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The tongue performs movements in all directions to subserve its diverse functions

in chewing, swallowing, and speech production. Using task-based functional MRI in

a group of 17 healthy young participants, we studied (1) potential differences in the

cerebral control of frontal (protrusion), horizontal (side to side), and vertical (elevation)

tongue movements and (2) inter-individual differences in tongue motor control. To

investigate differences between different tongue movements, we performed voxel-wise

multiple linear regressions. To investigate inter-individual differences, we applied a novel

approach, spatio-temporal filtering of independent components. For this approach,

individual functional data were decomposed into spatially independent components

and corresponding time courses using independent component analysis. A temporal

filter (correlation with the expected brain response) was used to identify independent

components time-locked to the tongue motor tasks. A spatial filter (cross-correlation

with established neurofunctional systems) was used to identify brain activity not time-

locked to the tasks. Our results confirm the importance of an extended bilateral cortical

and subcortical network for the control of tongue movements. Frontal (protrusion) tongue

movements, highly overlearned movements related to speech production, showed less

activity in the frontal and parietal lobes compared to horizontal (side to side) and vertical

(elevation) movements and greater activity in the left frontal and temporal lobes compared

to vertical movements (cluster-forming threshold of Z > 3.1, cluster significance threshold

of p < 0.01, corrected for multiple comparisons). The investigation of inter-individual

differences revealed a component representing the tongue primary sensorimotor cortex

time-locked to the task in all participants. Using the spatial filter, we found the default

mode network in 16 of 17 participants, the left fronto-parietal network in 16, the right

fronto-parietal network in 8, and the executive control network in four participants

(Pearson’s r > 0.4 between neurofunctional systems and individual components).

These results demonstrate that spatio-temporal filtering of independent components

allows to identify individual brain activity related to a specific task and also structured

spatiotemporal processes representing known neurofunctional systems on an individual

basis. This novel approach may be useful for the assessment of individual patients and

results may be related to individual clinical, behavioral, and genetic information.

Keywords: tongue, motor control, cortex, cerebellum, speech production, swallowing, functional magnetic

resonance imaging, independent component analysis

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00226
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00226&domain=pdf&date_stamp=2020-03-24
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:peter.soros@gmail.com
https://doi.org/10.3389/fnins.2020.00226
https://www.frontiersin.org/articles/10.3389/fnins.2020.00226/full
http://loop.frontiersin.org/people/3328/overview
http://loop.frontiersin.org/people/833296/overview


Sörös et al. Neural Correlates of Tongue Movements

INTRODUCTION

The human tongue is a unique muscular and sensory organ
with critical roles in several motor tasks, such as chewing,
swallowing, respiration, and speech (Sawczuk and Mosier, 2001;
Hiiemae and Palmer, 2003), in addition to its somatosensory
(Pardo et al., 1997; Sakamoto et al., 2010) and gustatory functions
(Kobayakawa et al., 2005; Hummel et al., 2010).

To subserve its distinct motor tasks, the tongue contains
intrinsic and extrinsic muscle fibers (Schumacher, 1927; Abd-
El-Malek, 1939), which are extensively interwoven (Gaige et al.,
2007). Intrinsic fibers originate and insert within the tongue
itself, while extrinsic fibers are attached to bony structures,
such as the mandible, hyoid bone, or styloid process (Sanders
and Mu, 2013). This complex biomechanical architecture is
the basis for the tongue’s ability to move and alter its shape
in all three dimensions (Kier and Smith, 1985). Moreover,
adult human tongues, compared to the tongues of other
mammals, are characterized by a higher proportion of slow-
twitch (type I) muscle fibers, which are associated with fine
motor control (Sanders et al., 2013). Intrinsic and extrinsic
tongue muscles are innervated by the lateral and medial divisions
of the hypoglossal nerve (cranial nerve XII), with different
components of the musculature being supplied by different
hypoglossal branches (Mu and Sanders, 2010) and controlled
by distinct hypoglossal subnuclei (McClung and Goldberg,
2002).

The cortical and subcortical control of tongue movements has
been studied thoroughly in animals and humans using various
invasive and non-invasive techniques. These electrophysiologic,
neuroimaging, and lesion studies suggest that voluntary (e.g.,
speech-related) and semi-automatic (e.g., swallowing-related)
tongue movements (Martin et al., 1997) are controlled by
the lateral primary sensorimotor cortex (Takai et al., 2010),
supplementary motor area, basal ganglia, and cerebellum
(Corfield et al., 1999; Shinagawa et al., 2003; Martin et al., 2004;
Watanabe et al., 2004).

Using functional magnetic resonance imaging (FMRI),
researchers investigated (1) isolated voluntary tongue
movements, such as frontal (protrusion) (Arima et al., 2011),
horizontal (side to side) (Riecker et al., 2000), and vertical
(elevation) tongue movements (Martin et al., 2004) and (2)
tongue movements as part of speaking (Riecker et al., 2005;
Sörös et al., 2006), singing (Ozdemir et al., 2006; Jungblut et al.,
2012), and swallowing (Sörös et al., 2009; Lowell et al., 2012). A
detailed comparison of the neural correlates of different tongue
movements in all three directions has not been performed yet
[but see the study by Watanabe et al. (2004), comparing tongue
protrusions in different directions with tongue retraction].
Moreover, almost all FMRI studies on tongue movements
present only group analyses [one notable exception is the
study by Martin et al. (2004), Table 5, presenting individual
brain activation in all studied participants]. Finally, almost all
FMRI studies on tongue motor control have been performed
on older scanner hardware and with relatively small sample
sizes. Our literature review was based on a systematic search

of the PubMed1 and Google Scholar2 databases with the search
terms “tongue FMRI” or “tongue functional magnetic resonance
imaging.” The detailed presentation of this systematic review is
beyond the scope of the present study.

The first aim of the present study was to identify and compare
brain activity associated with different tongue movements.
Following previous research, we simplified the wide range
of different tongue movements and shapes and only studied
movements along the three main axes of the body: frontal
(protrusion) tongue movements, horizontal (side to side) tongue
movements, and vertical (elevation) tongue movements. These
tongue movements are used in different tongue motor tasks,
primarily during chewing, swallowing, and speaking (Sawczuk
and Mosier, 2001; Hiiemae and Palmer, 2003; Ferrand, 2018).
Frontal (protrusion) tongue movements are almost exclusively
used in speech production and singing, e.g., during the
production of dental consonants (Ladefoged and Maddieson,
1996). Horizontal (side to side) tongue movements are used
during chewing to position the food in the oral cavity and to form
the bolus in preparation for swallowing (Hiiemae and Palmer,
2003). Vertical (elevation) tongue movements, finally, are used
in both speech production [e.g., during the production of high
vowels (Ladefoged and Maddieson, 1996)] and the oral phase of
swallowing (Hiiemae and Palmer, 2003).

The second aim of this study was to investigate inter-
individual similarities and differences in tongue movement-
related brain activity. The number of swallows (Rudney et al.,
1995) and of words produced per day (Mehl et al., 2007) varies
considerably between individuals. Moreover, the biomechanics of
articulation (Weirich et al., 2013) and of swallowing (Kennedy
et al., 2010) is characterized by substantial inter-individual
variability. To investigate individual brain activity, we performed
an independent component analysis (ICA) of individual task-
based FMRI data sets. ICA decomposes four-dimensional data
into spatial maps and associated time courses (Beckmann et al.,
2006). Compared to a model-based analysis, an advantage of
ICA is the ability to detect unknown, not necessarily time-locked
brain activity in FMRI data. This is of particular importance
for experimental designs, in which the exact timing of events
cannot be recorded (McKeown et al., 1998a; Calhoun et al., 2002).
Moreover, ICA is able to separate brain activity from noise, such
as artifacts induced by head motion or physiological processes
(McKeown et al., 1998b).With a novel approach, spatio-temporal
filtering of independent components, we identified individual
components whose time courses were highly correlated with the
expected brain response and whose spatial patterns were highly
correlated with one of the established neurofunctional networks
described by Smith et al. (2009).

Investigating differences in tongue motor control between
different movements and across individuals is expected to deepen
our knowledge not only of physiological but also of pathological
tongue movements. The ultimate goal of this line of research is to
understand the disruption of the supranuclear control of speech-

1www.ncbi.nlm.nih.gov/pubmed
2scholar.google.com
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and swallowing-related tongue movements in diseases, such as
amyotrophic lateral sclerosis (ALS, Kollewe et al., 2011; Shellikeri
et al., 2016) and Parkinson’s disease (Van Lieshout et al., 2011) on
an individual, personalized basis.

METHODS

Participants
Twenty young healthy individuals have been investigated for
the present study. Three participants were excluded from the
data analysis (two because of excessive head motion, one
because of widespread, most likely artifactual signal increase
in the first-level analysis of the horizontal tongue movement
condition). For the final data analysis, the MRI data of 17
participants (nine women, eight men) have been investigated.
Mean age ± standard deviation (SD) of included participants
was 25.9 ± 3.3 years (minimum: 20, maximum: 34 years).
All participants met the following criteria: (1) no history of
neurological disorders (such as dementia, movement disorder,
stroke, epilepsy, multiple sclerosis, traumatic brain injury,
migraine), psychiatric disorders (such as schizophrenia or
major depression), or cancer, (2) no impaired kidney or liver
function, (3) no use of psychotropic medication (in particular,
antidepressants, antipsychotics, benzodiazepines, and opioids),
(4) no substance abuse, (5) no excessive head motion (<1
mm relative mean displacement and <3 mm absolute mean
displacement) during FMRI. Handedness was determined with
the Edinburgh Handedness Inventory–Short Form (Veale, 2014).
Right handedness was present in 13 individuals (handedness
scores: 62.5–100), mixed handedness was found in four
individuals (handedness scores: 33.3–50). Seven participants
have had anMRI scan before for diagnostic or research purposes,
10 participants have never been within an MRI scanner. All
data sets presented here have been acquired for this study and
have not been analyzed or published previously. All participants
were students of the University of Oldenburg and were
recruited through an advertisement on the University’s student
portal or word-of-mouth communication, thus representing a
convenience sample. All participants gave written informed
consent for participation in the study. A compensation of
10 e per hour was provided. The study was approved by
the Medical Research Ethics Board, University of Oldenburg,
Germany (2017-072).

Experimental Paradigm and Tongue
Movements
The data for the present study were collected as part of a
larger project on oral and speech-language functions. Table 1
summarizes the order in which the four different tasks were
performed. The total MRI measurement time was∼45 min.

For the investigation of the neural correlates of tongue
movements, participants were visually cued to perform one
of three different repetitive tongue movements (Figure 1):
(1) frontal (protrusion) tongue movements; participants were
instructed to push the tip of the tongue against the surface of
the maxillary incisors and then retract the tongue to the rest
position, similar to the English /th/ sound, (2) horizontal (side

TABLE 1 | Structural and functional sequences used for the entire project (scan 4:

tongue movements).

No. Sequence Time of acquisition

1 T1-weighted MPRAGE 6:16 min

2 T2*-weighted (syllable production) 9:16 min

3 T2*-weighted (tongue twister) 8:31 min

4 T2*-weighted (tongue movements) 9:21 min

5 T2*-weighted (sentence production) 9:14 min

to side) tongue movements; participants were instructed to move
the tongue against the right and left mandibular pre-molars,
and (3) vertical (elevation) tongue movements; participants were
instructed to elevate the tongue and to press it against the hard
palate (the roof of the mouth), similar to the beginning of the
oral phase of swallowing (Dodds, 1989).

Before the FMRI measurement, all participants underwent
a short training outside the scanner to familiarize themselves
with the different tongue movements and the visual cues. During
the training, the participants were first shown a sheet of paper
with the three visual cues (Figure 1) and were instructed how
to perform the respective movement. The experimenter then
demonstrated the required movements herself with open mouth
and asked the participants to perform all movements with
closed mouth, without performing head or jaw movements.
The experimenter watched all participants closely and made
sure that no visible head or jaw movements were produced.
For all conditions, participants performed rhythmic and self-
paced movements. Participants were asked to choose a relaxed
and pleasant movement frequency. Our aim was to keep the
movement effort comparable across participants. Finally, a short
version of the FMRI paradigm (two blocks of 15 s duration
for each tongue movement in pseudorandomized order) was
presented on the screen of a PC to give the participants further
opportunity to train the required tongue movements.

Visual cues were presented by the MATLAB toolbox
Cogent Graphics (developed by John Romaya, Laboratory of
Neurobiology, Wellcome Department of Imaging Neuroscience,
London, UK)3 on a PC and projected through an LCD projector
onto a screen mounted within the scanner bore behind the
head coil. Participants were able to see the cues via a mirror
attached to the head coil. Visual cues were shown in blocks
of 15 s duration with a 15 s rest condition (during which a
fixation cross was presented) after every third tongue movement
block. The remaining tongue movement blocks were separated
by a shorter rest condition of 3 s. Figure 2 visualizes the
experimental paradigm. Behavioral performance during FMRI
was not recorded.

MRI Data Acquisition
MR images of the entire brain were acquired at 3 Tesla on a
Siemens MAGNETOM Prisma whole-body scanner (Siemens,
Erlangen, Germany) with the XR gradient system (gradient

3www.vislab.ucl.ac.uk/cogent_graphics.php
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FIGURE 1 | The three pictograms used to cue frontal (protrusion), horizontal (side to side), and vertical (elevation) tongue movements. All symbols were simple and

small to minimize eye movements and visual processing. During rest periods, a small fixation cross was shown.

FIGURE 2 | Experimental paradigm and head motion. Blocks of tongue movement are shown in light blue; F: frontal (protrusion), H: horizontal (side to side), and V:

vertical (elevation) movements; duration 15 s each. Mean relative displacement, the distance between one volume and the following volume, during all FMRI

measurements is displayed with blue (17 included participants) and red lines (three excluded participants). Data from individual participants are superimposed.

strength: 80 mT/m, gradient rise time: 200 T/m/s on all three
gradient axes simultaneously) and a 64-channel head/neck
receive-array coil. This coil enhances the signal-to-noise ratio of
the peripheral image, primarily corresponding to the cortex of
the human brain. The scanner is located at the Neuroimaging
Unit, School of Medicine and Health Sciences, University of
Oldenburg, Germany4.

For structural brain imaging, Siemens’ 3-dimensional
T1-weighted magnetization prepared rapid gradient echo
(MPRAGE) sequence (Brant-Zawadzki et al., 1992) was used
(TR: 2,000 ms, TE: 2.07 ms, flip angle 9◦, isotropic voxel size:
0.75 × 0.75 × 0.75 mm3, 224 axial slices, time of acquisition:
6:16 min). For functional imaging, Siemens’ ep2d_bold T2*-
weighted gradient-echo echo-planar sequence was used (TR:
1,800 ms, TE: 30 ms, flip angle 75◦, isotropic voxel size: 3 × 3 ×
3 mm3, 33 slices, time of acquisition: 9:21 min). Structural and
functional measurements used in-plane acceleration (generalized
autocalibrating partial parallel acquisition, GRAPPA) with an
acceleration factor of 2 (Griswold et al., 2002). Before every
functional sequence, extended 3-dimensional B0 shimming

4uol.de/en/medicine/biomedicum/neuroimaging-unit

and true-form B1 shimming was applied. Siemens’ pre-scan
normalization filter was deactivated during functional sequences.

MRI Data Analysis
Pre-processing of Structural Images
Pre-processing of T1-weighted images was done with the
antsBrainExtraction.sh script, part of Advanced Normalization
Tools (ANTs, version 2.1)5 (Tustison et al., 2014). This script
performs (1) bias field correction to minimize the effects
of magnetic field inhomogeneity using the N4 algorithm
(Tustison et al., 2010) and (2) brain extraction using a hybrid
segmentation/template-based strategy (Tustison et al., 2014). The
script was used together with brain templates derived from the
OASIS-1 study6. For quality control, all brain extracted structural
MR images were visually inspected after using ANTs.

Pre-processing of Functional Images
Pre-processing of FMRI data was carried out using FEAT
(version 6.00), part of FMRIB’s Software Library (FSL)7 (Smith

5stnava.github.io/ANTs/
6www.oasis-brains.org
7fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012).
Pre-processing included removal of the first four recorded
volumes to allow for signal equilibration in addition to the two
dummy volumes measured, but not recorded, as part of the
ep2d_bold sequence (304 volumes were retained). Standard head
motion correction was performed by volume-realignment to the
middle volume using MCFLIRT (Jenkinson et al., 2002). Mean
relative displacement (the distance between one volume and
the following volume) of all participants is shown in Figure 2.
Brain extraction of functional images was done with FSL’s brain
extraction tool, BET (Smith, 2002). Spatial smoothing with a
Gaussian kernel of 5 mm full width at half maximum (FWHM)
and grand-mean intensity normalization of the entire data set
by a single multiplicative factor were also performed. Slice time
correction was not conducted (as e.g., in Beckmann et al., 2006).

After completion of standard data pre-processing, but without
temporal filtering, ICA-based automatic removal of motion
artifacts (FSL’s ICA-AROMA version 0.3 beta)8 was used to
identify and remove motion-related ICA components from
FMRI data (Pruim et al., 2015). Here, the non-aggressive
option was used, performing a partial component regression.
First, ICA-AROMA carries out probabilistic ICA of individual
subjects’ MRI data using FSL’s MELODIC (Beckmann and
Smith, 2004). Second, ICA-AROMA employs four theoretically
motivated temporal and spatial criteria to select motion-related
components from MELODIC’s output. These criteria include
(1) high-frequency content of the time courses of independent
components, (2) correlation between the time courses of
independent components and motion correction parameters,
(3) representation of independent components at the edge of
the brain, and (4) representation of independent components
within cerebrospinal fluid (for a detailed description, see Pruim
et al., 2015). Finally, ICA-AROMA removes these components
from the initial data set through an ordinary least squares
regression using FSL’s fsl_regfilt command (Pruim et al., 2015).
Decomposition of individual data sets created between 47 and 68
independent components (mean: 60 components). To determine
the optimal number of components for every data set, MELODIC
uses Bayesian principal component analysis (Beckmann and
Smith, 2004). Of these components, between 18 and 39 (mean:
30) components were identified as noise and regressed out
applying the aforementioned four temporal and spatial features.
ICA-AROMA has been validated for resting state and task-based
FMRI data, demonstrating that this approach effectively removes
motion artifacts, while increasing sensitivity to the signal of
interest (Pruim et al., 2015).

Following ICA-AROMA, data were high-pass filtered
(Gaussian-weighted least-squares straight-line fitting, sigma = 45
s). Registration of functional to high-resolution structural images
was carried out using FLIRT (Jenkinson et al., 2002). Registration
from high-resolution structural to Montreal Neurological
Institute (MNI152) standard space was further refined using
12-parameter affine transformation and non-linear registration
with a warp resolution of 10 mm in FNIRT9.

8github.com/maartenmennes/ICA-AROMA
9fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT

Model-Based Individual and Group FMRI Analysis
For first-level model-based analysis, functional data sets were
analyzed with a general linear model-based time-series analysis
using voxel-wise multiple linear regressions (Friston et al.,
1995; Monti, 2011) as implemented in FEAT. The time courses
of the three movement conditions were convolved with a
gamma hemodynamic response function (using the standard
settings: phase: 0 s, standard deviation: 3 s, mean lag: 6 s)
and served as regressors of interest. The temporal derivative
of each primary regressor was included as a regressor of no
interest to improve the model fit when the timing was not
exactly correct (e.g., if tongue movements were started or
stopped with a slight delay). Regressors of interest (experimental
conditions) and regressors of no interest (temporal derivatives)
formed the design matrix used for voxel-wise multiple linear
regressions. Motion parameters derived from initial head motion
correction via volume-realignment were not included in the
design matrix because ICA-AROMA was used for additional
head motion correction.

To remove temporal autocorrelations, time-series pre-
whitening was used (Woolrich et al., 2001). After generating
parameter estimates (PEs) for every primary regressor and
every participant, the following contrasts of parameter estimates
(COPEs) were calculated: (1) frontal > rest, (2) horizontal >
rest, (3) vertical > rest, (4) horizontal > frontal, (5) vertical >
frontal, (6) frontal > vertical, (7) horizontal > vertical, (8) frontal
> horizontal, and (9) vertical > horizontal.

For higher-level analysis, mixed-effects group analysis maps
were generated by FLAME (stages 1 and 2) for all contrasts.
FLAME uses a fully Bayesian inference technique in a two-
stage process: a fast approach using maximum a posteriori
estimates and a slower, more accurate approach using Markov
Chain Monte Carlo methods (Woolrich et al., 2004). Z
statistic images were thresholded non-parametrically using
a cluster-forming threshold of Z > 3.1 and a (corrected)
cluster significance threshold of p < 0.01 assuming a Gaussian
random field for the Z-statistics. No additional correction for
multiple contrasts was performed. Local maxima (peaks of brain
activation) were identified within the Z statistic images using
FSL’s cluster command (maximum number of local maxima:
100, minimum distance between local maxima: 20 mm). The
anatomical location of each local maximum was determined
with FSL’s atlasquery command and the following probabilistic
atlases:10 (1) Harvard-Oxford cortical structural atlas (48 cortical
areas), (2) Harvard-Oxford subcortical structural atlas (21
subcortical areas), and (3) Probabilistic cerebellar atlas (28
regions) (Diedrichsen et al., 2009). Because we report local
maxima of brain activation, the extent of activation cannot be
determined.

Model-Free Individual FMRI Analysis
A single-session probabilistic ICA was conducted to decompose
every pre-processed individual FMRI data set into 20
independent spatial components and corresponding time
courses using MELODIC (version 3.14). The data sets fed

10fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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into ICA were the pre-processed data sets used for first-level
model-based analysis (i.e., after denoising with ICA-AROMA).
Of note, these data sets contained brain activity associated with
all three tongue movements. A low-dimensional decomposition
into 20 components was chosen for later comparison with a
well-established set of published networks. MELODIC performs
linear decomposition (Comon, 1994) of the original FMRI signal
using the FastICA technique (Hyvärinen, 1999) and variance-
normalization of the associated timecourses. Spatial maps were
thresholded using a Gaussian mixture model approach at a
posterior probability level of p < 0.5 (Beckmann and Smith,
2004).

Spatio-Temporal Filtering of Independent

Components
To identify spatial components whose activity was time-locked
to tongue movements, FSL’s GLM Setup program was used to
convolve the time course of all three movement conditions with
a gamma hemodynamic response function (as for model-based
analysis). The resulting time course, representing the expected
brain activity, was correlated with all ICA time courses of all
participants. Similarly, Kokkonen et al. (2009) analyzed task-
based FMRI activity associated with left and right finger tapping
with ICA and correlated ICA time courses with motor task
timing. In our study, a significant (p < 0.05) Pearson’s correlation
coefficient of r > 0.4 or r < −0.4 between time courses indicated
temporal significance.

To identify relevant spatial components not time-locked to
the tongue motor tasks, the spatial maps obtained for every
participant were cross-correlated with ten established neural
networks11 (Smith et al., 2009). These ten networks have
been derived from resting state FMRI data of healthy adults
after performing a low-dimensional decomposition with 20
components (ten components were identified as brain activity,
ten components as potentially artifactual). Importantly, Smith
et al. (2009) also analyzed the results of 1687 task-based FMRI
studies available through the BrainMap database12. Both analyses
resulted in a similar set of major brain networks, demonstrating
a close correspondence between resting and task-based brain
activation. A significant Pearson’s correlation coefficient of r > 0.4
between components indicated spatial significance. The cross-
correlation of study-specific spatial components with established
networks (e.g., developed by Smith et al., 2009 or Yeo et al., 2011)
has been performed previously for the analysis of resting-state
FMRI data (e.g., by Reineberg et al., 2015 and Sörös et al., 2019).

RESULTS

Head Motion
Across all included participants, the average mean absolute
displacement of the head (relative to the middle volume) was
0.7 mm (SD: 0.4 mm, min: 0.2 mm, max: 1.9 mm). The average
mean relative displacement (compared to the following volume)
was 0.3 mm (SD: 0.2 mm, min: 0.1 mm, max: 0.7 mm). The

11www.fmrib.ox.ac.uk/datasets/brainmap+rsns/
12www.brainmap.org

time course of the mean relative displacement of all participants
is shown in Figure 2 (17 included participants in blue, three
excluded participants in red). Comparing the time course of head
displacement with the experimental paradigm, we did not find
evidence for task-related head motion.

Model-Based Group FMRI Analysis
Compared to rest, the three tongue movements were associated
with similar bilateral brain activity (Figure 3A). Major regions
of cortical activation were the lateral pre- and post-central
gyrus, supplementary motor cortex, anterior cingulate gyrus,
and the frontal cortex of both hemispheres. Activation was also
found in the bilateral insulae, basal ganglia, thalamus, amygdala,
and cerebellum. For visualization of subcortical brain activity,
Figure 4 shows axial slices for frontal (protrusion) tongue
movements > rest. Table 2 lists the coordinates in MNI space and
the corresponding Z value of significant local maxima of brain
activation for the contrast frontal > rest.

Contrasts between different tongue movements resulted
in significant activation in several cortical areas (Figure 3B,
Table 3). Horizontal tongue movements were associated with
greater activation in the bilateral superior parietal lobule
(vs. frontal movements) and in the bilateral pre- and post-
central gyri as well as in the left inferior frontal gyrus (vs.
vertical movements). The contrast vertical > frontal movements
demonstrated greater activation in the bilateral precentral and
the right post-central gyri, as well as the left supramarginal
gyrus and the left superior parietal lobule. The reverse contrast,
frontal > vertical movements, showed greater activation in the
left frontal and temporal lobes. The contrasts frontal > horizontal
and vertical > horizontal did not result in significant activation.

Model-Free Individual FMRI Analysis
The individual brain activity of all 17 participants is presented
in Figure 5. Temporally filtered (time-locked) independent
components are shown on the left (Figure 5A), spatially filtered
components on the right (Figure 5B). In all participants, the
FMRI data set contained one bilateral sensorimotor component
(Figure 5A, first column) positively correlated with the expected
brain activity (graph in the first row), representing the tongue
primary sensorimotor cortex. In four participants, another
frontal or parietal component (Figure 5A, second column)
was positively correlated with the expected brain activity. In
seven participants, a bilateral occipital component (Figure 5A,
third column) was negatively correlated with the expected
brain activity.

Spatial filtering of independent components revealed inter-
individually variable patterns of brain activity during tongue
movements. Spatial cross-correlations with established neural
networks (shown in the first row of Figure 5B) (Smith et al.,
2009) identified between one and three visual networks in
all participants (except P2, who showed a visual component
after temporal filtering). In addition, the default mode network
and the left fronto-parietal network were active in all but
one participant. Of note, the default mode network was not
negatively correlated with the expected brain activity associated
with tongue movements. The right fronto-parietal network was
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FIGURE 3 | Results of model-based group analysis. Brain activity associated with tongue movements averaged across 17 participants after cluster-based

thresholding and correction for multiple comparisons (Z > 3.1, p < 0.01) is shown in red-yellow. Activated areas were projected onto the semi-inflated pial surface of

the fsaverage brain, reconstructed by FreeSurfer (Fischl, 2012). (A) Tongue movements > rest, (B) contrasts between tongue movements.

active in eight participants and the executive control network in
four participants. In four participants, a superior sensorimotor
network, comprising the hand sensorimotor cortex and the
supplementary motor area, was found.

DISCUSSION

Main results of the present task-based FMRI study on the
neural correlates of tongue movements were: (1) All three
tongue movements under investigation were controlled by
the same neurofunctional system, consisting of the bilateral

tongue primary sensorimotor cortex, supplementary motor
cortex, anterior cingulate gyrus, basal ganglia, thalamus,
and cerebellum. (2) Distinct tongue movements also
involved more specialized regions, such as the prefrontal,
posterior parietal, and temporal cortices. (3) Using a novel
approach to characterize inter-individual differences in task-
based FMRI data, spatio-temporal filtering of independent
components, we found consistent activation of the tongue
primary sensorimotor cortex in all participants, but also
remarkable variability, e.g., in fronto-parietal and executive
control networks.
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FIGURE 4 | Results of model-based group analysis. Brain activity associated with frontal tongue movements vs. rest averaged across 17 participants after

cluster-based thresholding and correction for multiple comparisons (Z > 3.1, p < 0.01) is shown in red-yellow. Brain activity is projected onto axial slices of the MNI152

standard space template in radiological convention (the left hemisphere is seen on the right).

Model-Based Group FMRI Analysis
The present study demonstrates the core cortical [lateral
primary motor cortex (Fesl et al., 2003), supplementary motor
area, cingulate motor area] and subcortical regions (basal
ganglia, thalamus, cerebellum) of the tongue motor system,
corroborating several previous FMRI studies (Corfield et al.,
1999; Shinagawa et al., 2003; Martin et al., 2004; Watanabe
et al., 2004; Brown et al., 2008; Malandraki et al., 2009).
The tongue motor system was very similar for all three
tongue movements under investigation (Figure 3). The local
maxima of precentral activation (Table 2) correspond well to
activation maxima reported in the literature, e.g., by Arima
et al. (2011) for tongue protrusion and by Fesl et al. (2003)
for horizontal tongue movements, supporting our interpretation
that the precentral brain activation seen here represents the
primary tongue motor cortex. Our results also demonstrate
the involvement of the lateral primary somatosensory cortex,
reflecting the extensive mechanosensory (Kaas et al., 2006) and
proprioceptive innervation of the tongue (Adatia and Gehring,
1971).

Moreover, the bilateral insular cortex was active during all
three tongue movements. The insulae are not regarded as motor
areas per se, but as areas of polymodal sensory, motor, cognitive,
and affective integration. The insular cortex is involved in
processing somatosensory (Sörös et al., 2008; Pugnaghi et al.,
2011), gustatory (Small, 2010), and nociceptive stimuli (Xu et al.,
2019). In addition, insular activity is associated with voluntary
and semi-voluntary oro-facial movements, such as jaw opening
and closing (Wong et al., 2011), speech production (Simonyan
and Fuertinger, 2015; Tourville et al., 2019), and swallowing
(Sörös et al., 2009; Leopold and Daniels, 2010; Malandraki et al.,
2011). Importantly, insular activity is not specific for oro-facial

movements, but has been found in simple finger movements as
well (Turesky et al., 2016).

Tongue motor control was also associated with activity in
prefrontal areas, critical for motor planning (Svoboda and Li,
2018), and in posterior parietal areas, involved in processing and
perception of action-related information (Culham and Valyear,
2006). Parietal activity has also been found in previous FMRI
studies during frontal tongue movements (tapping of the tip of
the tongue against the alveolar ridge) (Malandraki et al., 2009)
and a series of spatially complex tongue movements (pressing the
inside of a left or right, upper or lower incisor, canine, or molar
tooth with the tip of the tongue) (Watanabe et al., 2004).

Comparing brain activity between different tongue
movements resulted in complex patterns of activation
differences (Table 3). Speech-related frontal (protrusion)
tongue movements were associated with less activation in parts
of the bilateral superior parietal lobule (vs. horizontal, side to
side movements) and in parts of the bilateral precentral gyrus,
right post-central gyrus, and the left posterior parietal cortex (vs.
vertical, elevation movements). We may speculate that, in most
humans, speech-related tongue movements are probably some of
the most overlearned movements (Ziegler, 2003) and therefore
are performed with less neural resources than less extensively
trained tongue movements. Similarly, complex and relatively
unfamiliar sequential finger movements are associated with
increased FMRI activity compared with repetitive movements
of the same fingers (Wexler et al., 1997). Remarkably, frontal
(protrusion) tongue movements were associated with increased
activity in parts of the left frontal and temporal lobes compared
with vertical (elevation) movements. Again, we may speculate
that frontal (protrusion) tongue movements, usually performed
in the context of overt speech production, activate areas critical
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TABLE 2 | Local maxima in brain activation: stereotaxic coordinates in MNI space,

Z values, and corresponding brain regions for the contrast frontal tongue

movement > rest.

Region Side x (mm) y (mm) z (mm) Z value

Precentral gyrus L −60 2 20 6.24

R 58 8 8 5.00

R 42 −10 52 4.56

Supplementary motor cortex 0 −4 64 6.22

Superior frontal gyrus 0 32 46 6.00

L −12 16 56 5.03

Middle frontal gyrus L −50 16 38 4.36

L −26 20 38 5.31

Inferior frontal gyrus, pars triang. L −48 28 16 5.14

Frontal operculum R 34 16 10 4.65

Frontal orbital cortex L −34 18 −12 5.02

Frontal pole R 36 42 20 4.51

Post-central gyrus L −42 −16 32 6.56

R 62 −6 28 6.17

Supramarginal gyrus, post. div. L −38 −50 42 4.49

R 34 −38 36 5.44

Central opercular cortex L −60 −20 12 5.78

Middle temporal gyrus L −54 −54 0 3.97

Lingual gyrus L −14 −78 −2 3.94

R 6 −92 −16 6.76

Cingulate gyrus, ant. div. L −8 1 37 4.65

R 6 0 36 3.53

Insular cortex L −40 −4 2 5.81

R 42 −4 4 5.21

Putamen R 22 8 −2 5.51

Pallidum L −13 4 0 5.63

Thalamus L −10 −2 4 5.93

R 14 −4 8 5.45

Amygdala L −26 −4 −16 5.77

R 28 −2 −16 5.65

Cerebellum lobule VI L −16 −64 −22 6.08

R 16 −66 −22 6.60

to speech-language production, such as the left inferior frontal
gyrus (Flinker et al., 2015), even when performed in isolation.

Unexpectedly, we found increased brain activity in the
occipital lobe in the contrasts frontal vs. vertical and horizontal
vs. vertical movements (Figure 3, Table 3). Because previous
FMRI studies do not report occipital activity, we are reluctant
to attribute this activity to tongue movement. Still, it may
be possible that frontal and horizontal tongue movements,
exploring the oral cavity with the densely innervated tip of
the tongue, contribute to the development of oral awareness
(Haggard and de Boer, 2014) and activate not only somatosensory
but also visual cortices. An alternative explanation would be
that the different visual stimuli used to cue the three tongue
movements (Figure 1) may have induced different activation
patterns in visual areas.

Overall, the differences of brain activity during the three
different tongue movement conditions need to be interpreted

TABLE 3 | Local maxima in brain activation: stereotaxic coordinates in MNI space,

Z values, and corresponding brain regions for the contrasts horizontal > frontal,

vertical > frontal, frontal > vertical, and horizontal > vertical tongue movements.

Region Side x (mm) y (mm) z (mm) Z value

Horizontal > frontal

Superior parietal lobule L −32 −50 58 4.75

R 26 −48 66 4.98

Vertical > frontal

Precentral gyrus L −26 −12 62 5.29

R 32 −6 66 4.59

Post-central gyrus R 52 −20 34 6.70

R 32 −34 36 4.67

Central opercular cortex L −60 −20 16 4.72

Supramarginal gyrus, ant. div. L −44 −34 38 5.03

Superior parietal lobule L −34 −48 52 4.69

Frontal > vertical

Middle frontal gyrus L −46 10 46 4.56

Inferior frontal gyrus, pars triang. L −46 24 12 4.95

Frontal orbital cortex L −42 30 −16 4.29

Middle temporal gyrus, post. div. L −60 −36 −10 4.33

Inferior temporal gyrus, temp-occ. L −42 −50 −16 4.47

Cuneal cortex R 2 −78 22 5.56

Lateral occipital cortex L −20 −86 20 4.79

R 28 −82 12 4.85

Intracalcarine cortex R 8 −64 8 4.45

Lingual gyrus L −10 −78 0 5.35

Occipital pole 0 −96 −4 6.33

R 24 −96 −8 3.87

Occipital fusiform gyrus L −32 −72 −12 4.29

R 26 −66 −6 4.97

Horizontal > vertical

Precentral gyrus L −22 −26 58 4.74

L −40 −16 46 4.60

R 22 −28 68 4.97

Inferior frontal gyrus, pars triang. L −54 28 −10 4.53

Post-central gyrus L −2 −38 58 4.83

R 38 −26 50 4.67

Cingulate gyrus, post. div. L −2 −20 44 4.23

Cuneal cortex L −6 −88 22 5.05

R 10 −70 20 5.17

Occipital pole L −10 −90 −2 5.65

R 16 −98 −6 8.61

Fusiform cortex R 26 −60 −16 5.16

with caution. As we do not have EMG recordings of tongue
activity during FMRI, we cannot be sure that tongue movements
were produced with the same velocity and pressure. Differences
in motion parameters could well explain the subtle differences of
brain activity seen here (Wexler et al., 1997).

Model-Free Individual FMRI Analysis
Almost all task-based and resting-state FMRI studies only present
group analyses of brain activity. Recently, individual differences
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in brain structure and function have attracted growing attention
(Kanai and Rees, 2011; Finn et al., 2015; Dubois and Adolphs,
2016). The study of individual differences of the neural control of
tongue movements is expected to improve our understanding of
tongue motor impairment, e.g., in amyotrophic lateral sclerosis
(Kollewe et al., 2011) or Parkinson’s disease (Van Lieshout et al.,
2011), and help in the assessment of the efficacy of treatment
options, such as tongue motor training (Arima et al., 2011;
Komoda et al., 2015).

To investigate inter-individual differences in tongue
movement-related brain activity, we used a novel approach,
spatio-temporal filtering of independent components. First, ICA

was employed to perform a low-dimensional decomposition of
every single FMRI data set of 9:21 min duration. ICA carried
out a model-independent separation of the original data into
components that are related to brain activity, physiological
extra-cerebral processes (such as respiration or blood pulsation),
and imaging artifacts (such as head motion or susceptibility
artifacts). The primary advantage of a model-free ICA was the
detection of previously unexpected patterns of brain activity
(McKeown et al., 1998b). In the traditional general linear
model-based analysis of FMRI time series, these patterns of
activity would be considered as noise and discarded (Monti,
2011).

FIGURE 5 | Continued
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FIGURE 5 | Spatio-temporal filtering of individual ICA components. The results of the single-session independent component analyses of all 17 participants (one

participant per row) are summarized. Brain images are shown in radiological convention (the left hemisphere is seen on the right) after registration to the MNI152

standard space template. (A) The three columns on the left display components whose time course is significantly correlated with the expected brain activity (first

row). The first and second column show positively correlated (r > 0.4, p < 0.05), the third column negatively correlated components (blue, r < −0.4, p < 0.05). (B) The

upper row illustrates 9 of 10 established brain networks identified in resting state FMRI data (Smith et al., 2009). For every single participant, independent components

are displayed that are spatially correlated with one of the established networks. Network 5 from the study by Smith et al. (2009) (consisting of large parts of the

cerebellum) is not shown because it was not significantly correlated with cerebellar activity in one of the present FMRI data sets.

Second, we used a temporal filter to identify independent
components whose time course was correlated with the expected
brain response (for the use of correlation as a filter technique,
see Mwangi et al., 2014). This approach demonstrated that
the activation of the lateral primary sensorimotor cortex was
found in all 17 participants. Tongue movement is, similar
to e.g., finger tapping (Engström et al., 2004), a very robust
sensorimotor paradigm.

Third, we applied a spatial filter, i.e., we cross-correlated the
independent components obtained for our participants with a set

of ten established components (interpreted as neural networks).
These canonical networks were derived from resting state FMRI
data (Smith et al., 2009). Of importance, an analysis of task-based
brain activation performed for the same study identified similar
networks, demonstrating a close correspondence between resting
and task-based brain activation (Smith et al., 2009). A study by
Calhoun et al. (2008) investigated neural networks in rest and
during an auditory oddball task, finding the same 11 networks in
both conditions with one additional network (anterior cingulate)
only present during rest.
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Nine of 10 canonical networks (Smith et al., 2009) were
also found in our task-based data sets of tongue movement. In
16 participants, the default mode network was active, a large-
scale neural network, including the posterior cingulate cortex,
precuneus, medial prefrontal gyrus, and inferior parietal cortex
(Greicius et al., 2003). In 16 participants, the left fronto-parietal
network and in eight participants, the right fronto-parietal
network was active. Fronto-parietal networks have been shown
to subserve attentional mechanisms (Markett et al., 2014) and are
probably involved in a wide variety of other tasks.

Results from spatio-temporal filtering of independent
components suggest that large-scale neural networks are active
during simple tongue movements. Activation of these networks
is not time-locked to tonguemovement and thus is not detectable
in model-based FMRI analysis. Of major importance, not all
established networks appear to be active in all individuals. At
present, it is unclear if the pattern of neural networks seen here
is specific for tongue movement or, more likely, reflecting motor
control in general. Moreover, it is undetermined which factors
contribute to the physiological activation or deactivation of
specific networks in different individuals during tongue motor
control. In addition, we do not know if the pattern of neural
networks found in a single individual is stable over time or may
change depending on internal states or external stimulation.
Results from resting state FMRI suggest that at least the major
heteromodal association networks, such as the default mode
network and the fronto-parietal networks, are stable over time
(Zuo and Xing, 2014).

Knowledge of the neural basis of pathological tongue
movements is very limited (Mohammadi et al., 2009; Kollewe
et al., 2011; Shen et al., 2015). We assume that spatio-
temporal filtering of independent components may be able
to determine individual patterns of brain activity related to
functional impairment. Of importance, this approach may
differentiate between impaired activation of the primary tongue
motor cortex and disorders of large-scale association networks.
For clinical use, this approach may assist in detecting disordered
tongue motor control in an early stage of neurodegenerative
disease and may help monitoring efficacy of pharmacological
treatment, non-invasive brain stimulation, or training. Recently,
resting state and task-based FMRI were used to predict
a cognitive trait (fluid intelligence, reading comprehension)
(Greene et al., 2018; Jiang et al., 2020). Both studies found that
functional connectivity based on task-based FMRI has higher
prediction performance than the results of resting state FMRI.
Similarly, the results of spatio-temporal filtering of independent
components may be used to predict clinical parameters and may
be correlated with individual behavioral, clinical, and genetic
information.

Limitations and Directions for Future
Research
Our study has limitations that need to be addressed. The sample
size of our study (17 participants included in final data analysis)
is relatively small, at least compared to the recommendation of
n = 30 for a typical task-based FMRI study (Turner et al., 2018).
However, our literature search identified only one FMRI study of
tongue motor control with a larger sample size (n = 24,Watanabe

et al., 2004). Nevertheless, a larger sample size would have been
helpful for the robust identification of differences between tongue
movements in the model-based analysis and of inter-individual
differences in the model-free analysis.

We did not record tongue motion during FMRI. Using
surface EMG, it is possible to record electric activity of
the suprahyoid muscles and then identify different tongue
movements with high accuracy using a support vector machine
algorithm for pattern recognition (Sasaki et al., 2016). To
ensure that the behavioral performance was as similar as
possible across participants, we gave detailed instructions and
performed a training session before FMRI scanning. Of note,
recording EMG activity would have been helpful to refine
the time course of expected brain responses for model-based
analysis on an individual basis. By contrast, EMG recordings
would have not been used for model-free ICA (Calhoun
and de Lacy, 2017). Moreover, we did not record potential
jaw movements that may have been occurred during tongue
movements. Recording the opening and closing of the jaw is
possible with e.g., a fiber-optic sensor attached to the chin
(Sörös et al., 2010).

Our experimental paradigm included regular rest periods
of 15 s duration after every third tongue movement block
(Figure 2). During this rest period, the hemodynamic response
curve is supposed to reach the pre-movement baseline. To keep
the entire duration of the tongue movement experiment shorter
than 10 min (we also acquired data for three separate speech
production experiments), while still recording eight blocks of 15 s
length per movement condition, we chose shorter rest periods of
3 s each between the remaining tonguemovement blocks. During
this shorter rest period, the hemodynamic response curve has not
reached the baseline. Thus, we cannot rule out the possibility that
BOLD activity from one tongue block was carried over to the next
block. This may have impaired our ability to detect differences
between tongue movements in model-based analysis. Of note,
model-free ICA does not require specific rest periods and ICA
results should not be affected by shorter rest periods.

For future research on tongue motor control, we recommend
to (1) replicate our investigation of different tongue movements
with a larger sample size to increase statistical power and
reproducibility, (2) use different stimuli (e.g., auditory
instructions) to cue tongue movements in order to determine
wether certain tongue movements are associated with activity in
the visual cortex, (3) record surface EMG from the suprahyoid
muscles during the pre-scan training session and during FMRI,
(4) study tongue motor control in younger and older individuals
because disorders of tongue movement are often related to
diseases prevalent in the elderly and differences in brain
activation between younger and older individuals have been
shown for speech motor tasks (Sörös et al., 2011; Tremblay et al.,
2017), (5) correlate inter-individual differences in brain activity
determined with spatio-temporal filtering of independent
components with age, sex, and behavioral parameters of tongue
movement in a larger sample of healthy younger and older
individuals, and (6) investigate the neural correlates of tongue
movements in patients with neurogenic dysarthria and dysphagia
on an individual basis and correlate FMRI results with etiology,
disease severity, and behavioral performance.
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