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Abstract

Background The coexistence of low muscle mass and high fat mass, two interrelated conditions strongly
associated with declining health status, has been characterized by only a few protein biomarkers. High-throughput
proteomics enable concurrent measurement of numerous proteins, facilitating the discovery of potentially new
biomarkers.
Methods Data derived from the prospective population-based Cooperative Health Research in the Region of Augsburg
S4/FF4 cohort study (median follow-up time: 13.5 years) included 1478 participants (756 men and 722 women) aged
55–74 years in the cross-sectional and 608 participants (315 men and 293 women) in the longitudinal analysis.
Appendicular skeletal muscle mass (ASMM) and body fat mass index (BFMI) were determined through bioelectrical
impedance analysis at baseline and follow-up. At baseline, 233 plasma proteins were measured using proximity exten-
sion assay. We implemented boosting with stability selection to enable false positives-controlled variable selection to
identify new protein biomarkers of low muscle mass, high fat mass, and their combination. We evaluated prediction
models developed based on group least absolute shrinkage and selection operator (lasso) with 100× bootstrapping
by cross-validated area under the curve (AUC) to investigate if proteins increase the prediction accuracy on top of
classical risk factors.
Results In the cross-sectional analysis, we identified kallikrein-6, C-C motif chemokine 28 (CCL28), and tissue factor
pathway inhibitor as previously unknown biomarkers for muscle mass [association with low ASMM: odds ratio (OR)
per 1-SD increase in log2 normalized protein expression values (95% confidence interval (CI)): 1.63 (1.37–1.95),
1.31 (1.14–1.51), 1.24 (1.06–1.45), respectively] and serine protease 27 for fat mass [association with high BFMI:
OR (95% CI): 0.73 (0.61–0.86)]. CCL28 and metalloproteinase inhibitor 4 (TIMP4) constituted new biomarkers for
the combination of low muscle and high fat mass [association with low ASMM combined with high BFMI: OR
(95% CI): 1.32 (1.08–1.61), 1.28 (1.03–1.59), respectively]. Including protein biomarkers selected in ≥90% of group
lasso bootstrap iterations on top of classical risk factors improved the performance of models predicting low ASMM,
high BFMI, and their combination [delta AUC (95% CI): 0.16 (0.13–0.20), 0.22 (0.18–0.25), 0.12 (0.08–0.17), respec-
tively]. In the longitudinal analysis, N-terminal prohormone brain natriuretic peptide (NT-proBNP) was the only
protein selected for loss in ASMM and loss in ASMM combined with gain in BFMI over 14 years [OR (95% CI): 1.40
(1.10–1.77), 1.60 (1.15–2.24), respectively].
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Conclusions Proteomic profiling revealed CCL28 and TIMP4 as new biomarkers of low muscle mass combined with
high fat mass and NT-proBNP as a key biomarker of loss in muscle mass combined with gain in fat mass. Proteomics
enable us to accelerate biomarker discoveries in muscle research.

Keywords Appendicular skeletal muscle mass; Body fat mass index; Fat mass; Muscle mass; Machine learning; Proteomics

Received: 28 January 2021; Revised: 12 May 2021; Accepted: 21 May 2021
*Correspondence to: Prof. Dr Barbara Thorand, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH),
Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany. Phone: ++49-(0)89-3187-4480. Email: thorand@helmholtz-muenchen.de

Introduction

For several decades, the disorder of low muscle mass was not
recognized as a severe condition, although it is associated
with various pathological conditions such as non-alcoholic
fatty liver disease, type 2 diabetes,1 hypertension,2 and car-
diovascular mortality.3 A milestone turn in perception of con-
dition severity constituted the assignment of an ICD-10-CM
code for the term sarcopenia in 2016. Besides the increasing
awareness of low muscle mass, early decisive research ob-
served that the combination of low muscle and high fat mass
had a more detrimental effect on disability in daily living
activity,4 multi-morbidity,5 and an increased 10 year cardio-
vascular disease (CVD) risk6 in comparison with participants
solely experiencing low muscle mass.

Previous studies investigated the association of different
muscle mass and fat mass parameters with a low number of
biomarkers. Most studies focused on classical inflammatory
biomarkers, predominantly C-reactive protein (CRP) and inter-
leukin (IL)-6, and found contradictory results regarding the rela-
tion to muscle mass (fat free mass index7 and loss of
appendicular skeletal muscle mass (ASMM)8,9). The combina-
tion of low muscle mass (appendicular lean mass) and high
body fat has been investigated and observed to be indepen-
dently associated with CRP and fibrinogen.10 However, there
has been the concern that a low number of biomarkers might
be insufficient in describing disease development. The principle
of parsimony, that is, only selecting a small set of biomarkers as
predictors for the outcome, could provide incomplete results as
few biomarkers only reflect the most prominent proteins re-
lated to general processes.11 As a response, multiplex measure-
ments including a high number of proteins, that is, proteomics,
have been established over the last years. Several recently pub-
lished cross-sectional and longitudinal studies used different
proteomics measurements to investigate various body compo-
sition parameters including body mass index (BMI), waist cir-
cumference (WC), waist-to-hip ratio (WHR), body fat mass
(kg), and body fat (%),12–19 but only one study investigated a
muscle mass parameter, lean body mass (kg).17 Studies using
high-throughput proteomics to assess associations with muscle
and fat mass parameters in combination are lacking. The aim of
this study is to identify new protein biomarkers of low muscle,
high fat mass, and their combination as well as their changes
over a 14 year follow-up period.

Methods

Study population

The analysis is based on data from the population-based
Cooperative Health Research in the Region of Augsburg
(KORA) study, conducted in Southern Germany. 4261
individuals participated in the KORA S4 baseline
examinations,20 and 2279 additionally participated in the
second follow-up study KORA FF4 (2013–2014).

The present analysis was restricted to participants aged
55–74 years at baseline (n = 1653), who were invited to the
study centre after an overnight fast of at least 8 h. After exclu-
sions, the cross-sectional analysis included 1478 participants
(756 men and 722 women) of which 1315 participants com-
plied with the overnight fasting and 163 participants did not.
Out of these 1478 participants, 608 participants (315 men
and 293 women) with a median follow-up time of 13.5 years
(25th percentile: 13.5 years, 75th percentile: 13.6 years)
remained for the longitudinal analysis. Exclusion criteria of
the cross-sectional and longitudinal analysis are illustrated in
Supporting information, Figure S1.

At the S4 and FF4 surveys, all participants were
examined by trained medical personnel. In the S4 survey,
sociodemographic data, lifestyle, medical history, and medica-
tion use were assessed in a standardized face-to-face
interview.20

Exposure

Plasma samples collected at S4 in 1999–2001 were used to
measure CVD- and inflammation-related protein biomarkers.
Protein measurements were performed using proximity
extension assay (PEA) technology developed by Olink® (Olink
Proteomics, Uppsala, Sweden) with the three panels Olink®
Multiplex CVDII, CVDIII, and Inflammation, each comprising
92 protein biomarkers. Details regarding measurement proto-
col are described elsewhere.21 The Olink® platform provided
the protein biomarkers as log2-normalized protein expression
(NPX) values. We further divided the values by their respec-
tive standard deviation using the total study population with
available data before exclusions. After exclusions, 233 protein
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biomarkers remained for the present analysis. Exclusion
criteria are described in Supporting information, Figure S2.
Supporting information, Tables S1–S3 provide detailed infor-
mation regarding all 276 measured biomarkers of the three
panels before exclusions.

Outcome

The parameters requisite to calculate the continuous out-
come variables ASMM in kilogram and body fat mass index
(BFMI) in kilograms per square meter were assessed at S4
and FF4 using bioelectrical impedance analysis (BIA) with
the BIA 2000-S (DATA-INPUT GmbH, Frankfurt, Germany).
The calculations are included in the Supporting information.
The binary outcomes included the risk group low ASMM,
representing the 25% (n = 370) of participants with the low-
est ASMM and its corresponding control group, the remain-
ing 75% (n = 1108). The risk group of the outcome high
BFMI included the 25% (n = 370) of participants with the
highest BFMI and its corresponding control group, the re-
maining 75% (n = 1108). Sex-specific cut points were used
for this purpose. The risk group for the combined outcome
of low ASMM and high BFMI was determined by intersecting
the 40% of participants with the lowest ASMM and the 40%
of participants with the highest BFMI. This group consists of
7% (n = 110) of the total study population and the corre-
sponding control group of the remaining 93% (n = 1368).
Cut points of 40% were chosen for this outcome to ensure
a sufficiently large size of the risk group while preserving a
relatively extreme value of low ASMM and high BFMI.
Currently, no standardized definition for the combination of
both outcomes exists for European populations. For the
longitudinal analysis, we used the changes of ASMM and
BFMI between baseline and follow-up relative to baseline.
Therefore, we changed the variables’ descriptions from ‘low
ASMM’ to ‘strong decrease in ASMM’ and ‘high BFMI’ to
‘strong increase in BFMI’, while the cut points based on the
percentages remained the same. Detailed descriptions of
the cross-sectional and longitudinal outcomes are included
in Supporting information, Table S4, Figure S3, and Table S5.

Covariates

The covariates (association analysis)/classical risk factors
(prediction analysis) included age, high-density lipoprotein,
triglycerides, glycated haemoglobin, estimated glomerular
filtration rate (eGFR), albumin (all continuous), sex
(female/male), physical activity (high/moderate/low/
no activity), hypertension (no/yes), smoking status (never/
former/current smoker), education (>10 years/≤10 years), al-
cohol intake [0 g/day, 0.1–39.9 g/day (men)/0.1–19.9 g/day
(women), ≥40 g/day [men]/≥20 g/day (women)], and intake

of lipid-lowering medication (no/yes). Detailed information
describing their measurements are available in the
Supporting information.

Statistical analysis

Test results with two-sided P value <0.05 were considered
statistically significant. Analysis workflow is depicted in
Figure 1 and described in the Supporting information. We
implemented the same statistical approach in both,
cross-sectional and longitudinal analyses.

We separated the analysis into two parts to investigate
two different analysis goals, ‘association’ and ‘prediction’.
As both terms have various applications, in the following,
we specify this paper’s meaning of the terms. The goal of
the association analysis comprised the accurate selection of
biomarkers associated with the outcomes independent of co-
variates. Therefore, we implemented boosting with stability
selection as it allows finite error control of false positives en-
abling accurate variable selection. The paper validating this
method explains that its prediction accuracy can suffer as
the true positive rate is due to a tight error control usually
lower compared with prediction methods without stability
selection. ‘Prediction and variable selection are two different
goals.’22 Our goal of the prediction analysis was to identify
biomarker models able to predict unknown data using
methods with a high predictive accuracy. The sensitivity anal-
ysis was employed to compare the highest ranked variables
between these methods.

Results

Participant characteristics of the analysed population are
listed in Supporting information, Tables S6 and S7. Partial cor-
relation analysis between ASMM and BFMI adjusted for age
and sex resulted in a Spearman rank correlation coefficient
of 0.57. Coefficients to other body composition parameters
constituted for BFMI and BMI 0.93, ASMM and BMI 0.68,
BFMI and WC 0.84, ASMM and WC 0.68, BFMI and WHR
0.52, and ASMM and WHR 0.30.

Cross-sectional association of appendicular
skeletal muscle mass/body fat mass index with
protein biomarkers

Table 1 displays the strength of associations of protein
biomarkers selected by boosting with stability selection with
the outcomes adjusted for Models 1 and 2. Figure 2
illustrates a comparison of the selected biomarkers between
the outcomes.
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Concerning the association analysis, leptin (LEP) was the
only protein biomarker that was selected for all five out-
comes. Insulin-like growth factor-binding protein (IGFBP) 1
and 2, C-C motif chemokine (CCL) 28, growth/differentiation
factor 2 (GDF2), and growth hormone (GH) were selected
for both, muscle and fat mass parameters. Kallikrein-6
(KLK6), myoglobin (MB), and tissue factor pathway inhibitor
(TFPI) were only selected for the two muscle mass parame-
ters ASMM and low ASMM. Adrenomedullin (ADM), fatty
acid-binding protein 4 (FABP4), serine protease 27 (PRSS27),
and paraoxonase (PON3) were only selected for the two fat
mass parameters BFMI and high BFMI. LEP, CCL28,
and metalloproteinase inhibitor 4 (TIMP4) were selected for
the combination of low ASMM and high BFMI (Table 1).

Table 1 illustrates that after adjusting for the other out-
come in Model 2, the associations of thrombospondin-2
(THBS2) and GDF2 with ASMM, of CCL28 and IGFBP2 with
BFMI as well as of GH with low ASMMbecame non-significant.
The association of LEP with ASMM was still significant but be-
came inverse. After further including an interaction term

between the above-listed proteins and the other outcome,
only the interaction between GDF2 and BFMI for the outcome
of ASMMwas significant [beta coefficient (β) (95% confidence
interval, CI): �0.03 (�0.06, 0.00), P = 0.041].

Cross-sectional analysis: prediction of appendicular
skeletal muscle mass/body fat mass index by
classical risk factors and protein biomarkers

Table 2 displays the cross-validated area under the curve
(AUC) of a logistic regression model including 13 classical risk
factors (AUCbasic) and a model additionally including protein
biomarkers (listed in Supporting information, Table S8) that
were selected in ≥90% of the 100 group least absolute
shrinkage and selection operator (lasso) bootstrap iterations
(AUCextended) as well as their cross-validated delta AUC
(AUCextended � AUCbasic). The receiver operating characteristic
(ROC) curves of the AUC cross-validation are included in
Supporting information, Figure S4.

Figure 1 Statistical analysis plan. AUC, area under the curve; lasso, least absolute shrinkage and selection operator; VIM, variable importance mea-
sure. a1478 participants in the cross-sectional analysis; 608 participants in the longitudinal analysis.
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Figure 3 illustrates the results of the sensitivity analysis in-
cluding the comparison of variables between the outcomes
regarding the number of methods (group lasso with
bootstrapping, random forest, and support vector machine)
that ranked the variables in the top 10.

In the prediction analysis, the protein biomarkers were
ranked equal to or even higher than classical risk factors
(Supporting information, Tables S8 and S9) and were ranked
in the top 10 in all three methods more consistently com-
pared with classical risk factors (Figure 3).

Longitudinal analysis

Detailed results regarding the longitudinal analysis are in-
cluded in Supporting information, Tables S10–S13 and Figures
S5 and S6. Most relevant results of the association analysis in-
clude that N-terminal prohormone brain natriuretic peptide
(NT-proBNP) was the only protein biomarker selected for a
strong decrease in ASMM and the combination of a strong
decrease in ASMM and a strong increase in BFMI. In logistic
regression analyses, NT-proBNP was positively associated

Table 2 Prediction analysis — cross-validated AUCs of logistic regression models with classical risk factors (mean AUCbasic) and protein biomarkers in
addition to classical risk factors (mean AUCextended)

Outcome Mean AUCbasic (95% CI) Mean AUCextended (95% CI) Mean delta AUC (95% CI)

Low ASMM 0.67 (0.65, 0.71) 0.83 (0.82, 0.87) 0.16 (0.13, 0.20)
High BFMI 0.67 (0.65, 0.72) 0.89 (0.88, 0.92) 0.22 (0.18, 0.25)
Combination low ASMM and high BFMI 0.73 (0.69, 0.80) 0.85 (0.83, 0.90) 0.12 (0.08, 0.17)

ASMM, appendicular skeletal muscle mass; AUC, area under the curve; BFMI, body fat mass index; CI, confidence interval.
AUCbasic: AUCof a logistic regressionmodel including13 classical risk factors (age, high-density lipoprotein, triglycerides, glycatedhaemoglobin,
estimated glomerular filtration rate, albumin, sex, physical activity, hypertension, smoking status, education, alcohol intake, and intake
lipid-loweringmedication). AUCextended: AUC of the basicmodel plus all protein biomarkers selected in ≥90%of the group least absolute shrink-
age and selection operator bootstrap iterations (variables are listed in Supporting information, Table S8). Delta AUC: AUCextended � AUCbasic.
AUCs and delta AUCs are arithmetic means of 10-fold cross-validation. The confidence intervals of AUCs and delta AUCs were calculated
via 100-fold percentile bootstrapping.

Figure 2 Association analysis — boosting with stability selection — comparison of protein biomarker selection between the outcomes. Protein bio-
markers are primarily ordered according to the number of outcomes the biomarkers were selected for and secondary according to their selection
for the outcomes in the table from left to right. Only protein biomarkers are included that were selected for at least one outcome. The cut point
for variable selection was a selection frequency of 63%, which was determined by the algorithm based on the number of variables available for selec-
tion, the number of selected variables per iteration, and the maximum number of tolerable false positives. ASMM, appendicular skeletal muscle mass;
BFMI, body fat mass index.
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with a strong decrease in ASMM [odds ratio (OR) (95% CI):
1.40 (1.10, 1.77) and the combined outcome (OR (95% CI):
1.60 (1.15, 2.24)] after adjustment for all 13 covariates.
CCL4, CCL15, and a disintegrin and metalloproteinase with
thrombospondin motifs 13 were selected for relative
change in BFMI and protein delta homolog 1 for strong
increase in BFMI. In the prediction analysis, group lasso with
bootstrapping ranked NT-proBNP in first place for both,
strong decrease in ASMM and the combined outcome. Sensi-
tivity analysis presents age for relative change in ASMM and
CCL4 for relative change in BFMI as the only variables ranked
in the top 10 of all three methods for any outcome.

Discussion

This study aimed to identify new protein biomarkers of low
muscle mass, high fat mass, and their combination as well
as their changes over a 14 year follow-up period. In our
cross-sectional analysis, we identified KLK6, CCL28, and TFPI

as novel protein biomarkers associated with muscle mass
and PRSS27 with fat mass. CCL28 and TIMP4 are newly de-
tected biomarkers associated with the combination of low
muscle and high fat mass. In the longitudinal analysis,
NT-proBNP was the only biomarker that was selected for a
strong decrease in ASMM and the combination of a strong
decrease in ASMM and a strong increase in BFMI over
14 years.

To the best of our knowledge, this is the first study to in-
vestigate the pathological condition of combined low muscle
and high fat mass using proteomics. However, a few previous
studies investigated related body composition parameters.
Six studies investigated proteomics measured with PEA tech-
nology by Olink® using the CVDII panel with BMI-defined
obesity,12 inflammation panel with BMI and WC,13 CVDI panel
with changes in BMI and WHR,14 inflammation, cardiometa-
bolic, CVDII, and CVDIII panels with BMI-defined obesity,15

immuno-oncology panel with BMI,19 and a large-scale map-
ping of genetics of the proteome investigated causal relation-
ships of CVDI panel with BMI, body fat (%), and WHR.18 No
previous study investigated PEA-measured proteomics and

Figure 3 Sensitivity analysis— comparison of variables between the outcomes regarding the number of methods that ranked the variables in the top
10. Only variables are included that were ranked in the top 10 in at least two of the three analysis methods (group least absolute shrinkage and se-
lection operator with 100× bootstrapping, random forest, and support vector machine) in at least one of the five outcomes. Variables are primarily
ordered descending according to the total number (sum of all outcomes) of methods that ranked the variable in the top 10, and secondary according
to the outcome in the table from left to right based on the number of methods that ranked the variable in the top 10 for the outcome. ASMM, ap-
pendicular skeletal muscle mass; BFMI, body fat mass index.
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muscle mass. Other studies implemented the aptamer-based
proteomics approach SOMAscan by SomaLogic (Boulder,
Colorado, USA), which is as PEA a relative quantification
method, but instead of antibodies, aptamers are used,
which are randomly generated nucleotide sequences.23

Aptamer-based proteomics were used to investigate dual-en-
ergy X-ray absorptiometry (DXA)-measured body fat mass
(kg)16 as well as DXA-measured body fat (%) and lean body
mass (kg).17

The comparison of our results with those of other studies
has to be viewed with caution as different ethnicities can
show varying body composition and numerous different
parameters and measurement methods have been used to
define muscle and fat mass. As BFMI showed strong correla-
tions to BMI and WC in our data, comparisons of our results
with those of studies using these parameters are feasible to
some extent.

Relevant protein biomarkers

In the cross-sectional analysis, we identified various protein
biomarkers associated with both, muscle and fat mass param-
eters, among them IGFBP1 and IGFBP2. In line with our re-
sults, both proteins are reduced with increasing obesity24

and an US-American cohort study using single biomarkers
measured with radioimmunoassays showed that higher
total per cent fat and higher visceral fat were associated
with lower IGFBP1 and IGFBP2.25 In a Swedish PEA-based-
proteomics study, IGFBP1 was inversely associated with
BMI-defined obesity15 and by using aptamer methodology,
IGFBP1 was inversely associated with fat mass (kg).16

Concerning muscle mass, IGFBP1 was inversely associated
with DXA-measured low relative muscle mass in a Swedish
cohort of elderly women26 and IGFBP2 was inversely
associated with DXA-measured total muscle mass in an
US-American study.27 Both IGFBPs have been related to glu-
cose and insulin levels and are known to be suppressed by
GH.24 In our study, GH was selected for some of the same
outcomes that the IGFBPs were selected for as well. A longi-
tudinal PEA-based study observed that a decrease in GH was
associated with an increase in BMI and WHR over a 10 year
period.14 Payette et al. summarized the characteristics of
GH among others with a decreased secretion in obesity and
in contrast to our results inducing anabolic effects on skeletal
muscle. GH therapy can increase muscle mass, however with
deleterious side effects.28 Even though the literature is clear
regarding a positive association of GH and muscle mass, we
observed an opposite association. This may be explained as
follows: first, GH secretion is pulsatile and therefore difficult
to interpret as an individual value measured at one time-
point.29 Second, under conditions of cachexia, that is, body
wasting including a decrease in muscle and fat mass, ob-
served usually in patients with chronic diseases such as heart

failure (HF), GH resistance can develop.30 This is character-
ized by increased secretion of GH and reduced insulin-like
growth factor 1 (IGF-1) as GH is ineffective in stimulating
IGF-1 production,30,31 diminishing the highly relevant effect
of IGF-1 on muscle regeneration and decelerating muscle
wasting under conditions of high GH concentrations.30 Even
though we cannot prove this malfunction in our participants
with low ASMM, this process might give an insight into the in-
verse relationship of GH with ASMM in our study.

KLK6, MB, and TFPI were only associated with the continu-
ous and categorical parameters of ASMM. MB is an already
known biomarker for increased muscle mass. MB further in-
creases as a result of exercise induced through the degrada-
tion of protein structures within the muscle. In addition to
its role in oxygen storage and transport, MB is thought to in-
fluence nitric oxide at the microvascular and tissue level.32

KLK6 and TFPI are new biomarkers associated with muscle
mass. Due to a lack of previous studies related to body
composition, we described the main hallmarks of the new
biomarkers. The over-expression of KLK6 transcript and pro-
tein has been recognized in numerous cancer types, such as
breast, renal, pancreatic, ovarian, colorectal, and lung
cancer.33 In our study, KLK6 was a risk factor for low muscle
mass, notably, in participants without cancer. Moreover,
KLK6 is linked to inflammatory pathways due to its ability to
activate protease-activated receptors, which are relevant in
driving inflammatory processes. KLK6 is further attributed
to participate in angiogenesis and apoptosis pathways.33

Regarding TFPI, recent articles investigated the biomarker
as a potential treatment against haemophilia, due to its role
in thrombin generation and coagulation processes.34 To our
knowledge, the relations of KLK6 and TFPI to muscle mass
have not been observed before.

FABP4, ADM, PRSS27, and PON3 were only associated with
the continuous and categorical parameters of BFMI. In a pre-
vious PEA-proteomics study, ADM and FABP4 were positively
associated with BMI-defined obesity.15 An increase in FABP4
was also associated with an increase in BMI and WHR over
10 years.14 Large-scale mapping of genetics of the proteome
identified that BMI and body fat (%) causally affected
PEA-measured ADM and FABP4 positively and WHR affected
these biomarkers inversely.18 PRSS27 was the only new bio-
marker associated with fat mass in our study. The protease
is largely unknown, and there are only a few articles mention-
ing PRSS27, for example, as a possible prognostic marker of
oesophageal squamous cell carcinoma in patients with preop-
erative treatment.35

LEP, CCL28, and TIMP4 were associated with the
combination of low ASMM and high BFMI. Associations of
protein biomarkers to the combined outcome can only be ex-
pected if the associations to ASMM and BFMI are aligned in
opposite directions or if the strengths of the associations dif-
fer to a high extent. If the associations of a biomarker to
ASMM and BFMI are similar, a significant association to the
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combined outcome cannot be assumed as the combined out-
come consists of opposite extremes (low ASMM and high
BFMI). LEP is known to increase muscle mass and is inextrica-
ble from fat mass as it regulates energy expenditure and LEP
sensitivity decreases in obesity.36 In relation to our results,
previous European studies using PEA technology displayed
that LEP was positively associated with BMI-defined
obesity12,15 and changes in BMI and WHR.14 LEP measured
with aptamer-based proteomics was positively associated
with fat mass (kg) in a European cohort16 and was selected
as one of the top three proteins for body fat (%) but not lean
mass (kg) in a Finnish cohort.17 In large-scale mapping of ge-
netics of the proteome, BMI and body fat (%) causally af-
fected LEP positively and WHR affected LEP inversely.18

Underlying mechanisms connecting LEP to muscle and fat
mass might constitute that under physiological conditions,
LEP binds to its receptors in skeletal muscle and fat cells,
which can initiate energy dissipation and reduce fatty acid ac-
cumulation as well as lipotoxicity in the muscle and fat cells.
In obesity, LEP is increased but cannot bind to its receptors;
thus, processes of fatty acid oxidation might be impaired,
which can lead to intracellular accumulation of lipid
intermediates.36 CCL28 is a new marker for muscle mass
and as well as TIMP4 a new marker for the combination of
low muscle and high fat mass. CCL28 has only recently and
for the first time been inversely associated with the meta-
bolic syndrome in Japanese adults also using PEA
proteomics.37 Generally in line with this finding, we observed
an inverse relationship of CCL28 with BFMI. TIMP4 is highly
expressed in adipose tissue and was reported to promote
high fat-induced obesity, fatty liver, and dyslipidaemia in a
study using TIMP4-deficient mice exposed to high-fat diet.
The underlying mechanism may be the promotion of intesti-
nal lipid absorption by TIMP4 through the reduction of the
proteolytic processing of CD36, a fatty acid transporter in
the small intestine. In addition, mice with deficient TIMP4
were protected against skeletal muscle triglyceride accumula-
tion in the quadriceps.38 Our observations are in line with
these reports, as higher levels of TIMP4 were associated with
the combination of lower muscle mass and higher fat mass.

In the longitudinal analysis, NT-proBNP was the only pro-
tein biomarker selected for a strong decrease in ASMM and
the combination of a strong decrease in ASMM and a strong
increase in BFMI. In a longitudinal cohort study, a decrease in
NT-proBNP was associated with an increase in BMI and WHR
over 10 years.14 NT-proBNP levels are increased in severe
muscle wasting and the components of NT-proBNP might
be involved in lipolysis in adipose tissue.39 Furthermore,
NT-proBNP is already established in clinical application as a
marker of HF. Muscle mass reduction as a part of body
wasting is described as a complication of HF by the term car-
diac cachexia.30 This could represent the linkage between
higher baseline NT-proBNP values and a stronger decrease
in muscle mass over time. We are not able to directly verify

this as PEA values are relative and not absolute protein
concentrations necessary for HF classification. Additionally,
compared with the association solely with a strong decrease
in muscle mass, we observed a stronger association of
NT-proBNP with a strong decrease in muscle mass combined
with a strong increase in fat mass, whereas cardiac cachexia is
usually accompanied by reduced muscle and reduced fat
mass. However, because not all HF patients show a decrease
in fat mass as for instance over 80% of HF patients with pre-
served ejection fraction are overweight or obese,30 a de-
creased heart function reflected by NT-proBNP could still be
involved in this association.

Cross-sectional prediction analysis

Protein biomarkers were ranked equally high or even higher
than most classical risk factors. In sensitivity analysis, protein
biomarkers were ranked in the top 10 by all three methods
more consistently compared with classical risk factors. The
prediction performance reflected by the AUC for all three bi-
nary outcomes distinctly increased when protein biomarkers
selected in ≥90% of group lasso bootstraps were added to
the classical risk factors. This highlights the importance of
protein biomarkers in addition to classical risk factors for op-
timal prediction of low muscle, high fat mass, and their
combination.

Comparison: cross-sectional and longitudinal
analysis

Prediction analysis in the longitudinal data yielded distinctly
lower AUCs concerning all three, AUCbasic (only classical risk
factors), AUCextended (classical risk factors plus protein bio-
markers), and delta AUC (AUCextended � AUCbasic), compared
with the cross-sectional data. Moreover, the overlap of bio-
markers that were selected in both, longitudinal and
cross-sectional analyses, was lacking. The main reason likely
is that our prospective data force the relation into the direc-
tion of baseline protein biomarkers leading to changes in
body composition as proteomics data were only available at
baseline, and we were therefore unable to investigate the
changes in proteomics with the changes in body composition.
If, in turn, body composition would affect the biomarkers,
only cross-sectional analyses without pre-specified direction
would be able to identify the association. A recently
published large-scale mapping of genetics of the proteome
supports this concept as it demonstrated that body fat (%)
causally affected LEP, ADM, and FABP4, but there was only
weak evidence of FABP4 and LEP and no evidence of ADM
causally affecting body fat (%).18 In our analysis, these
biomarkers were selected in cross-sectional but not in
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longitudinal analysis, possibly due to the lacking causal effect
of the biomarkers on fat mass.

Strengths and limitations

A major strength of this project presents the usage of
proteomics in addition to classical risk factors enabling us to
simultaneously analyse 233 protein biomarkers. Furthermore,
we employed multiple machine learning approaches to
analyse the data based on different aspects. Another strength
encompasses the usage of stability selection, which strongly
minimizes false positives in the association analysis. Only
protein biomarkers with good measurement quality were
included in the analysis. Concerning the comparison of the
outcomes, bias was minimized as muscle and fat mass were
calculated based on the same BIA measurements. Another
strength constitutes the implementation of both cross-
sectional and longitudinal approaches.

A few limitations of the present study also require acknowl-
edgement. First, generalizability of the results is limited for
younger adults and other ethnicities, because the study in-
cluded primarily white Europeans aged 55–74 years. Second,
as the number of participants in the combined outcome was
relatively low, we had to implement different cut points for
the combined outcome compared with the single outcomes.
Third, the PEA technique used for proteomics measurements
provides only relative and not absolute protein concentration.
Fourth, as we used a targeted proteomics approach with pro-
teins selected for inflammation and CVDs, other non-targeted
proteins could also be relevant for muscle and fat mass.

Conclusion

To the best of our knowledge, we identified KLK6, CCL28, and
TFPI as novel protein biomarkers associated with muscle
mass and PRSS27 with fat mass. CCL28 and TIMP4 are new
biomarkers associated with the combination of a low muscle
and a high fat mass. NT-proBNP was the only biomarker se-
lected for a strong decrease in muscle mass and the combina-
tion of a strong decrease in muscle mass and a strong
increase in fat mass over 14 years. In the cross-sectional anal-
ysis, proteomics substantially improved the prediction of low
muscle, high fat mass, and their combination on top of classi-
cal risk factors.
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