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An increasing number of crystal structures available on one side, and the boost of
computational power available for computer-aided drug design tasks on the other,
have caused that the structure-based drug design tools are intensively used in the
drug development pipelines. Docking and molecular dynamics simulations, key
representatives of the structure-based approaches, provide detailed information about
the potential interaction of a ligand with a target receptor. However, at the same time, they
require a three-dimensional structure of a protein and a relatively high amount of
computational resources. Nowadays, as both docking and molecular dynamics are
much more extensively used, the amount of data output from these procedures is also
growing. Therefore, there are also more and more approaches that facilitate the analysis
and interpretation of the results of structure-based tools. In this review, we will
comprehensively summarize approaches for handling molecular dynamics simulations
output. It will cover both statistical and machine-learning-based tools, as well as various
forms of depiction of molecular dynamics output.
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INTRODUCTION

Structure-based drug design is becoming an indispensable part of virtual screening campaigns, due to
the expanding possibilities of carrying out experiments from this path. It is related both to the
achievements in the field of crystallography (expressed by the increasing number of deposited crystal
structures), but also to the availability of the computational power and more efficient computational
algorithms. Structure-based tools, with their key representatives—docking and molecular dynamics
simulations–are a great source of information on the possible interaction schemes occurring between
ligand and target receptors (Yang, 2014; Wang et al., 2018).

Molecular docking is a technique that aims to predict the optimal binding mode(s) of a ligand in
the respective receptor (Morris and Lim-Wilby, 2008; Guedes et al., 2014; Ferreira et al., 2015). As the
docking methodology relies on minimizing free energy of the ligand-receptor complex, the obtained
structure can constitute a good starting point for more detailed analysis of ligand-protein
interactions during molecular dynamics (MD) simulations (Santos et al., 2019; Wang et al.,
2019). Moreover, as most docking tools provide limited flexibility of the target, MD can explore
conformational space and generate an ensemble of receptor conformations, which could further be
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used during screening of chemical databases (Amaro et al., 2018;
Acharya et al., 2020). The so-called ensemble sampling has not
only increased the hit rate and, thus, improved the quality of
virtual screening, but has also allowed efficient docking to the so-
called “difficult protein targets” (Fu et al., 2014; Ellingson et al.,
2015; Uehara and Tanaka, 2017; Bhattarai et al., 2020).

MD is an approach that relies on simulating dynamical
changes of the system and capturing its evolution in time. MD
offers an insight into the movement of the ligand-receptor
complex at an atomistic level. Furthermore, it enables
quantitative estimation of parameters that cannot be
established in wet-lab experiments, e.g., values of torsional
angles to describe flexibility, solvent accessible surface area to
predict stability, or change in the entropy for distinct structures,
such as water molecule in particular location (Ferreira et al., 2015;
Leimkuhler and Matthews, 2016; Hollingsworth and Dror, 2018).
The basis of the classical MD methodology is solving the
Newton’s motion equations for each atom in the system,
where the potential energy and forces of interacting particles
are from the force-field definitions (Sutmann, 2002; Lindahl,
2008). These approximations are necessary to balance between
the required accuracy and optimal speed of simulations’
performance. Moreover, MD timestep should be very
small—1–10 fs – in order to minimize errors related to the
potential energy estimation (Binder et al., 2004; Leimkuhler
and Matthews, 2016). Huge numbers of timesteps, which are
required for even relatively short simulations, contribute to the
consumption of a great amount of computational resources.
Fortunately, due to the increasing computational power and
possibilities to perform simulations with the use of graphical
processing units (GPU), MD simulations reached a millisecond
time scale allowing to investigate events such as protein folding
(Figure 1; Lindahl, 2008).

Thus, the amount of data produced by MD has dramatically
increased over recent years and is far beyond the accessibility of
manual analysis. For this reason, it is crucial to develop
automatic tools for post-processing of such data. Great
numbers of approaches are offered specifically by the
software for MD simulations. Nevertheless, a lot of new
independent methods for automated analysis have appeared
recently, which are based on various statistical methods and
machine learning (ML).

ML approaches are nowadays used at each stage of the drug
design process and development (Ballester, 2019; Vamathevan

et al., 2019; Patel et al., 2020). Their most common application
involves the evaluation of compound potential bioactivity in
ligand-based virtual screening (Melville et al., 2009; Carpenter
and Huang, 2018; Hussain et al., 2021); however, they are also
widely applied in the evaluation of compound physicochemical
and ADMET properties (Göller et al., 2020; Göller et al., 2022; Jia
and Gao, 2022). The ML role in computer-aided drug design is
not limited to the assessment of compound libraries, but a
number of generative approaches is used to enumerate new
sets of potentially active compounds (Baskin, 2020). Moreover,
ML can help in the compound optimization and indication of
features, which are important for a particular type of activity,
thanks to the wide range of interpretability tools (Hudson, 2021).
ML methods also support structure-based path of virtual
screening tasks – they assist in the detection of ligand-protein
interaction patterns characteristic for considered activity profiles
(Khamis et al., 2015; Khamis and Gomaa, 2015; Khamis et al.,
2016), as well as in the detection of complex relationships
between ligand-protein interaction schemes occurring during
MD simulations (Podlewska et al., 2020; Kucwaj-Brysz et al.,
2021).

In this review, we comprehensively summarize existing
approaches to automatic handling of MD simulations’ outputs.
We will describe approaches available within the MD software,
but our main focus is on the automatic statistical and ML-based
post-processing tools.

TOOLS AVAILABLE WITHIN THE MD
SOFTWARE OR PACKAGES DEDICATED
TO MD OUTPUT ANALYSIS
Numerous software packages are able to perform MD
simulations. The list of the most popular programs includes
GROMACS (Abraham et al., 2015), HyperChem (Laxmi and
Priyadarshy, 2002), AMBER (Case et al., 2005), LAMMPS
(Thompson et al., 2021), CHARMM (Brooks et al., 2009),
DL_POLY (Todorov et al., 2006), HOOMD (Glaser et al.,
2015), TINKER (Lagardère et al., 2018), NAMD (Phillips
et al., 2005), and Desmond (Bowers et al., 2006). The resulting
simulation trajectory can then be analyzed at different levels –
from the qualitative visualization of changes occurring in the
modeled system to detailed investigation of variations in atom
positions and ligand-protein interactions. Due to the high

FIGURE 1 | The influence of simulation time on events occurring during MD (according to Lindahl, 2008).
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amount of data produced during MD simulations (of up to
several terabytes size), programs for MD analysis should also
be able to efficiently deal with such data volumes.

The list of the most known packages for MD simulations
analysis opens VMD [Visual Molecular Dynamics (Humphrey
et al., 1996)], developed by the Theoretical and Computational
Biophysics Group at the University of Illinois at Urbana-
Champaign. VMD is a program designed for interactive
visualization and analysis of biomolecular systems including
processing of very large systems (composed of up to billion
particles). The software is written in C and C++ (source code
available) and is distributed free of charge. Convenient graphical
interface supports performing various types of coordinate
analysis on Unix, MacOS, and Windows operating system,
along with NVIDIA OptiX and CUDA support. In addition to
the built-in analysis tools applicable to trajectories processing,
VMD has a broad collection of plugins and scripts (VMD Plugin
Library, 2021, n. d.; VMD Script Library (2021), n. d.).

Execution of Tcl and Python scripts and implementation of
developed plugins enables adjustement of VMD capabilities to users’
needs without recompiling the source code. Both types of tools are
distributed under an open-source license, unless otherwise stated.
Moreover, researchers are encouraged to develop and share new
utilities in order to support the growth of the VMD community and
development of the software. VMD plugins are divided into the
“molfile” plugins, which enable working withmultiple file formats of
molecular data, and scripting extensions used to perform requested
tasks. Plugins dedicated to data analysis allow performing various
calculations: from RMSD (RMSD Tool, RMSD Trajectory Tool) to
electrostatic potentials (APBSRun, Delphi Force) and IR spectral
density (IRSpecGUI). Resulting outcomes can be visualized through
generated plots—GofRGUI,NAMDPlot, RamaPlot, Timeline—or as
maps—ContactMap,VolMap,HeatMapper, PMEpot. There are also
plugins capable of analysing free-energy perturbation calculations
(AlaScan, ParseFEP) and obtaining data on proteins—Intervor
(extracts and displays protein-protein interface), SurfVol
(measures surface area and volume of proteins), and
NetworkView (shows protein interaction networks). Developed
statistical tools visualize clusters of structure conformations
(Clustering Tool) or perform normal mode visualization and
comparative analysis (NMWiz). VMD has constantly been
developed: the latest version (1.9.3) includes introduction of the
following major features: introduction of new QwikMD plugin
connecting VMD with MD program NAMD, enabling quick
preparation of common molecular simulations; the TopoTools
plugin used for automated topology conversion from CHARMM
to GROMACS: the new TachyonL-OSPray ray tracing engine for
generating high quality renderings of molecular systems containing
hundreds millions of particles; and OpenGL rendering for parallel
visualization runs on “headless” clouds and petascale computers.

PTRAJ (Process TRAJectory) is another example of a tool
enabling post-processing of MD data (Roe et al., 2013). It was
dedicated for the analysis of the AMBER output. Its successor,
CPPTRAJ, emerged as a response to the growing trajectory sizes,
offering a wider range of functionalities and more efficient data
processing. In contrast to PTRAJ (written primarily in C),
CPPTRAJ code is based on C++ and the whole program

structure was reorganized to facilitate the addition of new
functionalities. The programs and their source code are freely
available under the GNU General Public License version 3 and
are distributed within the AmberTools21. The strong point of
CPPTRAJ is batch-processing, which allows the use of remote
sites for analysis and possibility of combining various types of
commands, trajectories, and topologies in the same run. Other
important features of CPPTRAJ are: the availability of MPI,
OpenMP, and CUDA parallelization, support for
implementation of variables and loops, and possibility to apply
atom masking to specify which part of the system should be
analyzed. The number of developed commands applicable for
MD data analysis is great, including simple calculations, such as
estimation of the number of hydrogen bonds (hbond), and
multiple examples of more complex tools, such as performing
non-linear curve fitting (curvefit, multicurve) and linear
regression (regress), matrix based calculations (crosscorr,
diagmatrix, hausdorff, modes), estimating auto-/cross-
correlation (autocorr, correlationcoe, timecorr), creating
histograms (hist, kde, multihist), and many more (Case et al.,
2021). CPPTRAJ development has resulted in new features,
among which are: rewritten code expanding clustering
capabilities, ability to RMS-fit grids onto coordinates,
automatic calculation of multiple puckers, speeding up the
non-bonded energy calculation, enhancing the performance of
the permutedihedrals and randomizeions commands, and
automation of downloading and building external libraries in
CPPTRAJ (2021).

MDAnalysis is an object-oriented library developed for the
analysis of MD trajectories and protein structures (Michaud-
Agrawal et al., 2011). The package is written in Python and
Cython and uses NumPy arrays to expand its functionality.
MDAnalysis is available under the GNU General Public
License version 2.0 (https://github.com/MDAnalysis/
mdanalysis). The analysis modules are capable of assessing
distances and contacts (e.g., calculating path similarity, which
reveals geometric similarity of trajectories useful for identification
of patterns in trajectory), performing dimensionality reduction
and carrying out volumetric analysis (e.g., linear density
estimation). Other modules analyze the structure of
macromolecules (such as HELANAL (Sugeta and Miyazawa,
1967; Bansal et al., 2000)—a tool for the analysis of protein
helices), polymers (including determination of the polymer
persistence length), nucleic acids and, finally, membrane and
membrane proteins (namely, HOLE (Stelzl et al., 2014), a suite of
tools used to assess pore dimensions of the holes as a function of
time). Recently MDAnalysis announced the introduction of a
command-line interface in answer to user needs, and a number of
supported analysis modules is provided in the documentation.

MDTraj (McGibbon et al., 2015) is a Python library applied for
MD trajectory manipulation and analysis, whose goal is to
provide interafce between MD data and modern tools and
programs for statistical analysis and visualization based on
Python. MDTraj is licensed under the Lesser GNU General
Public License (LGPL v2.1+) on GitHub (https://github.com/
mdtraj/mdtraj). MDTraj works with every possible MD data
format, focusing on speed and efficient performance and
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providing multiple analysis possibilities. Available functions
identify hydrogen bonds, compute distances to create residue-
residue contact maps, assess secondary structure of the protein
and assign code according to the implemented Dictionary
(Kabsch and Sander, 1983), calculate solvent-accessible surface
area (SASA) and NMR scalar coupling, as well as determine
nematic order parameters, which describe the orientational order
of a system from 0 to 1. Another special feature is the particularly
fast RMSD computations due to performance optimization based
on Haque at al. (2014) along with C/C++ code implementation.
Moreover, MDTraj documentation gives access to 14 notebooks
containing analysis examples with executable code—e.g., PCA
with scikit-learn ML library followed by plotting data using
Matplotlib.

LOOS (Lightweight Object-Oriented Structure-analysis)
(Romo et al., 2014; Grossfield and Romo, 2021) aims at
enabling rapid development and testing of new tools for MD
analysis. Additionally, the program includes a number of easy-to-
use prebuilt applications. As LOOS is a C++ library, its
combination with Python interface (PyLOOS) resulted in high
performance and simplicity of use and further development.
Moreover, the C++ layers could be used independently for even
more efficient utilization of resources. LOOS is freely distributed
under the GPLv3 license and is available via GitHub (https://github.
com/GrossfieldLab/loos). In LOOS, 140 prebuilt tools are grouped
into the following categories: macromolecule tools (e.g., computation
of the radial distribution function), hydrogen bonding handling,
principal component analysis (PCA), elastic networkmodels (ENM),
clustering, assessment of statistical error (e.g., block-averaged
standard error calculations), and convergence. The tools included
in the "membrane systems" category are dedicated for analyzing lipid
bilayers and associated systems (e.g., calculation of molecular order
parameters. Furthermore, 2D Voronoi decomposition tools are used
to obtain data within a particular membrane slice. 3D density
distributions tools generate 3D histograms from MD trajectories.
They were originally created for visualization of water distribution;
however, they are able to estimate membrane lipid density as well.

Pteros (Yesylevskyy, 2012; Yesylevskyy, 2015) is a high-
performance molecular modeling library available for C++ and
Python. It lets users analyse MD data and develop new analysis
tools with the assistance of the easy-to-use APIs in both of the
above-mentioned programming languages. In order to accelerate
the analysis process, Pteros asynchronously reads files with MD
trajectories and performs analysis tasks in parallel. Analysis plugins
are completely independent and, besides typical calculations,
provide more specific manipulations. For example, they enable
assessing properties related to curvature with the Curvature plugin,
which computes mean and Gaussian curvatures of various lipid
aggregates, smooths membrane surfaces, and calculates other
properties of molecules embedded into the lipid membrane.
While the above-mentioned plugin is not open-source, Pteros is
a free software distributed under Artistic License and available at
GitHub (https://github.com/yesint/pteros).

Till now, we have described exclusively open source software and
libraries, which serve as powerful and freely available tools for MD
output analysis. Nevertheless, some commercial software is also
worth mentioning, e.g., Molecular Operating Environment (MOE)

[Molecular Operating Environment (MOE), 2019], Desmond
(Schrödinger Release 2021–4: Desmond Molecular Dynamics
System, 2021), and CHARMM (Brooks et al., 2009). MOE
constitutes a platform for integrated computer-aided molecular
design with vast capabilities: QSAR models generation, virtual
screening, protein engineering, homology modeling, as well as
carrying out MD simulations. However, MOE offers limited
opportunities for MD analysis, as only Free Energy Calculations
along with Torsion Scan and Analysis are mentioned at the official
software webpage. Greater analysis possibilities are provided by
Desmond—a commercial software available without cost for non-
commercial use, developed by D. E. Shaw Research for high-speed
MD simulations of biological systems. Desmond offers multiple
panels for different post-processing operations, such as Trajectory
Frame Clustering Panel, Simulation Quality Analysis Panel
(enabling estimation of potential energy, temperature, pressure,
etc.), Simulation Event Analysis Panel (enabling calculation of
geometric and energy-based properties, e.g., RMSF, hydrogen
bonds, Coulomb energy), and Radial Distribution Function Panel.
What is more, Desmond provides distinct panels for metadynamics
and replica exchange simulations analysis, and Python scripts
applicable for PCA, density profile calculations, and others. The
advantages ofMDdata analysis inDesmond are its detailed tutorials,
intuitive GUI, and conveniency of some tools, such as Simulation
Interaction Diagram. Its output is saved as a pdf file, which contains
results of protein-ligand system analysis in the form of colored plots,
together with the short explanation of themeaning of each calculated
property.

Plenty of other software and tools are useful in MD data
analysis; among them are GROMACS (Abraham et al., 2015) and
CHARMM (Brooks et al., 2009)— well-known MD programs
capable of performing analysis tasks as well. Carma (Glykos,
2006) is a lightweight program written in C along with its
graphical user interface grcarma (Koukos and Glykos, 2013)
and Wordom (Seeber et al., 2007; Seeber et al., 2011) - a
simple and fast command-line utility. MMTSB (Feig and
Karanicolas, 2004) is a set of tools for enhanced sampling and
multiscale molecular modeling approaches, while Simulaid
(Mezei, 2010) is a program for carrying out analysis tasks of
multiple types and MD trajectory data manipulation. MMTK
(Hinsen, 2000), the Molecular Modeling Toolkit, contains MD
analysis scripts; both Bio3D package (Grant et al., 2006) written
in R language, and Python toolkit. MD-Tracks (Verstraelen et al.,
2008) provides statistical analysis of MD data, and ST-Analyzer
(Jeong et al., 2014) is an intuitive and simple web-based GUI
environment, with nine analysis modules for extraction of various
parameters from MD output.

MACHINE LEARNING—CLASSES OF
MODELS USED IN THE
STRUCTURE-BASED DRUG DESIGN
ML methods have become an integral element of structure-based
path of drug design, and they assist in the analysis of both docking
and MD simulations (Dutta and Bose, 2021). The general task of
ML is to detect relationships and complex patterns in large
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datasets. As the amount of data produced in the structure-based
path has recently grown enormously, the application of ML
methods for MD outcome analysis is becoming more and
more popular. Within ML methods, we can also distinguish
deep learning (DL) algorithms with their main usage in
computer-aided drug design to generate examples of new
potential ligands via generative approaches.

The most popular classes of ML models applied in the broadly
understood campaigns for searching for new drugs include:

1) Bayesian models—a collection of models based on the Bayes’
theorem. It defines the probability of an event on the basis of
prior knowledge of conditions, which might be influencing
this event. The Bayes’ theorem in its simplest form (taking
into account only two events, A and B) can be described using
the following equation:

P(A|B) � P(B|A)P(A)
P(B) ,

where P (A|B) is a conditional probability of occurrence of event
A, given that B is true; P(B|A) is a conditional probability of
occurrence of event B, given that B is true; and P(A) and P(B) are
probabilities of occurrence A and B, respectively, without any
conditions (P(B) > 0).

Bayes’ theorem for a higher number of events adopts the
following form:

If B, T1,. . .,Tn are such events that:
P(B) > 0, BC∪n

i�1Ti and Ti ∩ Tj � ϕ(i ≠ j), then:

P(Tj|B) � P(B|Tj)P(Tj)∑n
i�1P(B|Ti)P(Ti)

.

In drug design approaches, Bayes’ theorem is most often used
within the Naïve Bayes algorithm. In such a case, Bayes’ theorem
is used together with an assumption of events (features)
independence (Berrar, 2019).

Another concept using Bayes’ theorem is Bayesian statistics, in
which all observed and unobserved parameters of a statistical
model are given a joint probability distribution (prior and data
distribution). Bayesian statistics expresses probability as a degree
of belief, and Bayes’ theorem is used to assign a probability
distribution to quantitatively describe this degree of belief in
the form of a set of parameters (van de Schoot et al., 2021).

The Bayesian concept is also used in fuzzy clustering (Glenn
et al., 2015).

2) K-nearest neighbors methods – based on the determination of
distances between an evaluated sample and representatives
of the training set. In its simplest form (K = 1), the evaluated
sample is assigned to the class of its closest neighbor from
the training set (or value of the considered parameter of the
closest neighbor is returned in the case of regression). If a
higher number of examples closest to the query is
considered (K > 1), voting for the most frequent class
label is carried out (classification) or values of evaluated
parameters are averaged (regression)–Figure 2 a (Cover
and Hart, 1967; Hall et al., 2008).

In MD studies, k-nearest neighbors algorithm is also used in
clustering procedures aimed at the formation of groups of
geometrically similar conformations (Keller et al., 2010).

3) Trees—tree-based algorithms are considered to be one of the
most efficient and most broadly used types of ML models. Their
important advantage is their simplicity and ease of interpretation,
which play a role in drug design protocols (e.g., by the possibility
of indication of features important for a particular compound
activity). Predictions can be made using one decision tree or
multiple tress (as it is in the case of Random Forest). Attributes
for a root and subsequent nodes are selected on the basis of their
discrimination power (at each level, a feature which provides the
best distinguishment between considered classes is selected).
Evaluation of new examples is carried out via checking values
of features present in the subsequent nodes -Figure 2B (Breiman
et al., 1984; Quinlan, 1986).

4) Neural networks—neural networks search for relationships in
data in such a way that they mimic the processes occurring in the
human brain. Their neurons are constituted by a mathematical
function, which collects and classifies information. Such artificial
neurons are interconnected (such connections reflect biological
synapses, called edges) and they have the ability to communicate
with each other. A neuron (node) receives a signal, processes it,
and passes the respective information to the connected neurons.
Typically, neurons are organized into layers, and the signal is
passed from the input layer (the first one) to the output layer (the
last one) (Hopfield, 1982).

A special type of neural network that has recently gained
enormous popularity is deep neural network (DNN) with “deep”
referring to the application of multiple layers in the network
(LeCun et al., 2015; Schmidhuber, 2015).

Neural networks concept is also applied in unsupervised
approaches for MD data clustering, e.g., in the form of Self
Organizing Maps (SOMs) (Hyvönen et al., 2001; Fraccalvieri
et al., 2013; Mallet et al., 2021). In order not to lose the topological
properties of the input space, a neighborhood function is used.

5) Support Vector Machines (SVM)—an algorithm according
to which each data item constitutes a point in
n-dimensional space (n is equal to the number of
features), with coordinates defined by the particular
feature value. The task of the model is to find a
hyperplane, which discriminates example classes with the
highest margin (Figure 2C). As linear discrimination is
often not possible, a kernel function needs to be applied in
order to transform the input into a space of higher
dimension, so an inseparable problem is converted into a
separable one–Figure 2D (Cortes and Vapnik, 1995).

CLUSTERING AND REDUCTION OF DATA
DIMENSIONALITY

The most common approach to use the automatic post-
processing of the MD simulations output is the reduction of
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dimensionality and clustering (Amadei et al., 1993; Lange and
Grubmüller, 2006).

Clustering
Clustering, from its assumptions, is an unsupervised technique
of finding patterns and relationships in data. In contrast to the
previously described techniques, clustering does not require
the presence of the training set, as its aim is to form subgroups
of similar objects. Clustering algorithms use various “distance”
measures to evaluate object similarity. Two main groups of
clustering approaches can be distinguished, namely partitional
and hierarchical, both of which can be carried out in the
bottom-up agglomerative way or using a top-down divisive
approach (Kaufman and Rousseeuw, 1990). Another group of
data grouping methods are density-based schemes, in which
the clusters refer to the peaks of the probability distribution (or
free energy minima) from which the data are collected (Sander,
2011; Glielmo et al., 2021). In MD simulations, such
probability peaks typically correspond to metastable states
of the system. An example application of density-based
clustering to the analysis of MD data is density-based
spatial clustering of applications with noise (DBSCAN)
(Ester et al., 1996; Schubert et al., 2017), in which the
clusters are defined as regions with density above the
particular threshold. Such an approach was used to find
representative structures from MD simulations and analyze
MD trajectories (Wang et al., 2013). MD trajectories have also
been analyzed by the density peak clustering.

The most popular partitional clustering technique is the
K-means algorithm. Clustering in this approach starts from
the random placement of K initial centroids. Then, K clusters
are formed iteratively in such a way that a point which is
closest to a particular centroid is added to the respective
cluster, and a new centroid for each cluster is determined.
When the cluster membership does not change (the
convergence is obtained), the process is stopped. The
drawback of K-means clustering is the dependence of the
final outcome on the initial choice of the centroids.
Problems might also occur when significant variations in
the cluster sizes or densities appear, when data outliers are
present, or when the ‘natural’ clusters have non-spherical
shapes (Hartigan and Wong, 1979; Huang, 1998).

The starting point of agglomerative hierarchical clustering is a
formation of singleton clusters from each object from the dataset.
Then, iterative linkage of the nearest clusters is carried out, until
the whole dataset constitutes one group. On the basis of the
resulting dendrogram, the final division of data is produced.
Hierarchical clustering is deterministic, but it requires high
computational power and storage abilities, which limits its
application to small datasets.

The most popular metric used to evaluate MD simulations’
output in terms of data proximity is Root Mean Square
Deviation (RMSD). Despite the presence of some drawbacks
[e.g., incidents of wrong conclusions when applied to
equilibrium evaluation (Grossfield and Zuckerman, 2009)],
it is still the most frequently used method for comparison of

FIGURE 2 | Visualization of selected ML algorithms: (A) k-nearest neighbor, (B) decision tree, (C) hyperplane with the highest separation margin constructed within
the support vector machines algorithm implementation, (D) data transformation to the space, in which they are linearly separable with the use of the kernel function.
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conformation similarity. Several different solutions were also
proposed, such as the application of Euclidean Distances
Matrices (EDM) (de Souza et al., 2017); however, they have
not gained such wide popularity as RMSD.

Evaluation of Clustering Approaches
The evaluation of clustering is not easy, as falling into the group of
unsupervised approaches, clustering does not refer to true labels.
One group of cluster assessment methods is the so-called
“internal evaluation,” where clusters are evaluated on the basis
of the clustered data. In general, in such an evaluation, the highest
scores are assigned to the approaches which produce clusters of
high similarity between particular cluster elements and low
similarity between elements belonging to different clusters
(Rand, 1971). An example of internal measure of clustering
quality is Davies-Bouldin index (DB) (Davies and Bouldin, 1979):

DB � 1
n
∑n
i�1

max
j≠i

⎛⎝ σ i + σj

d(ci, cj)⎞⎠
with n being the number of clusters, ci, cj being centroids of
clusters i and j, respectively; σi refers to the average distance of
elements belonging to cluster i to its centroid ci; and d (ci,cj) is the
distance between centroids of clusters i and j. The lower the values
of DB index, the better they are.

Another approach of the assessment of clustering quality is
external evaluation, which refers to pieces of information that
were not used during clustering. External evaluation can be based
on the known class labels or on some benchmark datasets.
However, if the true class labels are known, the clustering is
actually not needed (de Souto et al., 2012).

Before the application of methods for clustering evaluation,
the dataset should be examined in terms of the clustering
tendency. If the dataset is composed of the uniformly
distributed points (therefore, there is no clustering tendency
present), then the identified clusters may be invalid. In order
to verify the clustering tendency, the Hopkins test (Hopkins and
Skellam, 1954) can be used (statistical test for spatial randomness
of a variable).

Reduction of Data Dimensionality
Principal Component Analysis (PCA) is an approach for the
reduction of the data dimensionality via transformation of a large
set of variables into a smaller one, preserving as much
information of the original set as possible (Ichiye and Karplus,
1991; Jolliffe, 2002; Jolliffe and Cadima, 2016). The goal is
obtained via extraction of important information from the
data table and its representation in the form of new
orthogonal (linearly independent) variables (principal
components). Then, the relationships between observations
and variables can be displayed in the form of points in the
maps. PCA is based on the assumption that the phenomena of
interest can be explained by variances and covariances between
original variables from the dataset. PCA is often applied before
performing the clustering procedure. In MD-related applications,
PCA is responsible for extracting the dominant modes in the
molecule motion. It should be pointed out that, during the MD,

the Cartesian positions of all atoms of the simulated system (of a
size of thousands or even millions of atoms) are recorded in every
time step, which indicates the importance of application of post-
processing methods. If the dimensionality reduction is carried out
properly, all relevant information is preserved, and the analysis of
the MD output is valid.

Another approach for reduction of data dimensionality is
multidimensional scaling (MDS), which determines the data
space of lower dimension with the best possible preservation
of the pairwise distances between data points (Young and
Householder, 1938; Torgerson, 1952). Its mode of action is
closely related to PCA; however, for MDS it is sufficient to
provide a pairwise distance between points (their exact
positions are not necessary).

PCA and MDS are representatives of linear methods of data
dimensionality reduction; however, there is also a number of non-
linear approaches to this task, with such examples as isometric
features mapping (Tenenbaum et al., 2000), kernel PCA
(Schölkopf et al., 1998), diffusion map (Coifman et al., 2005;
Coifman and Lafon, 2006), and t-Distributed Stochastic Neighbor
Embedding (t-SNE) (van der Maaten and Hinton, 2008). Low-
dimensional spaces to embed high-dimensional data are also
more and more often determined using DL approaches. One of
the most popular DL techniques for reduction of data
dimensionality is autoencoder (Kramer, 1991). Autoencoder
maps input configuration to representation of lower dimension
and thenmaps it back to the original space via respective decoder.
Low-dimensional representation is learned via minimization of
error between the original data points and data points obtained by
the application of the above-mentioned decoder. Another DL-
based approach for reduction of data dimensionality falls into the
group of generative neural networks. Its representatives include
Variational Autoencoders (VAEs) (Lopez et al., 2018) and
Generative Adversarial Networks (GANs) (Goodfellow, et al.,
2014).

Examples of Clustering and Data
Dimensionality Reduction for MD Output
Analysis
Unsupervised procedures are widely applied in the MD outcome
analysis, due to the above-mentioned problem of the vast amount
of data produced during simulations: clustering data into groups
gathering similar conformations obtained during MD, and
reduction of data dimensionality which lowers the number of
features considered. Both these approaches help in the analysis of
MD output.

The problem of clustering MD data emerged quite early. The
first reports of clustering MD output were released in the early
1990s (Gordon and Somorjai, 1992; Torda and van Gunstered,
1994). Various groups also compared effectiveness of various
clustering algorithms (Shao et al., 2007; Keller et al., 2010;
Abramyan et al., 2016). Nowadays, clustering of MD data has
become a standard procedure applied in order to facilitate
interpretation and analysis of MD trajectories (Bruno et al.,
2011; De Paris et al., 2015a; De Paris et al., 2015b; Rudling
et al., 2018; Takemura et al., 2018; Evangelista et al., 2019;
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Yoshino et al., 2019; Bekker et al., 2020; Roither et al., 2020; Araki
et al., 2021; Mallet et al., 2021; Wu et al., 2021) and new
algorithms to improve this procedure are constantly developed.

Dimensionality reduction of MD data with the use of PCA was
also first used in the early 90s (Ichiye and Karplus, 1991; Amadei
et al., 1993) and since that time its application in MD output
analysis has been constantly growing (Das and Mukhopadhyay,
2007; Chiappori et al., 2010; Kim et al., 2010; Casoni et al., 2013;
Ng et al., 2013; Novikov et al., 2013; Bhakat et al., 2014; Sittel et al.,
2014; Ernst et al., 2015; Chaturvedi et al., 2017; Cossio-Pérez et al.,
2017; Fakhar et al., 2017; Chen, 2018; Cholko et al., 2018; An et al.,
2019; Barletta et al., 2019; Girdhar et al., 2019; Karnati andWang,
2019; Lipiński et al., 2019; Martínez-Archundia et al., 2019; Wu
et al., 2019; Magudeeswaran and Poomani, 2020; David et al.,
2021; Majumder and Giri, 2021). Although PCA is the most
popular approach applied to handle MD trajectories, other data
dimensionality reduction methods are also used in the MD field.
Pisani et al. used MDS to examine conformational landscapes of
CDK2 (Pisani et al., 2016) and Bécavin et al. improved the
application of MDS for MD data by using singular value
decomposition. MDS in the context of MD was also described
by Troyer and Cohen (1995), Andrecut (2009), Tribello and
Gasparotto (2019), and Srivastava et al. (2020). There are also
examples of the application of other approaches: isometric feature
mapping (Stamati et al., 2010), kernel PCA (Antoniou and
Schwartz, 2011), diffusion map (Rohrdanz et al., 2011; Zheng
et al., 2011; Zheng et al., 2013a; Zheng et al., 2013b; Preto and
Clementi, 2014), t-SNE (Zhou et al., 2018; Zhou et al., 2019;
Spiwok and Kříž, 2020), and VAE (Hernández et al., 2018; Shamsi
et al., 2018; Moritsugu, 2021; Tian et al., 2021).

MARKOV STATE MODELING

Markov state modeling (MSM) (Pande et al., 2010; Husic and
Pande, 2018) is another approach widely applied in the MD-
based studies. MSM can be used to characterize events that occur
at longer timescales than available computational power to
perform such long simulation. Such MDs are simulated as
transitions between a set of discrete stable states. The MSM
parametrization can be performed via running several short
MDs, which can be computed in parallel. The main difficulty
in the MSM application is definition of the above-mentioned
stable states (Abella et al., 2020). In general, MSM is an approach
for modeling random processes with the use of the Markov
assumption, which is when the present state is given, all
following states are independent of all past states. MSMs
describe the stochastic dynamics of a biomolecular system
using two objects: a discretization of the high-dimensional
molecular state space into n disjoint conformational sets and a
model of the stochastic transitions between these states [usually
described by a matrix of conditional transition probabilities
(Chodera and Noé, 2014)].

Examples of MSM applications in drug design include:
examination of the binding kinetics of the trypsin inhibitor
benzamidine (Buch et al., 2011), description of the multiple
unbinding pathways of ligands dissociating from FKBP

(Huang and Caflisch, 2011), examination of substrate binding
mechanism of HIV-1 protease (Pietrucci et al., 2009), analysis of
binding pathways of opiates to µ-opioid receptors (Barati et al.,
2018), reconstruction of binding process of alprenolol to the
beta2-adrenergic receptor (Bernetti et al., 2019), membrane-
mediated ligand unbinding of the PK-11195 ligand from the
translocator protein (TSPO) (Dixon et al., 2021), study of the two
bromodomain-inhibitor systems using multiple docked starting
poses (Dickson, 2018), examination of the unbinding kinetics of a
p38 MAP kinase type II inhibitor (Casasnovas et al., 2017),
examination of ligand-induced active-inactive conformation
change of beta-2 adrenergic receptor (Bai et al., 2014), and
investigation of the interplay of conformational change and
ligand-binding kinetics for the serine protease trypsin and its
competitive inhibitor benzamidine (Plattner and Noé, 2015).

EXAMPLES OF ML-BASED ANALYSIS
OF MD

The proper representation of MD outcome opens the door to
the wide range of possibilities in terms of the post-processing
approaches. Podlewska et al. (2020) and Kucwaj-Brysz et al.
(2021) analyzed ligand-receptor contact patterns occurring
during MD simulations and examined them with reference to
the modeled property. Via the calculation of the Pearson’s
correlation coefficient between the contact frequencies and
values of examined parameters, the highest correlated
residues (considered as the most important for the
modeled property) were detected. Scheme of the above-
described protocol is presented in Figure 3. At first, each
simulation frame was represented with the use of the
Structural Interaction Fingerprints (Singh et al., 2006).
Then, for each amino acid, the contact frequency during
simulation was calculated. Finally, for each protein residue,
the Pearson’s correlation coefficients between the respective
contact frequency and values of the evaluated compound
parameters were determined. The highest correlated
positions were indicated as those which should be
considered in detail during the further design of
compounds of particular activity profile.

Riniker (2017) developed a molecular dynamics fingerprint
(MDFP) to combine MD approach with ML methods. MDFPs
were obtained via the extraction of three properties from MD
trajectories: intramolecular and total potential energy of the solute,
radius of gyration, and solvent-accessible surface area resulting in a
vector of floats. The fingerprint also contained information on the
distribution of each property, characterized by its average, standard
deviation, and median values. In addition, MDFP was enriched with
standard 2D fingerprints: Morgan fingerprints and 2D-counts
fingerprints from RDKit (number of heavy atoms, number of
rotatable bonds, number of N, O, F, P, S, Cl, Br, and I atoms in
the compound). Such representation constituted an input for ML
models, which were trained to predict solvation free energies in five
different solvents (water, octanol, chloroform, hexadecane, and
cyclohexane) and partition coefficient in octanol/water,
hexadecane/water, and cyclohexane/water.
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MDFP was also used by Gebhardt et al. (2020). In this
approach, ML was combined with the atomistic MD
simulations encoded with MDFPs enabling the large-scale
free-energy calculations. The so-called ML/MDFP method
overcomes limitations related to free-energy estimation with
MD – high computational expense and imperfections of force-
fields. ML models are able to detect systematic force field errors
caused by specific chemical groups and, afterwards, decrease their
influence on final prediction. Moreover, ML models provide
efficient and fast calculations when working with fingerprints
databases; as an example, Gebhart et al. utilized the distributions
of potential energy of the solute, radius of gyration, and SASA,
which were generated from MD data. The outcomes proved that
ML/MDFP approach predicted free-energy not worse or even
slightly better than rigorous free-energy simulations and two
models, namely quantum chemistry-based COSMO-RS. When
two models for free energy predictions (COSMO-RS and
UNIFAC) were compared with the support vector regression
(SVR), it appeared that the latter one demonstrated the best
results. The other application of fingerprints extracted from MD
could be distinguishing active compounds, as Jamal et al. (2019)
proved on the example of caspase-8 ligands. MD descriptors
determined in this work were analogous to those obtained by
Gebhardt et al. Moreover, fingerprints of different types were also
calculated for reference. Multiple combinations of 2D, 3D, and
MD descriptors were used to train two ML models: artificial
neural networks and Random Forest. MD descriptors used
individually showed better performance than being combined
with other 2D/3D descriptors, which proved applicability of MD
descriptors for lead prioritization and optimization of caspase-8
ligands.

Ash and Fourches (2017) made benefits of combination of MD
and chemical descriptors to generate innovative QSAR models
based on MD data, resulting in the construction of the so-called
hyperpredictive MDQSAR models. The researchers in their work
hypothesized that exploring dynamic noncovalent protein-ligand
interactions would help to distinguish active compounds from

non-active. A set of ERK2 inhibitors served as a case study, after
previous unsuccessful attempts to rank them using conventional
QSAR and sophisticated molecular docking techniques. Each
ligand was docked in the ERK2 binding site using Glide, then
20 ns simulations of obtained ligand-protein complexes were
performed in Desmond. MDs were followed by the extraction
of descriptors on the basis of MD data with KNIME, such as
traditional 1D-MACCS fingerprints, as well as 2D RDKit, 3D-D
Moments and 3D-WHIM descriptors. The results indicate that
MD descriptors successfully tackled the primary challenge and
clearly pointed out the most active ligands. The hierarchical
clustering highlighted similarities between MD descriptors and
activities; furthermore, MD descriptors turned out to be useful in
the identification of activity cliffs in all descriptor spaces. The
research underlines the importance of further investigation of the
MD descriptors usage, which could lead to implementation of
new highly effective MDQSAR models in the future computer-
aided drug design workflows.

MD data were also used by Vitek et al. (2013) to develop
Support Vector Regression (SVR) model for water molecule
energy estimation and by Jamroz et al. (2012) to examine
fluctuations of protein residues during simulation.

Exploring protein conformations is extremely useful in
understanding protein structure and function. However, to
capture conformational changes we would need to perform
long-time simulations and overcome multiple high energy
barriers between local energy minima, which is related to the
consumption of significant amounts of computational resources.
Traditionally, enhanced sampling methods are exploited to solve
these problems; however, their efficiency requires improvement
(Yang et al., 2019). Fortunately, owing to technology advances,
numerous novel efficient techniques have been developed. For
example, a number of DL-based, approaches have already been
proposed, such as variational autoencoders (VAEs), which
significantly increases sampling “power”, if combined with
MD potential. Tian et al. (2021) demonstrated successful
protein sampling with VAEs on the example of adenosine

FIGURE 3 | Scheme of the protocol for indication of the important amino acids on the basis of the contact frequency with particular amino acids during MD
simulations.
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kinase (ADK) conformational change from its closed state to the
open one. Decoded conformations were similar to the training
ones. Additionally, the latent space provided by VAEs could serve
as a starting point for new simulations and studying of
unexplored conformational spaces. VAEs application allows to
perform short simulations of 20 ns and reach sampling efficiency
comparable to a single long MD simulation. Another example of
analysis of MD trajectories of proteins applies the Bayesian
interference method to perform structural fitting for removing
time-dependent translational and rotational movements
(Miyashita and Yonezawa, 2017). On the other hand, Perez
et al. (2015) combined MD with Bayesian interference to
speed up simulation. The combination of Bayesian interference
with MD simulations was also used by Shevchuk and Hub (2017)
to refine structures and ensembles against small-angle X-ray
scattering (SAXS) data.

Proteins change their conformations upon the influence of
many factors, such as temperature, pH, and more importantly as
a consequence of molecular recognition due to ligand binding
(Doms et al., 1985; Takeda et al., 1989; Andersen et al., 1990).
What is more, the ligand-protein complex is formed by the
induced fit of both molecules, and the resulting protein
conformations depend on the structure of the ligand
(Bosshard, 2001). Conformational dynamics of proteins have a
profound effect on cell functioning, such as in the case of
G-protein coupled receptors (GPCRs), which transduce
external signals into cells by activation of specific cellular
pathways. The binding of different ligands stabilizes certain
conformational state, which results in the elicitation of distinct
signalling—a phenomenon called functional signalling, or biased
agonism (Hilger et al., 2018; Wootten et al., 2018). An essential
role of GPCRs in signal transmission highlights the importance of
understanding how ligand binding alters protein conformations,
in order to design new GPCR ligands, which would target desired
pathways and avoid others, potentially causing side effects. MD is
perfectly suited for perceiving ligand-protein conformational
change; however, the difficulty lies in the necessity to analyze
long-scale MD simulations, which are required to capture tiny
structural changes, responsible for functional signalling. Plante
et al. (2019) successfully applied deep neural networks (DNNs),
to analyze MD data. MD output was transformed into the pixel
representation, which is interpretable by the state-of-art DL
object-recognition technology. When the method was applied
to the pharmacological classification of 5-HT2A and D2 receptors
ligands, among which were full, partial, and inverse agonists,
DNN achieved near-perfect accuracy, classifying correctly >99%
frames. Moreover, the sensitivity analysis identified the molecular
determinants, which were considered by the model as the most
important for the correct prediction. Even if the study has limited
scope, including only eight ligands and two receptors, it gives
hope for the highly accurate and efficient estimation of ligand-
protein functional selectivity with the help of DNN.

Allostery is called the second secret of life (Fenton, 2008), as it
is crucial for the adaptation of living organisms to changing
environmental conditions by altering multiple cell functions, like
enzyme catalysis, cell signalling, gene transcription, and others
(Goodey and Benkovic, 2008; Nussinov et al., 2014). Designing

allosteric drugs is a challenging task for multiple reasons. First of
all, classical docking alone is unable to predict how orthosteric
binding sites would adjust to allosteric modulation, and,
importantly, which functional effect ligands would exert on
protein’s function (Nussinov and Tsai, 2013; Lu et al., 2019;
Sheik et al., 2020). Luckily, MD simulations give insight into the
nature of allosteric perturbations; moreover, the application of
ML algorithms to MD data expands possibilities to extract
valuable information from long-scale simulations. Recently
conducted research proved that such a combined MD-ML
approach is able to efficiently determine ligand’s functional
activity and models explaining ligand efficacy can be
constructed. Marchetti et al. (2021) brought together the
benefits of ensemble docking, MD and ML, in order to predict
whether a set of ligands would inhibit or activate molecular
chaperone Hsp90. MD of Hsp90 with several ligands was
followed by cluster analysis of the obtained metatrajectory,
subsequently, representative protein conformations were
chosen for ensemble docking. The features obtained from
docking, notably docking score, RMS, and RMSD, were used
for training a supervised model, which served as a classification
tool. Among three popular algorithms—logistic regression, SVM,
and Random Forest - SVM reached the highest accuracy (0.9), as
well as showed the best performance. On the other hand, attempts
to classify ligands on the basis of separate features or
chemometrics properties (here, molecular fingerprints) were
far less efficient. In contrast, Ferraro et al. (2021) aimed to
predict allosteric ligand functionality quantitatively. A
computational experiment was performed on the allosteric
modulators of the molecular chaperone TRAP1, which had
similar affinities, but inhibited ATPase function with different
efficacy. Two ML algorithms–Naïve Bayes and SVM–were
applied to extract the local dynamic patterns responsible for
the allosteric perturbation. The models were trained and
validated on MD simulations of the perturbed and
unperturbed systems. Whereas the discriminative SVM models
qualitatively assessed the disparities between the perturbed and
unperturbed ensembles, the implementation of the generative
Naïve Bayes model produced a linear regression model with a
0.71 correlation between predicted states in the inhibitor-bound
trajectories (TPR percentage) and the TRAP1 inhibition
percentage. Additionally, Naïve Bayes could estimate the
weight of ligand effects on each feature, which would support
the identification of the features crucial for the allosteric
propagation. Therefore, ML expands the possibilities of
computer-aided drug design of allosteric modulators and could
bring drug design to a new level with limited experimental testing.

The number of proteins with unknown functions is increasing
due to the advances in bioinformatics, especially in the field of
structural genomics. Identification of binding pockets could
potentially be the key to understanding which functions
specific proteins carry out. The FEATURE (Wei and Altman,
1998) is an ML-based algorithm for the identification of Ca2+-
binding sites, utilizing the Bayesian scoring scheme. The
FEATURE prediction does not depend on the sequence or
structure, as the models examine local 3D physicochemical
environment and that is why they are able to recognize
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diverse binding sites. However, the applications of the algorithm
were limited to static structures, until Glazer et al. (2008) applied
MD to improve the FEATURE detection ability by increasing
structural diversity. The hypothesis was tested on parvalbumin β –
an EF-hand Ca2+-binding protein, which has two Ca2+-binding
sites–and MD-assisted calcium-binding pockets recognition.
Moreover, relatively small time steps were characterized by
significant change in the FEATURE scores, meaning that the
FEATURE is very sensitive to small conformational changes,
which might have an impact on calcium binding. These
promising results could help to implement MD methodology in
the exploration of protein functions.

Researchers’ efforts and technological advancement
resulted in the development of a framework designed to
support performing of MD simulations by means of ML
algorithms – TorchMD (Doerr et al., 2021). Since the
toolset is written in PyTorch (Paszke et al., 2019), it can be
easily integrated with other models from this ML library.
Among essential features of the framework is TorchMD-
Net, which takes advantage of training neural network
potential in order to improve force-field development.
Furthermore, TorchMD enables running simulations with
end-to-end differentiability of parameters, beneficial for the
performance of steered and highly constrained MD
simulations, sensitivity analysis, and others. Additionally,
TorchMD with implemented neural network potential is
used for coarse-grained MD simulations, which are helpful
in studying protein folding and exploring conformational
space. Code, step-by-step tutorials, and data are available at
GitHub (https://www.github.com/torchmd).

CONCLUSION

Both intense growth in the amount of data, as well as
increasing capabilities of various algorithms to detect
patterns and relationships in various sets of information,

dramatically increased the popularity of automatic
approaches for MD outcome analysis. The output of such
experiments consists of billions of timesteps, and recorded
positions and velocities of thousands of atoms. Therefore,
extracting important information from such a data package
can be very challenging, and so the application of various post-
processing approaches is needed. The post-processing
protocols can help in the finding of non-obvious ligand-
protein interaction patterns, detection of rare
conformational states, or examining dependence of
conformational changes of the examined system in time.
Moreover, thanks to the post-processing approaches, the
prediction of the system behavior in longer time scales than
modeled can be made.

However, given all the advantages of ML approaches, we
should still be aware of their limitations and pay attention to
data used for models training, as it will substantially define the
quality of the outcome. Importantly, ML models could have
limited transferability and must be applied to other types of
data carefully. Nevertheless, application of ML to MD data is
undoubtedly the future, which makes the potential of MD
applications almost unlimited.
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