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ABSTRACT

Protein structures often show similarities to another
which would not be seen at the sequence level.
Given the coordinates of a protein chain, the
SALAMI server at www.zbh.uni-hamburg.de/salami
will search the protein data bank and return a set
of similar structures without using sequence infor-
mation. The results page lists the related proteins,
details of the sequence and structure similarity and
implied sequence alignments. Via a simple structure
viewer, one can view superpositions of query and
library structures and finally download super-
imposed coordinates. The alignment method is
very tolerant of large gaps and insertions, and
tends to produce slightly longer alignments than
other similar programs.

INTRODUCTION

Purpose of SALAMI

Sequence similarity is the classic measure for finding
related proteins and the starting point for assigning func-
tion, building phylogenies and protein modelling.
Sequence similarity will not, however, be enough to
detect remote relationships. For this, one needs methods
that detect pure structural similarity. Given the coordi-
nates of a protein chain, the SALAMI server will search
the protein data bank (1), for similar chains, calculate
structural alignments and generate a list of structurally
related proteins. In some sense, structure is preserved
more than sequence during evolution (2) so even within
a family of related proteins, there may be members
with no significant sequence similarity to another (3–8).
This means that questions of function or phylogenetic
relations will often only be answerable given structural
relationships (9). Furthermore, there is the question of
alignment quality. In the case of weak sequence similarity,
the alignment implied by a structural superposition should
be more reliable and more useful for problems such as
predicting functional sites.

Structure comparison

Aligning protein structures is a fundamentally NP-
complete problem when one allows for arbitrary gaps
and insertions (10). This means that all methods rely on
some approximations and there will always be trade-offs
between quality and speed. Furthermore, the problem is
not perfectly defined since there may be no unique ideal
alignment (11,12) and there is not even a single definition
of alignment quality. One could argue that a good align-
ment minimizes differences in Cartesian space, but one
could also say that a good method will find the corres-
ponding residues despite large coordinate shifts due to
hinge-bending or domain motions. For someone working
on structure determination, it may be very useful if a
method can recognize structural similarities when faced
with the irregularities of an initial NMR-derived structure
or unrefined crystallographic coordinates. Finally, pro-
grams will differ because they have been tuned to different
goals. Some authors prefer shorter alignments of very sim-
ilar regions, whereas some prefer longer alignments
including regions of greater variation.

Because the alignment problem is difficult and not even
well defined, there is a large variety of approaches and
using n different programs may give n different structural
alignments (13–43). There are, however, some common
ideas. Some methods try to build a crude seed alignment
which can be extended or iteratively improved (17,30).
Some methods assign descriptors to sites which can be
aligned using methods similar to those in sequence align-
ment. These descriptors, of course, come in many forms
ranging from distance matrices to textbook secondary
structure or fragment-based alphabets (18,33,44).

SALAMI also attaches descriptors to sites, but they are
fuzzy or probabilistic. This means that there are no prede-
fined thresholds and no requirement that a fragment be
seen as helix, sheet or coil. Instead, fragments are compared
with each other using a continuous estimate of similarity.

Although there is a large number of methods for struc-
tural alignment, relatively few are fast enough to search a
large library of structures (21,22,24,25,33). The SALAMI
server is fast enough to search the protein data bank for
medium-sized proteins in 10–20min using a single CPU.
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MATERIALS AND METHODS

Input data and library

The server takes the coordinates of a protein chain in PDB
format and an email address for sending results to. The
only adjustable parameter is the number of aligned struc-
tures to return.

Output of the web server

The server sends a rather minimal mail message as its
result. It contains only a link to a temporary web page
(lifetime 1 week) containing a list of candidate structurally
related proteins. Selecting a candidate brings up a view
of the superposition using Jmol (http://jmol.org) by
E. Willighagen et al. (requires Java plugin). In another
pane, the implied sequence alignment is shown, the super-
imposed coordinates can be downloaded and a list of more
proteins with 90% or more sequence similarity to the can-
didate is given.

Each alignment is evaluated by scoring functions such
as the alignment length, root mean squared difference
(rmsd) of Ca atoms of aligned residues, a z-score calcu-
lated from a distribution of random alternative alignments
(45), Smith and Waterman alignment scores (46) and a
quality score based on the fraction of distance matrices
which are similar between the query and aligned protein
(45,47). This measure is used for the initial sorting of the
list, but one can select a ranking by any of the other
scores.

Processing method

Our method is a specialization of a very general technique
which has been described in detail (13). Briefly, 1.5� 106

fragments, each of six residues were clustered into 308
classes, each of which is a set of six bivariate Gaussian
distributions for backbone f and c angles. The more
populated classes are recognizable as classic secondary
structure, while the less populated classes are simply
pieces of common protein motifs. Given a query fragment,
one can calculate its probability of being in each of the
classes, resulting in a long list (vector) of probabilities.
A typical fragment may have a probability near 1.0
of being in some class, but even an unusual fragment
will have some characteristic pattern of probabilities.
Any two fragments can be compared by taking the dot
product of these probability vectors which leads to the
final alignment method as previously described (13). A
similarity matrix is built based on all overlapping frag-
ments from each protein. The scores associated with a
residue come from all the fragments which it is a part
of, so for fragments of length k=6, a residue is sensitive
to an environment of 2k� 1=11 residues. The residue
alignment can be read out from a conventional dynamic
programming calculation (46,48) and superpositions are
computed based on the aligned Ca atoms (49).

The method is fast since probabilities associated with
databank proteins are precalculated and updated weekly.
The similarity score has no hard thresholds, so the method
fares well even when faced with slightly unusual struc-
tures. We give an example of this property below.

Technically, it is interesting to note that the rmsd in
Cartesian coordinates is never used during the alignment,
so the method will find similarities even when confronted
with domain or hinge-bending movements.
The server does not search all proteins in the protein

data bank, but rather a subset of <2� 105 is chosen so
that no two chains have >90% sequence identity (50).

RESULTS

Precision of search results

Results from the structure similarity servers usually differ
from another in two main ways. First, the length of align-
ments is rarely the same from two different programs.
Second, there is some concept of sensitivity. For some
query, related proteins should be ranked higher than
unrelated proteins. There is, however, often no correct
answer when relationships are weak. Rather than debate
this, we have simply taken SCOP (4–7) as a reference. It
is also rather easy to find query proteins which suit a
particular method. Rather than try to be objective, we
give an example which suits SALAMI, one where all
methods perform well and one where SALAMI performs
poorly.
Figures 1–3 show plots of the precision of SALAMI,

DALI (51) and VAST (52). We considered up to 100
related proteins from each server for each query and fil-
tered out all chains which were not classified by SCOP.
Chains which contained a domain in the same superfamily
as a domain in the query chain were considered to be true
positives. The remaining chains were regarded as false
positives. The plots show the fraction of true positives at
each rank.
First, Figure 1 shows the results using 1WOT as a

query. This protein clearly suits SALAMI. VAST finds
the four closest relatives. DALI, however has more inter-
esting behaviour with a large number of false positives
near the middle of the list. The structure has three
a-helices joined by some small b-strands. In SCOP, it is
placed in the Nucleotidyltransferase superfamily. There is,
however, a set of proteins in the KH-domain superfamilies
with a similar fold which can be superimposed surprisingly
well. They are declared to be unrelated in SCOP, but they
score well in DALI.
Figure 2 shows all the three methods performing

equally well for 1QLW from the superfamily of alpha/
beta hydrolases. Here, all results are in near perfect agree-
ment with the SCOP classification. Only the SALAMI
server includes a few false positives towards the end of
the list.
Finally, Figure 3 shows the results with 1WK2 from

the PUA domain-like superfamily as the query. This
does not suit the SALAMI server. It is a mostly b protein,
but more than 30 of its 121 residues are missing. The
correct relatives are pushed down the ranking by unrelated
proteins. DALI and VAST still perform well here because
their similarity scores are much more influenced by spa-
tial distances to elements which are not necessarily close
in sequence.
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DISCUSSION AND CONCLUSION

The few results are certainly no benchmark. They are,
however, clear examples of the ways different methods
will work well with different query structures.
SALAMI has the disadvantage that it relies on chain

connectivity and can be confused by broken structures.
This means it may not be very useful for the broken
skeletons that one can encounter in crystallographic

structures with initial phasing. SALAMI has the advan-
tage that it relies on chain connectivity and has no prob-
lem finding similarities when there are hinge-bending or
domain motions. The graduated similarity measures mean
that poor quality structures and deviations from regular
geometry are well treated (13).

The methodology here has another interesting property.
The graduated measure of similarity leads to a scoring

Figure 1. Sensitivity of servers using 1WOT as a query. For each rank on x-axis, each point shows the number of true positives divided by the rank.
Servers (DALI, VAST and SALAMI) are marked as shown in the key. Lines joining the points have no meaning and only serve to guide the eye.

Figure 2. Sensitivity of servers using 1QLW as a query. Markers and servers as in Figure 1.
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function which is reliable and applies to any kind of struc-
tural unit. The use of a dynamic programming method
then guarantees that the alignments are optimal within
this scoring function. This, together with the good results
for difficult structures and the flexible interface make it a
valuable alternative to existing webservers.
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