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INTRODUCTION 
 

Coronary artery disease (CAD), according to incomplete 

statistics from the World Health Organization (WHO), 

still shows the highest incidence rate and mortality rate. 

With the improvement of living conditions, the incidence 

rate will continue to increase [1]. Many causes can lead to 

CAD. The most common reasons are uncontrolled blood 

pressure and serum, and an unhealthy lifestyle, such as 

smoking, drinking, mental stress and lack of sleep [2, 3]. 

The essence of CAD is coronary atherosclerosis. With the 

development of research technology, more studies have 

shown that atherosclerosis is a chronic inflammatory 

process [4]. Therefore, exploring the molecular 

mechanism related to coronary atherosclerosis may 

identify a very effective way to treat CAD. 

 

During inflammation, the most obvious change in blood 

components is the sharp increase in the total number of 

white blood cells. Lymphocytes, the smallest type of 

white blood cell (WBC), is produced by lymphoid organs 

and is an important cell component of the immune 

response function of the body. Lymphocytes have 

immune recognition function and can be divided into T 

lymphocytes (also known as T cells), B lymphocytes (also 

known as B cells) and natural killer (NK) cells according 

to their migration, surface molecules and function [5]. 

Exploring the molecular mechanism of lymphocyte-
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(CCR7 and CXCR5) showed significance. The nomogram showed that CXCR5 showed the risk of ACS. Further analysis 
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factor for ACS, and the potential pathogenesis may be associated with immune inflammation. 
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mediated immune inflammation is becoming an important 

link in the prevention and treatment of CAD [6]. 

 

Advances in technology have led to a better understanding 

of the molecular mechanisms of disease onset. In the face 

of more gene sequencing data, choosing the most suitable 

analysis method is helpful [7], and weighted gene 

coexpression network analysis (WGCNA) can select the 

most directly related genes [8]. Presently, we detected the 

mRNA expression profile of WBC samples to identify 

highly connected hub genes and significant modules to 

show the potential molecular mechanisms.  

 

RESULTS 
 

Data preprocessing 

 

We obtained 47,280 probes from each sample 

expression profile in GSE56045. After data 

preprocessing, we obtained 20,918 probes containing 

gene symbols from 1,202 samples. The gene expression 

matrix was associated with the sample phenotype 

matrix for further analysis. 

 

Weighted gene coexpression networks 

 

After calculation, we believe that, when the correlation 

coefficient is 0.9 (soft threshold β is 4), the 

coexpression network has a higher correlation and is 

more suitable to construct different gene modules 

(Figure 1A). Together with the topological overlap 

matrix (TOM), we performed the hierarchical average 

linkage clustering method to identify the gene modules 

of each gene network (deepsplit = 2, cut height = 0.4) 

and then showed the heatmap in Figure 1B. Next, we 

calculated the gene cluster tree and showed the results 

in Figure 1D. Finally, about eleven gene modules 

should be handled by the dynamic tree cut (Figure 1C). 

 

 
 

Figure 1. Weighted gene co-expression network analysis. (A) Analysis of network topology for various soft-thresholding powers. (B) 
Relationship among all the modules. (C) Clustering dendrogram of genes. Gene clustering tree (dendrogram) obtained by hierarchical 
clustering of adjacency-based dissimilarity. (D) Heatmap of the topological overlap in the gene network. 
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Interest module and functional annotation 
 

As shown in Figure 2, the highest association in the 

module-feature relationship was the dark-red module 

and T cell (r2 = 0.86, P < 0.001), orange module and 

B cell (r2 = 0.87; P < 0.001). The dark-red module 

contains 121 genes, while the orange module contains 

98 genes. All of these genes were showed in 

Supplementary Table 1. To determine the correlation 

between gene significance and color module, we 

conducted an in-depth calculation. As shown in 

Figure 3A, the correlation between the gene 

significance and orange module was 0.57 (P = 9E-10) 

and that of the dark red module was 0.28 (P = 

0.0019). After confirming the correlation between the 

gene significance and modules, we analyzed the 

functional enrichment of the 219 genes in these two 

modules. Gene Ontology (GO) function, KEGG 

pathway enrichment and Disease Ontology analyses 

were performed by R (Figure 3B). The details of these 

analyses can be found in Supplementary Table 2. The 

biological processes of these two modules were found 

to be associated with GO:0042110-T cell activation (P 

= 4.89E-19), GO:0002768-immune response-

regulating cell surface receptor signaling pathway (P 

= 4.66E-14), GO:0042113-B cell activation (P = 

8.13E-07), and GO:0002699-positive regulation of 

immune effector process (P = 7.25E-05). However, in 

KEGG pathway analysis, these two modules were 

found to be associated with hsa04660-T cell receptor 

signaling pathway (P = 4.54E-09), hsa04060-

Cytokine-cytokine receptor interaction (P = 6.87E-

08), hsa04064-NF-kappa B signaling pathway (P = 

2.38E-05), hsa04662-B cell receptor signaling 

pathway, and hsa04514-Cell adhesion molecules 

(CAMs) (P = 0.002). 

 

Protein-protein interaction (PPI) network 

construction and identification of hub genes 

 

Approximately 149 nodes and 1,016 protein pairs were 

obtained when the combined weight score was set at

 

 
 

Figure 2. Module-feature associations. Each row corresponds to a module Eigengene, and each column to a clinical feature. Each cell 
contains the corresponding correlation in the first line and P-value in the second line. The table is color coded by correlation according to the 
color legend. 
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more than 0.25 (Figure 3C-All). Analysis in the 

submodule revealed four modules with a score > 6 

detected by MCODE (Figure 3C Cluster 1-4). After 

integrating the GO function, KEGG pathway 

enrichment and PPI analysis results, we identified 

several genes with a high degree and MCODE scores: 

PRF1, GZMB, CD27, CD2, CCL5, CXCR5, CD8A, 
CCR7, IL2RB, IFNG, CD40LG, IL7R, CD226, LAT, 
CD6, PLCG1, CD22, CCR4, TNFRSF13B, PRKCQ, 

LTB, LTA, STAT4, TNFRSF13C. Next, we needed to 

further verify these genes to determine their functional 

characteristics. 

Dataset validation 
 

First, we analyzed the relationship between the 

expression level of these 24 genes and the coronary 

artery calcification score by linear correlation in 

GSE56045. As shown in Figure 4, only 4 gene 

expression levels were related to the coronary artery 

calcification score: CCR7 (R = -0.081, P = 0.0065), CD2 

(R = -0.075, P = 0.0012), CXCR5 (R = -0.065, P = 0.029) 

and IL7R (R = -0.06, P = 0.043). Next, we tested the 

expression level and function of the four genes in 

different datasets to confirm whether they were closely 

 

 
 

Figure 3. Hub gene screening process. (A) Association with gene significance and modules. The correlation between the module traits 
and the significance of gene expression. The higher the correlation, the higher the correlation between the gene expression in the module 
and the module trait. (B) Function annotation: (GO) Gene Ontology; (KEGG) Kyoto Encyclopedia of Genes and Genomes pathway enrichment; 
(DO) Disease Ontology; (C) Protein-protein interaction network of the selected genes. Edge stands for the interaction between two genes. A 
degree was used for describing the importance of protein nodes in the network, red shows a high degree and blue presents a low degree. 
The depth of the color represents the degree of correlation, and the deeper the color, the higher the correlation. The significant modules 
identified from the PPI using the molecular complex detection method with a score of >6.0. All: all of the genes; Cluster 1: MCODE-1= 12.07; 
Cluster 2: MCODE-2 = 9.92; Cluster 3: MOCDE-3 = 7.39; Cluster 4: MCODE-4 = 6.28. 
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related to CAD. As shown in Figure 5A, the expression 

levels of CCR7, CXCR5 and IL7R were different in the 

CAD and control group (P < 0.05–0.001), but no 

significant difference was found with CD2 (P = 0.41). In 

GSE34822 (Figure 5B), the expression of CCR7, CXCR5 

and CD2 was different in progressive and stable plaques, 

while that of IL7R was not significantly different (P < 

0.05–0.001). Additionally, the gene expression level of 

progressive plaques was lower than that of stable 

plaques. Figure 5C analyzes GSE129935, which revealed 

that only CCR7 and CXCR5 had statistical significance in 

the comparison of stability and acute myocardial 

infarction (AMI), stability and instability (P < 0.05–

0.01). Additionally, the subsequent decrease in 

expression led to the occurrence of plaque instability, 

which leads to AMI. GSE60993 (Figure 5D) also well 

verified the previous conclusion. From this dataset, the 

expression of these four genes in the healthy control 

group was statistically significant compared with 

unstable angina (UA), non-ST elevation myocardial 

infarction (NSTEMI) and ST elevation myocardial 

infarction (STEMI) (P < 0.001), and the healthy control 

group had a higher expression level. GSE59867 (Figure 

5E) reflected the change in gene expression from stable 

to the first day to six months after AMI. From this 

dataset, we found that only CCR7 and CXCR5 expression 

was statistically significant (P < 0.05–0.001), the 

expression level was the lowest on the first day after 

AMI, and the gene level gradually increased with time. 

By dividing the expression of CCR7 and CXCR5 in 

GSE59867 by the mean value, expression greater than 

the mean value was defined as high expression, and the 

occurrence of heart failure was defined as the end event. 

We found that, when CCR7 showed high expression 

and CXCR5 showed low expression, the occurrence of 

heart failure was 10.796 times higher than that of CCR7 

and CXCR5 (P < 0.05) (Figure 5F). Based on the above 

five datasets, we believe that CCR7 and CXCR5 play an 

 

 
 

Figure 4. Relationship between the expression level of these 24 genes and coronary artery calcification score. The left panel 
shows the coronary artery calcification score (y-axis). The expression level of these 24 genes is shown on the x-axis. 
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important role in atherosclerosis and plaque 

vulnerability. Further verification of these data in a 

future investigation is warranted. 

 

Subject validation 

 

To verify the exact function of CCR7 and CXCR5, we 

collected the data of some patients hospitalized due 

to chest pain, measured the relative gene expression 

after collecting the peripheral blood, and compared 

the gene expression level according to the coronary 

angiography data. Table 1 shows the general situation 

of 1,528 patients with gender and age matching. We 

considered all the variable data, including the relative 

expression of CCR7 and CXCR5, gender, age, 

smoking, drinking, BMI, systolic blood pressure 

(SBP), diastolic blood pressure (DBP), serum 

glucose, TC, TG, high-density lipoprotein cholesterol 

(HDL-C), LDL-C, apolipoprotein (Apo)A1 and 

ApoB, which were the best subset of risk factors to 

develop the acute coronary syndrome (ACS) risk 

score and risk model (nomogram) (Figure 6). We 

defined the sores as follows: smoking and/or 

drinking: yes = 2, no = 1; male = 1; female = 2. The 

nomogram had excellent discriminative power with a 

C-statistic and was well calibrated with the Hosmer-

Lemeshow χ 2 statistic. The predicted probabilities of 

developing ACS ranged from 0.0004 to 99%. The 

discrimination accuracy of the model was 0.841 (95% 

CI, 0.809–0.871). At an optimal cutoff value, the 

sensitivity and specificity were 64.0% and 90.9%, 

respectively. 

 

After calculation, the relative expression of levels of 

CXCR5, ApoA1, LDL-C, serum glucose, smoking and 

Troponin T were significantly related to the risk of ACS, 

with statistical significance. The relative expression of 

peripheral blood RT–PCR showed that the expression of 

CXCR5 was statistically significant in the comparison  

of cases (including UA, NSTEMI and STEMI) and 

controls, and the expression decreased gradually with the 

increase in plaque vulnerability (Figure 7), a finding that 

was also consistent with the results of previous 

multidatasets. 

 

DISCUSSION 
 

Previously, the main cause of arteriosclerosis was 

considered the formation of atherosclerotic plaques 

caused by abnormal serum lipids. However, in recent 

years, with more extensive research, researchers have 

gradually realized that arteriosclerosis is a chronic 

 

 
 

Figure 5. Expression of the four hub genes in different datasets. (A) GSE23561. (B) GSE34822. (C) GSE122935. (D) GSE60993. (E, F) 
GSE59867. 
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Table 1. Comparison of demographic, lifestyle characteristics and serum lipid levels among different groups. 

CAD, coronary artery disease; UA, unstable angina; NSTEMI, on-ST-segment elevation myocardial infarction; STEMI, ST-
segment elevation myocardial infarction; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; 
TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol; Apo, Apolipoprotein. 1Mean ± SD determined by t-test.2Because of not normally distributed, the value of 
triglyceride was presented as median (interquartile range), the difference between the two groups was determined by 
the Wilcoxon-Mann-Whitney test. The P value was defined as the comparison of case and control groups. aP < 0.05; bP < 
0.01; cP < 0.001. 
 

inflammatory process with intense immune activity 

[9]. More evidence has also shown that LDL has 

synergistic effects with an immune inflammatory 

response, which promotes the formation of 

atherosclerosis. Considering blood lipid control alone, 

we have efficient tools to reduce LDL and the 

occurrence of cardiovascular adverse events (MACE). 

However, even if LDL is greatly reduced, MACE will 

still occur. This residual risk can be explained by the 

immune inflammatory response. Clear inflammatory 

interventions have now been shown to improve the 

prognosis of individuals treated with LDL-lowering 

drugs [10].  

Previously, T and B cells were found in the detection of 

atherosclerotic plaques, which opened the door to the 

study of the autoimmune response leading to 

atherosclerosis [11]. Furthermore, the rate of APC-CD4 

+ T-helper cell interaction in atherosclerotic plaques of 

mice was increased, especially in hypercholesterolemia, 

leading to the secretion of pro-inflammatory cytokines 

[12]. Additionally, in lymph node biopsy, we found that 

auxiliary T cells gradually matured into antigen 

empirical effect/memory (TEM) and central memory 

(TCM) T cells, also observed in atherosclerotic plaques 

[13]. The sustained enhanced activation of T cells was 

accompanied by the expansion of lymph nodes in 

Parameter Control CAD UA NSTEMI STEMI 

Number 312 320 304 290 302 

Male/female 94/220 89/231 92/210 84/202 98/202 

Age (years)1 55.32±8.31 54.16±9.05 55.59±8.54 56.43±9.83 55.94±9.17 

Height (cm) 166.24±6.82 168.59±7.29 167.55±7.28 166.52±6.94 167.23±9.13 

Weight (kg) 52.46±6.84 54.74±10.82 57.63±9.11a 57.92±8.77a 57.52±9.23a 

Body mass index (kg/m2) 29.29±5.13 30.44±6.47a 30.67±7.12a 30.79±6.74a 30.77±6.09a 

Waist circumference (cm) 74.49±6.74 73.55±9.48 76.03±8.15 76.24±7.17 76.15±6.27 

Smoking status [n (%)] 81(26.0) 114(35.6) a 142(46.7) a 138(47.6) a 144(47.6) a 

Alcohol consumption [n (%)] 75(24.0) 84(26.2) 70(23.0) 81(27.9) a 71(23.5) 

SBP (mmHg) 124.14±17.14 129.21±21.11a 147.15±23.96c 139.47±22.14b 103.45±17.16c 

DBP (mmHg) 80.52±11.16 81.33±11.25 88.54±14.23a 84.43±11.21 68.54±12.15c 

PP (mmHg) 49.64±14.13 51.42±13.59 51.66±15.24 50.84±15.22 50.22±14.21 

Glucose (mmol/L) 5.91±1.83 6.13±2.22 7.79±2.43b 8.46±2.79c 8.69±2.78c 

TC (mmol/L) 4.93±1.21 5.21±1.17a 5.63±1.12a 5.99±1.18a 5.83±1.43a 

TG (mmol/L)2 1.49(0.51) 1.53(1.22) 1.52(1.21) 1.44(1.32) 1.51(1.26) 

HDL-C (mmol/L) 1.52±0.44 1.32±0.26a 1.35±0.34a 1.44±0.28a 1.48±0.32 

LDL-C (mmol/L) 2.86±0.81 3.23±0.74a 3.98±0.79a 3.79±0.88a 3.92±0.84a 

ApoA1 (g/L) 1.24±0.24 1.17±0.22 1.18±0.26 1.18±0.26 1.14±0.28 

ApoB (g/L) 0.84±0.19 0.82±0.32 0.81±0.31 0.94±0.31 0.88±0.28 

ApoA1/ApoB 1.67±0.50 1.66±0.57 1.64±0.58 1.65±0.61 1.67±0.54 

Heart rate (beats/minutes) 72.41±10.19 72.33±10.32 76.28±10.61a 76.43±9.31a 79.76±10.14a 

Creatinine, (μmol/L) 72.34±12.22 71.36±11.34 74.53±11.62 76.55±10.23 76.58±12.74 

Uric acid, (μmol/L) 283.83±76.19 286.89±74.32 279.88±81.31 285.91±81.31 283.86±75.28 

Troponin T, (μg/L) 0.01±0.02 0.02±0.02 0.02±0.01 2.74±3.93c 2.86±6.28c 

CK, (U/L) 88.84±45.28 87.84±48.31 91.88±50.33 1111.92±683.31c 1124.88±783.28c 

CKMB, (U/L) 12.44±3.63 13.11±2.78 13.22±3.32 129.88±61.45c 132.76±59.17c 
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atherosclerotic ApoE - / - mice, as well as the local and 

systemic pro-inflammatory response, to further enhance 

the diet induced by hypercholesterolemia. These 

findings support the concept that specific antigens drive 

immune responses in the aorta and lymph nodes during 

atherosclerosis [14]. 

 

C-X-C motif chemokine receptor 5 (CXCR5), as a 

member of the CXC chemokine receptor family, encodes 

a multipass membrane protein. Recently, we identified 

characteristic CXCR5+-expressing follicular helper T cells 

(Tfh), a multifunctional helper T-cell subpopulation that 

helps B cells to differentiate into plasma membrane [15]. 

More evidence has shown that Tfh cells are also related to 

various inflammatory diseases, and an increased number 

of Tfh cells is found in CAD [16]. Through further 

experiments, we found that the circulating CD4 + CXCR5 

+ T cells in patients with CAD are rich in PD-1 + CCR7- 

subsets, which can secrete IFN - γ, IL-17A and IL-21 in 

large quantities. Additionally, CD4 + CXCR5 + T cells in 

 

 
 

Figure 6. Nomogram to estimate individual ACS probability. Each predictor variable characteristic has a corresponding point value 
based on its position on the top point scale and contribution to the model. The probability of ACS for each subject is calculated by summing 
the points for each variable to obtain a total point value that corresponds to a probability of ACS from the scale presented on the bottom 
line. The variable data, including the relative expression of CCR7 and CXCR5, gender, age, smoking, drinking, BMI, systolic blood pressure 
(SBP), diastolic blood pressure (DBP), serum glucose, TC, TG, high-density lipoprotein cholesterol (HDL-C), LDL-C, apolipoprotein (Apo)A1, 
ApoB and defined the sores as follows: smoking and/or drinking: yes = 2, no = 1; male = 1; female = 2. The predictive accuracy of the risk 
model was assessed by discrimination measured by C-statistic and calibration evaluated by Hosmer-Lemeshow χ2 statistic. The 
discriminatory ability of the model was quantified using the area under the receiver operating characteristic curve (AUC). The 
discrimination accuracy of the model was 0.841 (95% CI, 0.809–0.871). At an optimal cutoff value, the sensitivity and specificity were 64.0% 
and 90.9%, respectively. *P < 0.05. 
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patients with CAD showed a stronger ability to stimulate 

the flow of B cells than that in healthy people. In 

coincubated B cells, the expression of IL-6 and IFN - γ 

also increased significantly, which may be the possible 

mechanism of CXCR5-induced arteriosclerosis [17]. Van 

der Vorst EPC et al found that CXCL13-CXCR5 

chemokine axis plays an important role in the occurrence 

and development of atherosclerosis. The most likely 

reason is that the production and secretion of IgM 

protecting atherosclerosis by regulating the distribution 

pattern of B1 cells [18]. After further analysis of the 

expression quantitative feature loci of the gene expression 

data set, the G allele of rs77564610 and high expression of 

CXCR5 in the whole blood were found to be closely 

related to the high risk of myocardial infarction [19]. 

However, common variations of CXCR5 (50 kb) were 

found in the British biological bank cohort; the allele 

mutations of rs187248852 and rs73575424 are related to 

the pathogenesis of ischemic stroke and myocardial 

infarction, respectively [20]. This finding was consistent 

with ours. 

 

This study possessed limitations. First, the patients 

enrolled to validate the relative expression in this 

study were from only one hospital, and the sample 

size was small. Whether there is a difference in 

patients from different areas and races is not known. 

Therefore, the validity of the findings should be tested 

in more prospective cohorts. Second, although we 

carried out many validations in other expression 

datasets and patients, the mechanism of  

CXCR5 leading to atherosclerosis and plaque 

vulnerability remains unclear and needs further 

verification through more detailed in vivo and in vitro 

experiments. 

 

In conclusion, we explored the molecular mechanism of 

ACS by performing weighted gene coexpression 

networks analysis. After functional and protein-protein 

interaction analysis, 24 genes were identified with a 

significant meaning. We further validated these genes in 

GSE23561, GSE34822, GSE59867, GSE60993 and 

GSE129935 datasets and found CCR7 and CXCR5 as 

the hub genes. Next, we validated these two genes in 

chest pain patients and found that CXCR5 may play key 

role in atherosclerosis and plaque vulnerability; 

however, further confirmation is needed to validate the 

findings.

 

 
 

Figure 7. Expression of CCR7 and CXCR5 in a chest pain patient. (A) CCR7. (B) CXCR5. 
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MATERIALS AND METHODS 
 

Microarray data 

 

All dataset analyses were performed using R software 

(version 3.60). We downloaded GSE56045 [21] 

microarray data from GEO (Gene Expression Omnibus, 

http://www.ncbi.nlm.nih.gov/geo/). These datasets were 

based on the platform of the GPL10558 Illumina 

HumanHT-12 V4.0 expression BeadChip. GSE56045 

contains 1,202 peripheral blood samples, as well as 

clinical information, such as age, whole-blood cell count, 

and the coronary artery calcification plaque score. First, 

we added CEL files into the R software using the Affy 

package for transformation into an expression value 

matrix. The probe information was then transformed into 

gene names using the Bioconductor package. The mean 

value should be chosen when a gene had more than one 

probe [22]. The preprocessing process of the datasets 

(GSE23561, GSE34822, GSE59867 and GSE60993) [23–

27] used for validation was the same as that for 

GSE56045. GSE129935 was performed by Fragments Per 

Kilobase per Million mapped reads (FPKM) and quantile 

normalized using the robust multiarray average (RMA) 

method. The probes were then annotated using 

Bioconductor in R. GSE129935 was also used for 

validation. 

 

Weighted gene coexpression network analysis 

 

We conducted the analyses in strict accordance with the 

weighted gene coexpression network analysis process 

[28]. First, we chose the appropriate soft threshold 

power according to standard scale-free networks, with 

which adjacencies between all differential genes were 

calculated by a power function. Next, a topological 

overlap matrix (TOM) was derived from the 

adjacencies, and the corresponding dissimilarity (1-

TOM) was counted. To complete the module 

recognition, we used the dynamic tree cutting method to 

cluster the genes in layers, using 1-TOM as the distance 

measure, a minimum size cutoff of 30, and a deepSplit 

value of cutting of 2. Next, we selected the highly 

similar modules by clustering and merged them, with 

the height line set as 0.4. To test the stability of each 

identified module, module preservation and quality 

statistics were computed using the module preservation 

function implemented in the WGCNA package [28]. 

Because the genes in the gray module cannot be 

attributed to any other module, all the genes in the gray 

module were removed. 

 

Interest module and hub gene 
 

We selected the module with the highest correlation with 

clinical features and the genes in this module with the 

important biological functions. To identify the most 

biologically significant module, we used Pearson 

correlation analysis to evaluate the correlation between 

clinical features and gene modules. We selected the most 

relevant modules related to clinical features for further 

analysis and research. Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

analyses were performed to detect potential mechanisms 

by which these module genes affect correlative clinical 

features. The thresholds for the P value and false 

discovery rate (FDR) were set as less than 0.01 and 0.05, 

respectively. These analyses were completed using 

clusterProfiler and DOSE package in R [29]. 

 

We describe the correlation between the gene 

expression profile and module eigengenes (Mes) 

defined as the module membership (MM). The gene 

significance (GS) can be defined as the absolute value 

of the correlation between external traits and the gene. 

The genes of interest in the modules with the highest 

MM and GS scores were selected for subsequent 

analysis. We defined the GS and MM scores as more 

than 0.2 and 0.6, respectively, for intramodular hub 

genes selected by external traits, and the P cutoff value 

is set at less than 0.05. The STRING database 

(https://string-db.org/, Version 11.0) [30] was employed 

to analyze the protein-protein interaction (PPI) network. 

We used Cytoscape software (version 3.80) to visualize 

and construct the gene-gene interaction network. 

Additionally, we used the Molecular Complex 

Detection (MCODE) app to screen the most notable 

clustering modules, with an MCODE score greater than 

6 set as the threshold for further analysis [31]. 

 

Hub gene validation and survival analysis 

 

Our validation analysis was divided into two stages. In 

the first stage, we analyzed the function of the hub 

genes in different datasets; in the second stage, we 

verified the population. After collecting the patients 

admitted for chest pain, we extracted the peripheral 

blood and verified the expression of core genes. 

GSE23561, GSE34822, GSE59867, GSE60993 and 

GSE129935 were employed for validation. At first, we 

analyzed the correlation between the gene expression 

level and calcification score. Next, we compared the 

expression differences of hub genes among different 

groups and showed the results using the ggplot2 

package in R. Subsequently, the “survival” package 

[32] in R was used to perform overall survival (heart 

failure) and disease-free survival analyses for all hub 

genes. The patients were divided into four groups (high 

vs. low) based on the hub gene expression level 

compared with the mean expression level of that hub 

gene. A Kaplan–Meier survival plot was also 

constructed. The ‘rms’ package was used for ACS 

http://www.ncbi.nlm.nih.gov/geo/
https://string-db.org/
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prediction nomogram. The predictive accuracy of the 

risk model was assessed by discrimination measured by 

C-statistic and calibration evaluated by Hosmer-

Lemeshow χ2 statistic. The discriminatory ability of the 

model was quantified using the area under the receiver 

operating characteristic curve (AUC). A 95% CI was 

calculated for each AUC. In general, an AUC > 0.75 

was considered to be relatively good discrimination. 

 

Study population 
 

In total, 1,528 patients were recruited from the inpatient 

department for a complaint of chest discomfort at the 

Liuzhou People's Hospital from 2018-3-1 to 2019-12-31 

and had undergone coronary angiography. CAD, UA 

and AMI were diagnosed based on the Fourth Universal 

Definition of Myocardial Infarction (2018) [33]. 

Exclusion criteria included subjects with poor 

compliance, incomplete clinical data, contrast agent 

sensitivity and autoimmune diseases. Additionally, 

subjects with obvious surgical contraindications were 

excluded. Clinical data collection, biochemical 

measurements and diagnostic criteria were performed 

according to previous studies [34]. The study adhered to 

the Declaration of Helsinki of 1975 (http://www.wma. 

net/en/30publications/10policies/b3/) and its revision in 

2008 and the Ethics Committee of Liuzhou People's 

Hospital agreed with the study design (No: Lunshen-

2018-KY; Feb. 12, 2018). Informed consent was 

obtained from all subjects after receiving a full 

explanation of the study. 

 

RT–qPCR and statistical analysis 
 

The procedures of blood sample collection, RNA isolation, 

reverse transcription cDNA and RT–qPCR are the same as 

those in our previous studies and were carried out in strict 

accordance with the product instructions and laboratory 

operating procedures [35]. The specific divergent primers 

were designed to amplify the transcripts and are shown in 

Supplementary Table 3. The statistical software package 

SPSS 22.0 (SPSS Inc., Chicago, IL, USA) and R software 

(version 3.6.0) were used for statistical analysis. 

Quantitative variables were expressed as means ± standard 

deviation (TG levels were shown as medians and 

interquartile ranges and were analyzed by the Wilcoxon–

Mann–Whitney test because they were not a normal 

distribution). Chi-square analysis was used to assess the 

difference in the percentages between the groups. All tests 

were two-sided, and P < 0.05 was considered statistically 

significant. 
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Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

 

Supplementary Table 1. The details of color module genes. 

 

Supplementary Table 2. The Function analysis of color module genes. 

 

Supplementary Table 3. The primer of CXCR5 and CCR7. 

Gene Forward primer Reverse primer 

CCR7 GGGCCCAGCAGGAACTTATT GTCAGAGCGGGCTTTCTCTA 

CXCR5 ACATCCTTTGCCAGAGTCCG AACTCTTAAAGGGCGGGAGC 

 


