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Sampling of cereals and cereal-based foods for the determination of ochratoxin A: an overview
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The mycotoxin ochratoxin A (OTA) is known to be heterogeneously distributed both intrinsically (from one
individual food item to the next) as well as distributionally (throughout a sample of individual food items) in
cereals and cereal-based foods. Therefore, proper sampling and sample comminution are special challenges, but
are prerequisites for obtaining sound analytical data. This paper outlines the issue of the sampling process for
cereals and cereal-based foods, starting with the planning phase, followed by the sampling step itself and the
formation of analytical samples. The sampling of whole grain and retail-level cereal-based foods will be discussed.
Furthermore, possibilities to reduce sampling variance are presented.

Keywords: quality assurance; ochratoxin A; cereals and grain

Introduction and relevance of ochratoxin A (OTA)

The mycotoxin ochratoxin A (OTA) is one of the most
important fungal toxic secondary metabolites with
regards to food safety. It has been detected in a great
number of various foodstuffs including cereals and
cereal-based foods, dried vine fruits and wine, as well
as other dried fruits, nuts, liquorice, coffee, and cocoa
(Mateo et al. 2007; Duarte et al. 2009; Fernández-Cruz
et al. 2010; Kuiper-Goodman et al. 2010). In general,
concentrations of OTA in foodstuffs do not exceed a
few mg kg�1. Additionally, OTA is carried over into
human blood and plasma and can be detected in
mother’s milk (Scott 2005; Galvano et al. 2008;
Biasucci et al. 2010; Coronel et al. 2010).

A recently conducted survey on the dietary expo-
sure of OTA revealed that cereals and cereal-based
foods are the major contributor to OTA intake. These
food items contributed more than 75% to the esti-
mated dietary exposure to OTA for Canadian 1 year
olds and 60% for Canadian 31–50-year-old males
(Kuiper-Goodman et al. 2010). Overall, adult
European and Canadian consumers are exposed to
15–60 ng OTA kg�1 bodyweight week�1. The average
exposure is thus below a tolerable weekly intake (TWI)
of 120 ng OTA kg�1 bodyweight (European Food
Safety Authority (EFSA) 2006; Kuiper-Goodman
et al. 2010).

In tropical and subtropical climates OTA is primar-
ily produced by Aspergillus section Flavi, Circumdati
and Nigri (e.g. A. ochraceus, A. carbonarius), whereas
in temperate climates the major producer of OTA
is Penicillium verrucosum (Frisvad et al. 2007).
Chemically, OTA (C20H18ClNO6, MW¼ 403.82gmol�1)
is a chlorinated dihydroisocoumarin linked through
an amidic bond to L-beta-phenylalanine. This struc-
tural similarity to the essential amino acid is the major
cause for the biochemical effects of OTA and affects
the enzymes involved in the metabolism of phenylala-
nine. OTA is a relatively stable molecule which primar-

ily accumulates in kidney, but also in liver, muscle and
body fat (Aish et al. 2004). As it passes through the
food chain unchanged, bioaccumulation of OTA from
feed tomeat andmeat products was observed. Although
there is a large number of studies that have been
completed, the genotoxicity and especially the mode of
action are not yet fully characterised (EFSA 2006).
Therefore, the International Agency for Research on
Cancer (IARC) classified OTA as a metabolite belong-
ing to group 2B (possible human carcinogens) (IARC
1993). Long-term exposure of OTA is primarily asso-

ciated with renal tumours, but can also lead to liver
cancer. Additionally, OTA has neurotoxic, teratogenic
and immunosuppressive properties (Bennett and Klich
2003; Richard 2007). OTA is also thought to cause
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lipid peroxidation, DNA damage and disruption of
calcium homeostasis which are associated with the
oxidoreductive stress of OTA (Ringot et al. 2006). The
no-observed-effect level (NOEL) of OTA following oral
exposure was determined to be 21 mg kg�1 in rats
(Rached et al. 2007). Due to the hydrolysis of the
peptide bond of OTA and the conversion to ochratoxin
� by protozoa in the ruminal fluid, sheep and cows
are less sensitive to OTA than monogastric animals
(Özpinar et al. 1999).

According to van Egmond et al. (2007) at least 99
countries had mycotoxin regulations for food and/or
feed in 2003. In European Union Commission
Regulation (EC) No. 1881/2006 and its amendments,
including No. 105/2010 for OTA, maximum limits
were set for certain mycotoxins in different foodstuffs
(European Commission 2006b, 2010). For cereal and
cereal-based foods the maximum OTA levels range
from 0.5 mg kg�1 for processed cereal-based foods or
baby foods to 5.0mg kg�1 for unprocessed cereals. In
2009, the Bureau of Chemical Safety of Health Canada
proposed regulatory levels for OTA in several foods
and beverages in Canada (Health Canada – Bureau of
Chemical Safety 2009). The proposed Canadian max-
imum limit for baby foods is the same as in the
European Union at 0.5mg kg�1. Proposed maximum
limits for other cereal-based foods range up to
7 mg kg�1 for derived cereal products (wheat bran)
(Health Canada – Bureau of Chemical Safety 2009).

This paper focuses on the issue of sampling,
including general aspects and different sampling pro-
cedures for cereals and cereal-based foods for the
determination of OTA. Considering the importance of
sampling as a prerequisite for the accuracy of analyt-
ical results, the literature dealing with this step of
analysis is sparse.

General aspects of sampling and homogenisation

Sampling is an essential component of any monitoring
activity regarding contaminants in food. But for the

analysis of OTA in cereals, sampling may be the most
important consideration. The proper selection of a
sample from the lot under study and the subsequent
steps undertaken to produce a portion for analysis is
crucial for the production of sound analytical data.
Much of the initial research on the importance of
sampling for mycotoxin analyses has been performed
for aflatoxins in various food matrices (Whitaker and
Dickens 1974, 1976, 1979; Whitaker 1977).

Whitaker and Dickens (1974) demonstrated that
sampling is the largest source of variance in the final
test result for analysis of aflatoxins in peanuts. In this
work the authors examined the three basic steps of
sampling, subsampling and chemical analysis that are
employed to measure mycotoxins in food. These three
basic steps all contribute to the total variance of test
results. However for the specific case of aflatoxins in
peanuts, the sampling variance was estimated to
account for 88% of the total variance for the exper-
imental conditions. The subsampling variance was the
next largest, followed by the variance of the analytical
test. The fact that both aflatoxins (Dickens and
Whitaker 1986) and OTA (Vargas et al. 2004) appear
to display similar heterogeneity in sample lots indicate
sampling is also likely the largest source of variance for
the measurement of OTA in food items.

Every step of a mycotoxin test procedure from
sampling to the final lab analysis contributes to the
uncertainty of an analytical result. General steps of the
sampling and analysis process for whole grain, as well
as sampling terms (Codex Alimentarius 2009) are
shown in Figure 1. A lot (an identifiable quantity
delivered at one time and assumed to have common
characteristics) is subsampled to obtain incremental
samples. The incremental samples are combined to
produce an aggregate sample. The laboratory sample is
the sample intended for the laboratory and may consist
of the entire, or a portion, of the aggregate sample. The
laboratory sample is comminuted, and a test portion is
taken from the comminuted laboratory sample. The
test portion is defined as the portion of sample taken
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Figure 1. Flow diagram of the various steps in the sampling and analysis process for cereal grains.
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through the chemical test procedure. Even with the
best approach the OTA concentration of a sample can
never be determined with absolute certainty when only
a portion of the whole lot is measured. But the aim of
developing and using robust sampling plans is to
minimise the variances and reduce the uncertainties
surrounding results.

In food safety programmes a range of cereal-based
food items along the continuum of the food production
chain are routinely analysed for OTA. Food items
surveyed often range from unprocessed whole grains to
retail products that have undergone considerable
processing. The difficulty of sampling for OTA is
most pronounced in the analysis of whole grains. Since
mixing and homogenisation occur during the produc-
tion of processed foods the heterogeneous distribution
of OTA is not as distinctive as in the raw ingredients.
However, sampling is nevertheless crucial for any
analysis of cereal-based foods.

Distributional and intrinsic heterogeneity

The complexity of the sampling issue for OTA is
related to the nature of this mycotoxin and its
production. The presence of OTA can vary geospa-
tially throughout a sample of individual food items;
this has been termed distributional heterogeneity
(DH). The relative standard deviation (RSD) of the
distributional heterogeneity is independent of the
particle masses and is calculated according to
Equation (1):

RSDDHð%Þ ¼
�DH

�a
¼

ffiffiffiffiffiffiffiffiffi
�DS

NI

r
ð1Þ

DS ¼
Xn
i¼1

xi
ai � �a

�a

� �2

ð2Þ

The standard deviation (�DH) is divided by the
average concentration of the analyte in the material
( �a). DS is the sampling constant caused by distribu-
tional heterogeneity and is given by Equation (2) where
xi is the mass fraction and ai is the analysis of the ith
particle of the analyte. The number of particles used
for calculation is represented by n. The quantity � is a
mixing constant influenced by the degree of mixing and
blending and can take a value between 0 and 1. NI

refers to the number of incremental samples used for
the aggregate sample (Lyman et al. 2009).

A study demonstrating the distributional heteroge-
neity of OTA in grain was published by Biselli et al.
(2008) by manually sampling a 26 t lot of wheat in a
truck. Following Commission Regulation (EC) No.
401/2006 (European Commission 2006a), 100 incre-
mental samples (each 1.0–1.3 kg in mass) were taken
from the entire truckload following a grid pattern.

In addition to the analysis of an aggregate sample of
10 kg composed of 100 g of each incremental sample, a
portion of every incremental sample was individually
analysed for OTA. Localised areas of elevated OTA
concentrations were observed and concentrations in
the individual subsamples ranged from below 0.2 to
8.6 mg kg�1 in so-called ‘hot spots’. Consequently, a
coefficient of variance of 200% was obtained and the
OTA contamination level determined in the aggregate
sample did not agree with the averaged OTA concen-
tration in the incremental samples (Biselli et al. 2008).

In addition to the distributional heterogeneity,
OTA concentrations amongst individual food items
in a lot (for example OTA in individual kernels of
grain) can also vary widely. This variation has been
referred to as intrinsic heterogeneity (IH). The calcu-
lation of the RSD of the intrinsic heterogeneity is
presented in Equation (3):

RSDDHð%Þ ¼
�IH

�a
¼

ffiffiffiffiffiffiffiffi
Ks

MS

r
ð3Þ

KS ¼
Xn
i¼1

xivi�i
ai � �a

�a

� �2

ð4Þ

The intrinsic standard deviation (�IH) is divided by
the average concentration of the analyte in the material
( �a). MS represents the mass of the identical incremental
samples and KS is the sampling constant for the
material with regard to the compound of interest and is
calculated according to Equation (4). The volume and
density of the ith particle are vi and �i, respectively
(Lyman et al. 2009). The data presented in Table 1
demonstrate the intrinsic heterogeneity in single ker-
nels of wheat. In this investigation, concentrations of
OTA measured on individual kernels varied over two
orders of magnitude.

The sampling process

The overall aim of a sampling process is to obtain a
representative sample for analysis. The complexity of

Table 1. Ochratoxin A (OTA) concentrations detected in
single kernels of Canada western amber durum inoculated
with Penicillium verrucosum and incubated in plastic bags.

OTA (mgkg�1)
Number
of kernels

5LOQa 421
0.02–0.1 5
40.1–1 3
41–2 7
42 4

Note: aLimit of quantitation¼ 0.02mg kg�1.
Source: Data are from Nowicki and Roscoe (personal
communication).
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the sampling process – the group of activities under-
taken to obtain an appropriate test portion from the
lot under study for analysis – is apparent when the
process is broken down into its component steps.
Several publications discuss the component steps of the
sampling process, and their associated considerations,
for example Davis et al. (1980), Coker et al. (1995),
Crosby and Patel (1995), and Crosby (1997). Many of
these steps are sources of variance in the analysis of
OTA in cereals and cereal-based foods. They can also
be sources of bias, and will contribute to the difference
between a test result and the true mean of OTA in the
lot under study. The fundamental actions that are
involved in the sampling process include: planning,
sampling, comminution and subsampling.

Planning

Planning is common to all food surveillance and
monitoring activities. The sampling scheme chosen
during the planning stage ultimately depends upon the
goal of the analysis, as well as resources available. For
example, different sampling schemes will be required
for monitoring activities that aim to analyse shipments
of grain to ensure their compliance with regulatory
limits and for a market basket survey that aims to
provide data for exposure assessments.

The sampling schemes selected will identify the
food items – be they whole grain shipments, flour or
retail products – to be selected for analysis. Such
schemes include random sampling, targeted sampling
(focusing on food items that potentially contain
violative levels of analyte), and opportunistic sampling
(selecting all available food items for a specific
category, geographical location, etc.), and are further
described in general overviews of sampling (Crosby
1997). Information from marketing research firms on
the market share held by retail products, import and/or
export data, plus food intake data from dietary surveys
can all provide guidance or direction for sampling
schemes as well. During the planning stage, the number
of samples, the sampling time period and other factors
that define the breadth of data required will also be
incorporated into the sampling scheme. Additionally,
transportation and storage conditions, as well as the
sample preparation and analytical method, and ulti-
mate use of the data have to be defined beforehand.
Miraglia et al. (2005) present a holistic view of an ideal
sampling plan for the determination of mycotoxins
using a two-step approach. First, the questions ‘why,
where and when’ have to be defined depending on the
purpose of sampling, followed by ‘how’ to obtain
representative samples.

Coker et al. (1995) discussed approaches for
designing and evaluating sampling plans for the
analysis of aflatoxins in foods and feeds. These

approaches can act as a starting point for the devel-
opment of plans for OTA in which the analytical
results will be compared against a specified limit, such
as a maximum level. This approach uses theoretical
probability models in order to simulate the perfor-
mance of a proposed sampling plan. The sampling,
preparation, and analytical variances are determined
empirically, and the probability of an analytical result
for a particular sample exceeding a specified limit is
calculated. These probabilities can be graphed in an
operating characteristics (OC) curve to illustrate the
likelihood of encountering false positive and negative
errors over a range of concentrations. The sampling
plan can then be modified in order to minimise these
types of errors. OC curves have been generated to
illustrate probabilities of false positive and negative
errors in the analysis of OTA in green coffee sampled
under a specific protocol (Vargas et al. 2006). Further
information on the generation and use of OC curves is
provided in Whitaker et al. (2010).

Obtaining a physical sample

After the sampling scheme is developed in the planning
stage, the next step is to obtain a sample. The sample
obtained could be a large mass of grain, such as from
a truck, railcar or vessel hold. At the other end of the
food production chain, sampling may simply be the
purchase of a retail product from a market. It has been
proposed that to evaluate whether or not a mycotoxin
is present, the sampling procedure should be biased to
include items that are more likely to contain the
mycotoxin (Dickens and Whitaker 1986). The differ-
ence in the unbiased and biased procedures highlight
the need to define the goal of the analysis prior to
sampling.

Sampling of whole grain

Formal guidelines have been established by some
jurisdictions that stipulate how lots of whole grain
should be sampled. Sampling according to these
formalised standards and guidelines would mitigate
the contribution of distributional heterogeneity to the
total variance of the OTA analysis. For example, the
European Union provides criteria for dividing lots of
grain into sub-lots, and specifies the number of
incremental samples that should be taken and com-
bined to produce an aggregate sample for analysis in
Commission Regulation EC 401/2006 section B of
Annex I. This regulation states that for cereal grains in
a lot between 300 and 1500 t, the lot is to be divided
into three sub-lots and 100 increments are to be taken
from each sub-lot. The increments are then combined
into an aggregate sample of 10 kg, and this aggregate
sample is considered representative of the lot. The
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regulation also emphasises that incremental samples

should be taken at various locations distributed

throughout the sub-lot in an aim to obtain an unbiased

sample to estimate the average OTA concentration in

the lot (European Commission 2006a).
An International Organization for Standardization

(ISO) standard for the sampling of cereals and cereal

products also exists (ISO 2009). The standard states

that it is preferable to sample bulk products when they

are moving so that all constituent parts have an equal

opportunity to be sampled, and proceeds to outline

procedures for dynamic and static grain and milled and

other cereal products. The procedure for sampling

flowing grain by mechanical means specifies that a
minimum of 20 incremental samples (of a mass

between 300 and 1900 g) per sub-lot of 500 t be

taken. A sample of 10 kg is obtained by homogenising

and dividing the aggregate sample formed from the

incremental samples. The standard does not address

comminution of whole grain, as the definition of

homogenisation is given as the ‘thorough blending by

mechanical or manual means so that contaminants and

physical properties are evenly distributed throughout

the aggregate or laboratory sample’ (ISO 2009).
In North America, the Grain Inspection, Packers

and Stockyards Administration (GIPSA) and the

Canadian Grain Commission (CGC) provide hand-
books for grain sampling procedures for stationary lots

in order to produce a representative sample of the lot

for grading purposes (GIPSA 1995; CGC 2009). The

ISO standard stipulates that static bulk products that

are more than 9m deep should be sampled when they

are flowing, such as during loading or unloading (ISO

2009). Since the goal of these procedures is to produce

a representative sample of the stationary lot, the

sample would also be appropriate for OTA analysis

if the mean OTA concentration in the lot of stationary

grain was desired. These procedures lay down a

probing pattern defining the drawing of incremental

samples at different locations in a bulk lot. For

example, Figure 2 shows the probing patterns for

open containers, hopper railcars, and trucks outlined
by the CGC (2009).

The mechanics of sampling are discussed in a good

overview by Dickens and Whitaker (1986); a more

mathematical treatment can be found in Gy (1999).

For random sampling schemes, the ultimate aim is to

use a method that gives each food item the same

chance of being selected as all others. The most

effective method for dynamic lots is the use of

commercially available automatic sampling equipment

such as cross-cut samplers. A time trigger controls the

movement of a diverter at predetermined and uniform

intervals through the entire portion of a stream of

moving grain or flour. To avoid size discrimination of
larger particles, the opening of the sampling container

should be two to three times larger than the biggest
particle (Whitaker et al. 2010).

Rivas Casado et al. (2009) have evaluated data
describing OTA in a 26 t truck shipment of wheat
(Biselli et al. 2008) sampled using a probe. They
compared the sample standard deviation and bias of
results generated in a model that employed two
sampling strategies. Plots of the root mean-squared
error (calculated as the square-root of the sum of bias
and SD) plus the upper 95% confidence interval versus
sample size constructed from random and regular
sampling simulations overlapped. The authors con-
cluded the difference in results between random and
regular (samples taken according to a predefined grid
on the truck bed) sampling was negligible for this
particular case (Rivas Casado et al. 2009).

For occasions when stationary lots of grain need to
be sampled, probes are used. Ideally, the stationary lot
of grain to be sampled has been thoroughly blended
prior to probing. It is known that settling of various
sized kernels can occur that will stratify kernel sizes
over the volume of the lot. However, unlike the

Train hopper car – approximately 85 t 

Probe size: 1.6 m minimum

Number of probe samples: 8 per 4-compartment car

Open top containers - approximately 20 t

Probe size: 1.6 m minimum

Number of probe samples: 5 

Probe where indicated by o.

Flat bottom trucks 
Probe size: 1.6 m minimum 
Number of probe samples: 8 minimum/single trailer,
10 minimum/truck and trailer 

Probe where indicated by . 

Figure 2. Canadian Grain Commission (CGC) probing
patterns defining the draw of samples at different locations
in various bulk static lots (CGC 2009).
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situation with other mycotoxins, such as deoxynivale-
nol (Sinha and Savard 1997), there have been no
reports of a correlation between Penicillium verrucosum
infection (and OTA production) and kernel size. It is
still prudent for the user to ensure that the probe used
has large enough openings to avoid size discrimination
of large kernels during sampling though.

Sampling of retail products

For bulk material such as whole grain, sampling plan
considerations and their effects on OTA analytical
data have been examined. In contrast, less effort has
been invested in evaluating sampling strategies for the
analysis of OTA in retail products. There appear to be
no published evaluations of sampling plans for OTA in
cereal based retail products. However, MacArthur
et al. (2006) have examined sampling plans for the
measurement of OTA in dried fruit and aflatoxin B1 in
pistachio nuts. They concluded that the sampling plans
have to be adapted to the product under examination,
and that a sampling plan which leads to results fit for
purpose for one product cannot necessarily be applied
to another product.

Sampling of retail samples often requires simpler
logistics since food products at the retail level are
generally packaged in discrete small amounts. In a
similar fashion as the aggregate samples of grain,
aggregate samples can be prepared from multiple
packaged food products. Commission Regulation EC
401/2006 (European Commission 2006a), the CGC
(2009) and ISO (2009) provide guidelines for the
sampling of lots traded in individual packaging such
as sacks, bags, or retail units. For official controls the
sampling frequency (SF) is calculated according to
Equation (5) and sets down that from every nth item
an incremental sample should be taken. SF depends
on the weights of the lot, the incremental sample, the
aggregate sample and the individual packing
(European Commission 2006a):

SFn ¼

weight of the lot
�weight of the incremental sample

� �

weight of the aggreagate sample
�weight of the individual packing

� � ð5Þ

Proper attention must still be paid to sampling of
cereal-based foods at the retail level because OTA
concentrations in retail products can differ amongst
products and over time. A survey of OTA in retail food
products is presented by Ng et al. (2009). From 2004 to
2006, 274 dried pasta samples including regular, whole
wheat, and couscous were collected at the retail level
in five different areas across Canada and analysed
for OTA. The incidence rates for OTA above the limit

of quantification (0.5 mg kg�1) were 21%, 18% and
66% for 2004, 2005, and 2006, respectively. Mean and
maximum concentrations of OTA in the pasta samples
differed by up to a factor of two over the 3 years of the
study as well (Ng et al. 2009). These results highlight
the fact that there is variability in OTA concentrations
observed in retail products. The range of OTA
concentrations observed may be associated with a
variety of factors, including the distributional and
intrinsic heterogeneity of OTA in ingredient bulk lots
and variation in the OTA content of ingredients from
different suppliers. Nevertheless, the range of OTA
concentrations observed by Ng et al. emphasise that
the variability needs to be taken into account when
developing good sampling plans. For example, multi-
year studies should be undertaken if surveillance
activities aim to characterise the occurrence of OTA
in the food supply.

Retail level food products are often sampled and
analysed for compliance testing and to provide data for
exposure and risk assessments. For example, Total
Diet Studies (TDS) use aggregate samples of various
food products. This approach allows for the inclusion
of more food products in a survey, but minimises the
overall number of samples that need to be processed
and analysed.

For instance, the Canadian TDS is a market basket
survey that samples a number of individual retail food
items and analyses them in the form of aggregate
samples (Conacher et al. 1989). The data generated by
the Canadian TDS is used to evaluate the total intake
of a certain contaminant and provide data for risk
assessment. From 1992 to 1995 the Canadian TDS
were conducted biannually; from 1998 to the present
they have been run annually. Each year, foods com-
prising more than 1% of the average Canadian’s diet
are purchased and prepared according to standardised
protocols. Food items are purchased from up to four
different markets within a selected Canadian city over
a period of 5 weeks, ensuring a variety of items is
obtained from various sources. Foods are prepared as
for consumption, and replicate items from the various
grocery stores or restaurants visited are combined and
homogenised to form an aggregate sample (Conacher
et al. 1989). Foods deemed most likely to contain
OTA, based on relevant scientific data, are selected for
analysis.

It has to be kept in mind that the analysis of
aggregate samples will lead to the dilution of infre-
quent high concentrations by food products that do
not contain any analyte. However, this is not neces-
sarily a disadvantage when data are used to provide
broad level assessments on the occurrence of OTA in
nationally consumed food items, or population level
exposure assessments.
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Subsampling

Following the sampling of lots (or sub-lots), precau-

tions should be taken in order to avoid any changes of

the incremental samples that can affect preparation of

aggregate or laboratory samples, test portions, or the

OTA test procedure itself. Samples must be stored

under conditions that will not promote the production,

or degradation, of OTA. Some specific recommenda-

tions regarding the storage of grain prior to analysis

are provided by Davis et al. (1980). For instance,

production of OTA reached a maximum approxi-

mately 100 times higher in durum at a moisture content

of 19% as compared with 15% as spring temperatures

rose (Abramson et al. 1990). Hence storage of wet

grain in plastic bags at warm temperatures is not

advisable. Retail food items should be stored as per

label directions, as consumers would store the product.
Obtaining a portion of the aggregate or laboratory

samples is a crucial step in the analysis of cereals and

cereal-based foods for OTA. Modern analytical

methods most often require a test portion of a small

mass, thus the aggregate or laboratory samples need to

be reduced in size in order to be compatible with the

OTA test procedure in use. Multiple steps can be

applied in order to obtain this aliquot of the aggregate

or laboratory samples. Each subsampling step is a

source of variance in the final OTA test result. The

ultimate goal is to obtain a representative portion of

the lot or sub-lot which is small enough for the OTA

test procedure. Ideally, all of the items in the lot or sub-

lot should have an equal chance of being selected for

incremental and subsequent samples. Hence, commi-

nution and homogenisation are very important.
For the specific example of grain, mechanical

methods can be used to separate a laboratory sample

from the aggregate sample. Many sample splitting

devices are commercially available for this task. Cargo

and Boerner dividers have stationary baffles that split

the stream of grain poured into the divider and redirect

the split streams into collection receptacles. Other

devices used for subsampling whole grain are rotary

sample dividers, which contain hoppers with feeder

chutes that empty grain into rotating collection recep-

tacles. Rotary sample dividers can also be used to

separate comminuted grain.
For granular product such as whole grains, it is

recommended to comminute and homogenise the

entire aggregate sample before laboratory samples are

drawn (Whitaker et al. 2010). Commercially available

subsampling mills incorporate both comminution and

dividing; grain is simultaneously comminuted and

subsampled in these instruments. Alternatively riffle

or rotary sample dividers may be used for dividing the

comminuted grain.

Another method of obtaining a laboratory sample
or a test portion is to comminute food items suspended
in liquid to produce a slurry, and then subsample the
slurry. A paper by Spanjer et al. (2006) contains a
summary of studies that have used slurry mixing. This
technique has been applied mainly in the analysis of
aflatoxins in various food matrices. Variance due to
subsampling is reduced when granular food items, such
as pistachios and peanuts, were slurry mixed as
opposed to dry ground in the analysis of aflatoxins
(Velasco and Morris 1976; Schatzki and Toyofuku
2003). The coefficient of variation for results produced
by the method involving slurry mixing ranged from
approximately two to four times less than those from
dry grinding. For example, experimental coefficients of
variation for aflatoxins in pistachios were determined
to be 0.20 and 0.095 for dry grinding and slurry
mixing, respectively (Schatzki and Toyofuku 2003).
The reduction in the coefficients of variation was
attributed to smaller particles and a more homogenous
distribution of particle sizes obtained during the slurry
mixing.

All of the existing data on the comparison of slurry
mixing and dry grinding are for peanuts, pistachios,
and other higher fat content seeds, therefore it is
unclear if the advantageous reduction of subsampling
variance observed in the analysis of aflatoxins in these
items will also occur for OTA in cereals. One of the
reasons for using slurry mixing is to avoid clogging of
the mill with higher fat content items (Velasco and
Morris 1976). Clogging is not an issue for cereals
because they have a much lower fat content than
pistachios and peanuts (Weihrauch and Matthews
1977; Maguire et al. 2004; Ryan et al. 2006).

Reducing sampling variance for OTA in cereals and

cereal-based products

The nominal value of the sampling variance depends
upon the specific experimental conditions, including
analyte concentration, sample sizes, and OTA test
procedure used. The rank order of sam-
pling4subsampling4analytical variance has been
observed in many situations, including aflatoxins in
peanuts (Whitaker and Dickens 1974), cottonseed
(Whitaker and Dickens 1976), almonds (Whitaker
et al. 2006), and OTA in green coffee (Vargas et al.
2004). Therefore, improvements in analytical variance
will have a small effect on the total variance of results
(Vargas et al. 2004; Whitaker et al. 2006).

The total variance of OTA test results can be
reduced by mitigating the effects of distributional and
intrinsic heterogeneity. This aspect is of particular
importance for cereal grains and less pronounced in
processed cereal-based food products, although
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heterogeneity of OTA in retail-level cereal-based food
products has been observed. For instance, OTA
concentrations in cereals and pasta composites col-
lected during two years (2008 and 2009) of the
Canadian TDS varied by up to 40-fold (Tam et al.
2010). This emphasises that sampling is important for
the analysis of retail food items, as well as cereal
grains.

There are three main ways to reduce the variance of
OTA test results. The effects of distributional and
intrinsic heterogeneity of OTA in cereals during
sampling can be mitigated by homogenisation, increas-
ing size of samples and subsamples, and comminution.

At its most basic, mixing reduces the distributional
heterogeneity of OTA. The act of mixing blends the
‘hot spots’ of mould growth and subsequent OTA
formation that can occur over a larger mass of whole
grain (Biselli et al. 2008). There is some indication that
mixing also reduces the sampling variance for ground
grain. The combined subsampling and analytical var-
iance of OTA measured in ground wheat was shown to
decrease in a sample that had been on a mechanical
mixer for 15–30min. Overall, the combined subsam-
pling and analytical variance relative standard devia-
tions decreased from 46% to approximately 15%
after 30min of mechanical mixing (Nowicki and
Roscoe 2010).

Increasing sample size increases the ‘representative-
ness’ of the sample with respect to the original lot.
Whitaker and Dickens (1979) described the effect of
sample size on variance for aflatoxins in corn math-
ematically. In this case, the probability that a result
from a single laboratory sample is below the true lot
concentration is higher than 0.5. An increase in the
sample size decreases the skew of the results and
produces a more symmetrical distribution because
there is a greater chance that a larger sample or
subsample will not exclusively be influenced by hot
spots or mycotoxin-free zones (Whitaker and Dickens
1979). In turn, this decreases variance of the test results
(Vargas et al. 2006). Biselli et al. (2008) also noted that
the total expanded uncertainty of an OTA result
decreased with an increase in the number of incremen-
tal samples used to calculate the OTA result.
MacArthur et al. (2006) demonstrated that increasing
the number of incremental samples that are used to
form an aggregate sample reduced the chances of
accepting lots of dried fruit containing OTA at
concentrations higher than a legislative limit of
10 mg kg�1. Simulated measurements showed that
increasing the number of incremental samples from
10 to 30 decreased the concentration of OTA at which
the probability of a false negative was only 5% from 24
to 18 mg kg�1.

Increasing the size of test portions can also reduce
subsampling variance, as can increasing the number of
test portions taken for analysis. Nowicki and Roscoe

(2010) modelled the decrease in subsampling variance

of measurements of OTA in wheat as the size of the test

portion analysed increased.
The accuracy of estimating the mean OTA concen-

tration in a lot of grain can also increase with an

increase in the number of incremental samples taken

for analysis. The accuracy of the estimation of the

mean OTA concentration increased significantly when

up to 40–60 incremental samples taken from a lot of

grain (depending on the applied simulation) (Rivas

Casado et al. 2009). As highlighted by the authors of

this study, this result is consistent with the number of

incremental samples stipulated to be taken from bulk

lots under European Union regulations (European
Commission 2006a). However, Rivas Casado et al.

(2009) caution that the outcomes of their geostatistical

study are based on a model developed for lots between

10 and 100 t, and should not be extrapolated to other

situations without additional data and analysis.
Comminution essentially increases the number of

particles sampled by reducing the size of items sampled

per unit volume or unit mass. As a result, comminution

also produces a decrease in subsampling variance.

Nowicki and Roscoe (2010) compared the subsampling

variance of measurements of OTA in wheat when two

different grinders were used to prepare durum wheat.

The subsampling variance was lowest in the analysis of
test portions that were prepared using the grinder that

produced the smallest particles. Garcı́a-Fonseca et al.

(2010) analysed raw wheat for OTA and confirmed the

results of Nowicki and Roscoe (2010). A decrease in

particle size resulted in a significant decrease in the

relative standard deviation of OTA concentrations.

The RSDs of OTA analyses in wheat ground to a

particle size of less than 1mm, between 50 and 250 mm,

and less than 50 mm were 96%, 34%, and 3%,

respectively (Garcı́a-Fonseca et al. 2010). These data

indicate that it is preferable to comminute and

homogenise the entire aggregate sample prior to

subsampling and preparation of the laboratory

sample or test portion.
There is some evidence that use of a rotary sample

divider during subsampling can also reduce variance of

analytical results. Crosby and Patel (1995) examine the

use of hand scoops, riffle chutes, coning and quarter-

ing, and a rotary sample divider to prepare increments

of a bulk pig feed sample to which copper sulphate had

been added. The coefficient of variation from the

analysis of 8 increments prepared by each technique

was lowest for the rotary sample divider. The mean

content of copper sulphate in the rotary sample divider

produced increments was also closer to the expected

value than the means from the increments formed by

the other techniques. Unfortunately there are currently

no data comparing the effects of various subsampling
techniques on the variance of OTA analytical results.
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Mixing, increasing size of samples and subsamples,
and comminution are not independent means to reduce
variance, and are often used in combination in a
chemical test procedure. Mixing and comminution
occur naturally through the food production chain as
whole cereal grain is processed and incorporated into
such products as bread and pasta. It can thus be
expected that sampling variance will be lower for
cereal-based retail items as opposed to whole grain.
However, Tam et al. (2010) observed a wide range of
OTA concentrations in retail-level cereal-based foods.
This emphasises that sampling is also a crucial step in
the analysis of retail food items.

Conclusion

Sampling is a special challenge in the determination of
OTA in cereals and cereal-based foods due to the
heterogeneous distribution of OTA in food items. OTA
is heterogeneously distributed within bulk lots of food
items, as well as amongst individual items. This
heterogeneity affects raw cereal grains as well as
processed cereal-based foods that are available at
retail level. Sampling is the main contributor to the
overall variance of OTA analytical results and it
contributes to measurement of uncertainty about the
true value of OTA in food item lots. However, mixing,
sample comminution prior to subsampling, and
increased number and size of incremental samples
can all substantially reduce the sampling variance and
lead to OTA analytical measurements that are more
precise and representative of the overall sample.
Finding a balance between representativeness and
practicality is the ultimate goal of sampling cereals
and cereal-based foods for the analysis of OTA.
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