875.g006
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and TbAtg8.2 [27]. Furthermore, we found that puncta are

formed in the first 20–40 minutes of starvation and remain stable

during the rest of a 2 h starvation experiment (Fig. 3B, lower

panel).

Re-localization to punctate structures of GFP- and HA-tagged

TbAtg8.1 and TbAtg8.2 and degradation of GFP-tagged forms

may resemble autophagosome formation followed by degradation

of its contents in lysosomes, as has been reported in mammalian

cells and yeast [5,36]. Thus, we analyzed a possible co-localization

of GFP-tagged puncta with the lysosomal marker proteins, p67

[37] and TbCatL (also known as trypanopain [38]), using

immunofluorescence microscopy. The results showed no co-

localization with p67 or TbCatL (Fig. 4), except in very rare

cases (Fig. S1), indicating that the puncta represent stages before

autophagosome fusion with the lysosome.

Together, our results demonstrate that constitutively expressed

GFP- and HA-tagged forms of TbAtg8.1 and TbAtg8.2 are

valuable markers for autophagy in T. brucei procyclic forms. In

addition, we show that progression of autophagy in parasites

expressing GFP-TbAtg8.1 or TbAtg8.2 can be monitored by flow

cytometry, providing a simple and rapid assay to monitor

autophagy under different experimental culture conditions.

Processing of GFP-TbAtg8.1 is caused by histidine
deprivation

The work of Li and coworkers [27] showed that puncta

formation of YFP-TbAtg8.2 can be inhibited by addition of a

mixture of amino acids to gHBSS. In line with their work, we

found that the presence of amino acids completely inhibited

puncta formation of GFP-TbAtg8.1 (result not shown), which

correlated with decreased GFP-TbAtg8.1 fluorescence measured

by flow cytometry (Fig. 5A, second column). The availability of a

rapid autophagy assay system now allowed us to investigate if

prevention of autophagy by amino acids was due to the presence

of bulk amino acids in the culture medium, or caused by a subset

of amino acids.

Surprisingly, our results showed that autophagy could be

inhibited by the addition of a single amino acid, histidine, to the

culture medium. The presence of histidine largely prevented the

autophagy-related decrease in fluorescence intensity observed in

gHBSS, while the addition of any other amino acid, or a mixture

of all amino acids except histidine, had little or no effect (Fig. 5A).

The concentrations of amino acids used in the experiment reflect

those in the standard T. brucei culture medium, SDM-79 [32], to

mimic normal culture conditions. The dependence of autophagy

on histidine was further demonstrated using different concentra-

tions of the amino acid in the assay system (Fig. 5B). Similar results

were obtained when autophagy was monitored by analyzing

puncta formation using fluorescence microscopy or GFP-

TbAtg8.1 degradation using SDS-PAGE and immunoblotting.

After starvation of parasites for 2 h, puncta per cell (Fig. 6A) and

cells containing puncta (Fig. 6B) were markedly increased (see also

Fig. 1B,C), while the addition of histidine to the incubation buffer

completely blocked these events. Similarly, degradation of GFP-

TbAtg8.1 was inhibited when trypanosomes were incubated in the

presence of histidine (Fig. 6C), confirming the results obtained by

flow cytometry (Fig. 5). Our observation that neither bulk amino

acids nor proline and threonine, i.e. the two amino acids used most

heavily by T. brucei procyclic forms for energy production [39],

inhibited the loss of fluorescence signal intensity indicate that

gHBSS-mediated autophagy in T. brucei is not caused by a lack of

energy from amino acid metabolism but related to the absence of a

single amino acid, histidine.

Drop of GFP-TbAtg8.1 fluorescence is not affected by
autophagy inhibitors

Chloroquine and bafilomycin A1, both known inhibitors of

autophagy [40], are compounds that have been used before in

trypanosomes to neutralize the lysosomal pH and inhibit

degradation of delivered cargo [38,41]. To study their effects on

autophagy in T. brucei, we added chloroquine and bafilomycin A1

to T. brucei procyclic forms expressing GFP-tagged Atg8.1. The

results show that autophagy-mediated decrease in fluorescence

intensity was inhibited by both compounds, however, only at

concentrations well above those used in previous studies in T. brucei

(Fig. 7).

Processing of GFP-TbAtg8.1 is affected by parasite
density

Autophagy has been shown to affect cell growth in various

organisms. In Arabidopsis, disruption of autophagy lead to earlier

chlorosis under starvation conditions and to earlier leaf senescence

under normal conditions [42]. In addition, it was shown to be

involved in life-span extension in Caenorhabditis elegans [43] and

increased longevity in S. cerevisiae in the non-dividing state [44]. In

the protozoan parasite Entamoeba invadens, the number of Atg8-

associated structures changed significantly during growth [45].

Based on these reports, we investigated if GFP-TbAtg8.1 puncta

formation and processing may also be affected during growth of T.

brucei procyclic forms under standard culture conditions. Parasites

were cultured for 7 consecutive days without dilution (Fig. 8A) and

GFP-TbAtg8.1 fluorescence was determined by flow cytometry.

The results show that fluorescence intensity decreased with

Figure 7. Effects of autophagy inhibitors on GFP-TbAtg8.1
fluorescence. T. brucei procyclic forms expressing GFP-TbAtg8.1 were
starved for 2 h in gHBSS in the absence or presence of chloroquine and
bafilomycin A1 at indicated concentrations. The numbers are from three
independent experiments. Error bars indicate standard deviations.
doi:10.1371/journal.pone.0093875.g007
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increasing cell density (Fig. 8B, upper panel), indicating that

parasites underwent autophagy as the cell density increased.

Subsequently, parasites were challenged during late logarithmic

and stationary growth phase by starving for 2 hours in gHBSS to

determine their ability to cope with additional stress. The results

show that starvation led to a further decrease in GFP-TbAtg8.1

fluorescence (Fig. 8B, upper panel), however, the starvation-

induced reduction in fluorescence intensity decreased with

increasing cell density. Using the difference in signal intensity

before and after starvation as parameter to express the capacity/

ability of parasites to perform starvation-induced autophagy

(Fig. 8C, lower panel) showed that the ability of T. brucei procyclic

forms to undergo autophagy sharply decreased at day 4, i.e. when

parasite cultures reached maximal density and entered stationary

Figure 8. Processing of GFP-TbAtg8 during parasite growth in culture. T. brucei procyclic forms expressing GFP-TbAtg8.1 were cultured in
mid-log phase for several days, then diluted to 36105 cells/mL at day 0 and kept in culture without further dilution for 7 days. (A) Parasite density
(mean values 6 standard deviations from three independent cultures). (B) Each day, GFP-TbAtg8.1 fluorescence was determined by flow cytometry
before (N) and after (&) starvation for 2 hours in gHBSS and expressed relative to the values obtained at day 1 (upper panel). The differences
between GFP-TbAtg8.1 fluorescence before and after starvation were plotted to obtain a number for the capacity of parasites to undergo autophagy.
The values are expressed relative to the difference observed on day 1. (C) Immunoblot of parasite lysates (56106 cell equivalents per lane) before (2)
and after (+) starvation probed with antibodies against GFP (lower panel) or eukaryotic elongation factor 1A (upper panel, used as loading control).
(D) Quantification by fluorescence microscopy of GFP-TbAtg8.1 puncta per cell and cells containing puncta in parasites before (N) and after (&)
starvation. At each time point, at least 100 cells per experimental condition were counted. Error bars indicate standard deviations from three
independent experiments.
doi:10.1371/journal.pone.0093875.g008
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phase. A similar change in autophagic behavior was also seen

when counting the number of GFP-TbAtg8.1 puncta per cell

(Fig. 8D, upper panel) or the number of cells containing puncta

(Fig. 8D, lower panel). In parallel, protein levels were analyzed by

SDS-PAGE and immunoblotting, showing that GFP-TbAtg8.1

decreased with increasing cell density, and after starvation

(Fig. 8C).

Discussion

In the present report, we demonstrated that autophagy in T.

brucei procyclic forms can be monitored by flow cytometry using

GFP-TbAtg8.1- or GFP-TbAtg8.2-expressing parasites. The

decrease in GFP fluorescence intensity strictly correlated with

puncta formation, a hallmark of autophagy [9,40]. In addition, we

showed that the number of puncta per cell and the number of cells

containing puncta increased during autophagy and was indepen-

dent of the tag used to label TbAtg8. Our results are in good

agreement with previous studies using flow cytometry to monitor

autophagy in other organisms [28,29]. The use of flow cytometry

allows rapid determination of autophagic activity, avoiding time-

consuming and laborious counting of puncta by fluorescence

microscopy or determination of Atg8 levels by SDS-PAGE and

immunoblotting. Although the readouts correlated in our study, it

should be noted that puncta formation and the degradation of

GFP-TbAtg8.1 represent different steps in the process of

autophagy. Thus, it is possible that depending on the experimental

setup the two readouts may behave differently.

It has previously been shown that autophagy in T. brucei

procyclic forms induced by starvation in gHBSS can be inhibited

by addition of amino acids to the buffer [27]. We now confirmed

this finding using flow cytometry to monitor autophagy. In

addition, we unexpectedly found that the addition of only a single

amino acid, histidine, prevented starvation-induced autophagy in

T. brucei. No other amino acid, or no other combination of amino

acids unless it included histidine, was able to inhibit autophagy-

induced decrease in GFP-TbAtg8.1 fluorescence, indicating that

prevention of autophagy was not related to energy production

from bulk amino acids. At present, we have no clear explanation

for this surprising observation.

Studies on the amino acid requirement of autophagy have

previously been carried out also in mammalian cells. In Chinese

hamster ovary cells stably expressing GFP-LC3, flow cytometry

was used to monitor autophagy in a similar way as in our study

[28]. As in T. brucei, the addition of all twenty proteinogenic amino

acids to the starvation buffer prevented autophagy. In a

subsequent series of experiments in which one particular amino

acid at a time was left out from the incubation, the authors found

that the omission of arginine, leucine, lysine or methionine had a

major effect on progression of autophagy [28]. Since the design of

the experiments was different, i.e. omission of single amino acids

from the incubation in their study versus addition of single amino

acids to the buffer in our work, a comparison of the results is

difficult. In addition, in a more recent study using human

embryonic kidney cells stably transfected with GFP-LC3, LC3

processing and puncta formation was induced by deprivation of a

single amino acid, leucine, from the incubation buffer [46]. In

addition, leucine supplementation inhibited autophagy in a human

osteosarcoma cell line expressing Myc-tagged LC3 [46]. These

effects were suggested to involve a regulatory role of leucine in

autophagosome biogenesis.

In addition, using flow cytometry to measure GFP-TbAtg8.1

fluorescence, we found that autophagy is up-regulated in late

logarithmic growth phase, i.e. when T. brucei procyclic forms enter

stationary phase. Growth arrest of cells in culture may be the result

of decreasing availability of nutrients, or quorum sensing

mechanism to prevent overgrowth [47], which otherwise may

lead to sudden shortage of energy sources. Thus, it may not be

surprising that autophagy, which allows the cell to recycle

intracellular components to limit nutrient uptake from the

medium, is induced during this phase of growth. Our results,

however, are in contrast to a study in another protozoan parasite,

Entamoeba invadens, where autophagy as measured by Atg8 puncta

formation was reported to be decreased in stationary growth phase

[45]. Finally, using flow cytometry we observed a decreased

capacity of parasites to undergo autophagy once they reach

stationary phase, which correlates with increased basal level of

puncta in cells, and with cells having puncta. Together these data

indicate that autophagic flux is increased when T. brucei parasites

reach higher cell densities and remains at high levels during

stationary phase, impairing the parasites’ ability to cope with

further stress.

Supporting Information

Figure S1 Rare co-localization of GFP-TbAtg8.1 with
TbCatL. Experimental conditions are identical as described in

the legend to Fig. 3. Co-localization of GFP-Atg8.1 (in green) with

TbCatL (in red) is seen in ,15% of parasites. DNA is stained with

DAPI (in blue); DIC, differential interference contrast.

(TIF)

Table S1 Primers used for cloning. Restriction sites are
underlined; annealing regions are shown in bold print.

(TIF)

Table S2 Concentrations of amino acids present in
SDM-79 and in the buffer used to prevent autophagy (see
Fig. 5).

(TIF)
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