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The Alanine-Serine-Cysteine transporter (SLC1A5, ASCT2), is a neutral amino acid

exchanger involved in the intracellular homeostasis of amino acids in peripheral tissues.

Given its role in supplying glutamine to rapidly proliferating cancer cells in several

tumor types such as triple-negative breast cancer and melanoma, ASCT2 has been

identified as a key drug target. Here we use a range of computational methods,

including homology modeling and ligand docking, in combination with cell-based assays,

to develop hypotheses for structure-function relationships in ASCT2. We perform a

phylogenetic analysis of the SLC1 family and its prokaryotic homologs to develop a

useful multiple sequence alignment for this protein family. We then generate homology

models of ASCT2 in two different conformations, based on the human EAAT1 structures.

Using ligand enrichment calculations, the ASCT2 models are then compared to crystal

structures of various homologs for their utility in discovering ASCT2 inhibitors. We

use virtual screening, cellular uptake and electrophysiology experiments to identify a

non-amino acid ASCT2 inhibitor that is predicted to interact with the ASCT2 substrate

binding site. Our results provide insights into the structural basis of substrate specificity

in the SLC1 family, as well as a framework for the design of future selective and potent

ASCT2 inhibitors as cancer therapeutics.

Keywords: homology modeling, SLC1A5, glutamine transporter, solute carrier transporter, structure prediction,

cancer metabolism, structure-based ligand discovery

INTRODUCTION

The human SLC1 family is comprised of seven sodium-dependent amino acid transporters,
including five excitatory amino acid transporters (EAAT1-5) and two alanine-serine-cysteine
transporters (ASCT1 and ASCT2) (Kanai et al., 2013). The EAATs are primarily expressed in
the central nervous system (CNS), where they mediate the uptake involved in the termination of
glutamate neurotransmission (Danbolt, 2001; Vandenberg and Ryan, 2013). The ASCTs facilitate
exchange of neutral amino acids in peripheral tissues such as the kidney, intestine, and skin and/or

Abbreviations: SLC Transporters, Solute Carrier Transporters; SLC1, Solute Carrier Family 1; RMSD, Root mean square
deviation; MSA, multiple sequence alignment; ASCT2, alanine-serine-cysteine transporter 2; EAAT, excitatory amino acid
transporter; DOPE score, Discrete Optimized Protein Energy.
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the CNS, and they are responsible for maintaining intracellular
homeostasis of amino acids (Bröer et al., 1999; Kanai et al.,
2013). Genetic variations in SLC1 members can lead to a variety
of diseases and disorders. For example, mutations in EAAT1
(SLC1A3) that reduce its activity, can cause neurodegenerative
disorders such as stroke (Chao et al., 2010) and ataxia (Winter
et al., 2012; Choi et al., 2017). Conversely, the upregulation
of ASCT2 occurs in many cancers such as triple-negative
breast cancer (Kim et al., 2013; van Geldermalsen et al., 2016),
melanoma (Wang et al., 2014) and prostate cancer (Wang et al.,
2013), and can correlate with poor prognosis, shown in studies of
hepatocellular carcinoma (Namikawa et al., 2014; Sun et al., 2016)
and non-small cell lung cancer (Shimizu et al., 2014; Yazawa et al.,
2015).

One of the hallmarks of cancer is the alteration of tumor
cell metabolism to support rapid growth and proliferation
(DeBerardinis et al., 2007; Schulze and Harris, 2012; Altman
et al., 2016). This increased need for carbon and nitrogen sources
can result in increased reliance of cells on glutamine, in a
phenomenon commonly known as “glutamine addiction” (Wise
and Thompson, 2010; Bhutia et al., 2015; Altman et al., 2016).
Glutamine is imported into tumor cells primarily by ASCT2
(Wasa et al., 1996; Collins et al., 1998; Fuchs et al., 2007; Scalise
et al., 2017), where it is used for nucleotide synthesis (Lane and
Fan, 2015) and to replenish TCA cycle intermediates (Albers
et al., 2012; Schulze and Harris, 2012; Pochini et al., 2014).
This glutamine can also contribute to mTORC1 activation and
subsequent proliferation by being exchanged for leucine via LAT1
(Nicklin et al., 2009; Pochini et al., 2014; Wang et al., 2014).

Previous studies have shown that knock down of ASCT2
results in tumor growth attenuation in vitro (Nicklin et al.,
2009; Wang et al., 2014, 2015; van Geldermalsen et al., 2016;
Schulte et al., 2018) and in vivo (Wang et al., 2015; van
Geldermalsen et al., 2016), and the viability of ASCT2 knockout
mice suggests that pharmacological targeting of ASCT2 may
not affect normal cells (Nakaya et al., 2014; Masle-Farquhar
et al., 2017). Indeed, a recent study showed that pharmacological
inhibition of ASCT2 reduced cancer cell growth and proliferation
in vitro and in vivo (Schulte et al., 2018). This information
taken together purports that ASCT2 is a significant drug target.
To develop potent and specific compounds for ASCT2, a
detailed understanding of its substrate specificity and binding site
properties is needed.

Experimentally determined structures or well-made
homology models, can be extremely powerful to uncover
novel chemical scaffolds when combined with structure-based
virtual screening (Colas et al., 2015). Currently, there are no
experimentally solved structures of ASCT2 and ASCT1. Most
of the knowledge about the human SLC1 family structure
and molecular mechanism came from the study of their
prokaryotic homologs, the aspartate transporters, GltPh
from Pyrococcus horikoshii (Yernool et al., 2004) and GltTk
from Thermococcus kodakarensis (Guskov et al., 2016) that
share a 77% sequence identity (Guskov et al., 2016). Similar
to ASCT2, these transporters couple substrate transport
with the cotransport of three Na+ ions (Groeneveld and
Slotboom, 2010; Kanai et al., 2013). Moreover, they have eight

transmembrane helices (TMs) and share sequence identity of
∼30% and a conserved binding site with the human members
of the SLC1 family (Yernool et al., 2004; Albers et al., 2012;
Scopelliti et al., 2013; Colas et al., 2015; Canul-Tec et al.,
2017).

The GltPh structures have been determined in multiple
conformations of the transport cycle (Verdon et al., 2014) and
with a variety of substrates and inhibitors (Yernool et al., 2004;
Boudker et al., 2007; Verdon et al., 2014; Scopelliti et al.,
2018). These structures, combined with characterizations using
other biophysical methods (e.g., smFRET), have revealed that
the transporter exists as a trimer and transports its substrates
using an “elevator” transport mechanism (Reyes et al., 2009,
2013; Akyuz et al., 2013). In brief, in the elevator mechanism,
the transporter has a mobile transport domain that binds the
substrate and traverses the membrane, and a static scaffold
domain that mediates oligomerization (Hirschi et al., 2017).
Recently, the human EAAT1 atomic structure was solved
in various conformations, bound to aspartate or competitive
inhibitor (TBOA), as well as with an allosteric inhibitor (Canul-
Tec et al., 2017). This structure was highly similar to that of GltPh,
confirming the relevance of GltPh for studying the human family.
Furthermore, these structures suggest that the other human
SLC1 members including ASCT2 operate via a similar transport
mechanism (Boudker et al., 2007; Reyes et al., 2009; Canul-Tec
et al., 2017).

Multiple models of human SLC1 members have been
constructed based on the GltPh structure and tested
experimentally using a variety of biochemical and biophysical
methods (Yernool et al., 2004; Albers et al., 2012; Scopelliti et al.,
2013; Colas et al., 2015; Console et al., 2015; Canul-Tec et al.,
2017). These studies identified key binding site residues that
explain the differential charge specificity among these proteins
(Scopelliti et al., 2013, 2018; Colas et al., 2015; Canul-Tec et al.,
2017; Singh et al., 2017). We have previously built models of
ASCT2 based on the outward-occluded and outward-open
conformations of GltPh and used these models to identify
and refine multiple ASCT2 ligands, including inhibitors and
substrates (Colas et al., 2015; Singh et al., 2017). Interestingly, a
recently solved structure of a GltPh variant that was engineered
to bind some ASCT2 substrates, provided a model to understand
ASCT2-ligand interactions (Scopelliti et al., 2018). This structure
also revealed a binding site conformation similar to that of our
model, confirming our modeling approach.

Here, we model ASCT2 structure in two conformations
based on the newly solved EAAT1 structures and evaluate the
relevance of these models for drug discovery. Particularly, we
first analyze phylogenetic relationships among human SLC1
family members and their prokaryotic homologs, to inform
the homology modeling of this family. We then generate
models of ASCT2 and perform a comparative analysis to
the engineered GltPh variant crystal structures, to assess the
utility of the various proteins in ligand discovery. We also
describe the discovery of a unique ASCT2 inhibitor from virtual
screening and predict its mode of interaction with ASCT2. Our
results provide insights into the structural basis of substrate
specificity in the SLC1 family and provides a framework for
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the design of ASCT2 inhibitors with improved selectivity and
potency.

MATERIALS AND METHODS

Phylogenetic Tree
To build the phylogenetic tree of the SLC1 members, FASTA
sequences of each family member were retrieved from Uniprot
(Uniprot Consortium, 2018) and aligned withMUltiple Sequence
Comparison by Log-Expectation (MUSCLE) (Edgar, 2004) and
Promals3D (Pei and Grishin, 2014). This multiple sequence
alignment (MSA) in FASTA format was used as input for Simple
Phylogeny, which is a web server that performs phylogenetic
analysis on multiple sequence alignments (Larkin et al., 2007;
McWilliam et al., 2013). The Newick tree format was selected as
the output, for its ability to be viewed with multiple tree viewing
programs. Distance correction was set to on, to avoid branch
stretching for more divergent sequences. Exclude gaps was set
to on, to remove gaps in the MSA and use only the positions
where information could be included from all sequences. The
Neighbor-joining algorithm was used to construct the tree from
the distance matrix. The final tree was visualized with FigTree
(Rambaut, 2012), a graphical program for viewing phylogenetic
trees.

Homology Modeling
ASCT2 was modeled based on X-ray structures of human EAAT1
in the outward-occluded and outward-open conformations (PDB
codes 5LLM and 5MJU, respectively) (Canul-Tec et al., 2017).
The initial ASCT2-EAAT1 alignment was derived from the MSA
of human SLC1 family members and prokaryotic homologs,
which was subsequently refined based on visual analysis of (i) a
pairwise ASCT2-EAAT1 alignment generated by Promals3D (Pei
and Grishin, 2014) under default parameters (ii) previously
published alignments of the SLC1 family (Yernool et al., 2004;
Canul-Tec et al., 2017); (iii) preliminary homology models
generated based on the various alignments. We omitted from
modeling, large variable loop regions that are distant from
the substrate binding site and are unlikely to affect ASCT2-
ligand interactions (Colas et al., 2015). These regions included
the loops between transmembrane (TM) region 3 and TM4a
and between TM4b and TM4c. For each conformation and
ASCT2-EAAT1 alignment, 100 initial models were constructed
with MODELLER-v9.11 (Webb and Sali, 2017). The initial
models were refined by iteratively modeling the sidechains
of D464 and M387 on a fixed backbone with PyMOL1 and
visually assessing the generated models. The models were
constructed with nonprotein elements, including the sodium
ions, as well as the ligands aspartate or TBF-TBOA and
UCPH101 based on their coordinates in the template structures.
The models were then evaluated and ranked by their Z-
DOPE score, a normalized atomic distance dependent statistical
potential based on known protein structures (Shen and Sali,
2006). The top-scoring models had Z-DOPE scores of −0.517
(outward-occluded) and −0.313 (outward-open), respectively.

1 The PyMOL Molecular Graphics System, V.S., Llc.

These scores are significantly better than previously published
models of ASCT2 using GltPh structures as modeling templates,
indicating that they are suitable for further investigation. The
15 top-scoring models for each conformation, were subjected
to enrichment analysis with ligand docking. All models are
available for direct download through www.schlessingerlab.org/
data.

Ligand Docking and Enrichment
We evaluated the ability of the models to distinguish known
ASCT2 ligands from decoys using ligand enrichment calculations
(Huang et al., 2006; Fan et al., 2009). For the outward-open
model, 26 known ASCT2 ligands were obtained from the
literature (Esslinger et al., 2005; Albers et al., 2012; Oppedisano
et al., 2012; Colas et al., 2015; Schulte et al., 2015, 2016; Singh
et al., 2017) and ChEMBL (Gaulton et al., 2017), and 1304
decoys were generated based on these ligands using the DUD-E
server (Mysinger et al., 2012). For the occluded models, we
removed 7 ASCT2 ligands that are large and unlikely to fit
into the substrate binding site. Thus, 19 known ligands were
used to generate 937 decoys with DUD-E for this conformation.
Docking was performed using OpenEye FRED (McGann, 2011).
We chose to use OpenEye FRED based on the following criteria:
(i) docking against ASCT2 models obtained high enrichment
scores as compared to scores obtained with other methods
(not shown) (ii) the program is available through an academic
license; (iii) its speed and ease of use, a feature that enables us
to perform docking against multiple models, which has been
shown to increase prediction accuracy and ligand enrichment
(Fan et al., 2009); and (iv) OpenEye FRED has shown its
usefulness in ligand discovery campaigns targeting models of
transporters with chemically related substrates, such as the L-
type amino acid transporter LAT1 (Zur et al., 2016) and the
oligopeptide transporter PepT1 (Colas et al., 2017). The binding
site was prepared using the MAKE_RECEPTOR utility of FRED
with (S351 and N471 ASCT2 outward-occluded constraints and
S351 and S353 ASCT2 outward-open constraints) and ligand
conformations were prepared with the OMEGA utility. Finally,
the area under the curve (AUC) and the logarithmic scale AUC
(logAUC) of the enrichment plots were calculated (Fan et al.,
2009).

Virtual Compound Screening
We used OpenEye FRED (McGann, 2011) as described above
to screen the ZINC15 “Available Now Lead-Like” library against
our outward-open ASCT2 model based on GltPh (8.7 x 106

compounds). We used constraints on the backbone nitrogen
of S353 and the carboxy group of the side chain of D464.
We visually inspected the 200 top-scoring compounds of the
screen and prioritized compounds predicted to interact with the
binding site through conserved hydrogen bonds with important
residues between ASCT2 and GltPh (Figure 2). Additionally,
of those compounds, we selected 13 compounds that included
potentially new chemotypes as ASCT2 ligands and also docked
in both pocket A (PA) and pocket B (PB) (Supplementary
Table 1).
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Pocket Volume Measurement
POVME3 (Wagner et al., 2017) (Pocket Volume MEasurer)
was used to calculate binding site volumes. The coordinates of
the binding site were estimated using AutoDock Vina plugin
(Trott and Olson, 2010) in PyMOL. These coordinates were used
as input for POVME3.

SK-MEL-28 Cell Culture
Human melanoma cancer cell line SK-MEL-28 identity
was confirmed by STR profiling in 2018 (Cell Bank,
Sydney, Australia). Cells were routinely tested as free from
mycoplasma using a PCR-based detection method. SK-
MEL-28 cells were grown in DMEM medium containing
4mM L-glutamine and 20mM HEPES (Life Technologies),
supplemented with 10% (v/v) fetal bovine serum (FBS;
HyClone) and 1× penicillin-streptomycin solution (Life
Technologies). Cells were passaged every 2–3 days and were
maintained in a fully humidified atmosphere containing
5% CO2 at 37◦C. Inhibitors were resuspended in DMSO to
20mM, before being diluted to their final concentrations
in uptake media. L-γ-glutamyl-p-nitroanilide (GPNA) was
resuspended in water prior to dilution in uptake media to final
concentrations.

Glutamine Uptake Assay
SK-MEL-28 cells (1 × 105/well) were incubated with [3H]-
L-glutamine (400 nM; PerkinElmer) in RPMI media (Life
Technologies) without L-glutamine for 15min at 37◦C in the
presence or absence (Control; vehicle) of each inhibitor as
previously published (van Geldermalsen et al., 2016). Cells were
collected and transferred to filter paper using a 96-well plate

harvester (Wallac PerkinElmer), dried, exposed to scintillation
fluid and counts measured using a liquid scintillation counter as
previously published (MicroBeta2 Counter, PerkinElmer) (Wang
et al., 2014).

Electrophysiology
Experiments were performed as described in detail previously
(Albers et al. 2012). In brief, compound 10 was dissolved in
DMSO and diluted to a maximum concentration of 1mM (5%
final DMSO, DMSO at this concentration did not cause any
notable currents), before application to HEK293 cells expressing
rat ASCT2 and suspended from a current recording electrode.
External buffer used to dissolve the compound was; 140mM
NaCl, 2mM MgCl2, 2mM CaCl2, 10mM HEPES at pH 7.40.
Intracellular buffer contained 130mM NaSCN, 2mM MgCl2,
10mM EGTA, 10mM HEPES at pH 7.40 and the pipette
resistance was between 3 and 5.5 M�. Currents were recorded
using an Adams & List EPC7 amplifier at 24 h after transfection
using Jetprime transfection reagent according to the protocol
supplied by Polyplus.

RESULTS

Refined Multiple Sequence Alignment and
Phylogenetic Tree for SLC1
To generate homology models of ASCT2, we rely on the
availability of experimentally determined structures of its
homologs. The accuracy of the homology model highly correlates
with the quality of the target-template alignment (Forrest et al.,
2006). Previously published models of human SLC1 members
were based on GltPh which shares a sequence identity of ∼30%,

FIGURE 1 | Phylogenetic tree of the human SLC1 transporters and prokaryotic homologs. The solved structures of prokaryotic homologs are depicted in blue;

SLC1A3 (EAAT1), the only experimentally determined human member of the SLC1 family, is shown in red. Homology models of the other human SLC1 members are

green. Branch lengths and their values correspond to the ratio between the number of substitutions and the alignment length and are proportional to the evolutionary

change.
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where alignments become challenging and more error-prone
(Martí-Renom et al., 2000; Eramian et al., 2008). The recent
structures of EAAT1, which shares a sequence identity of 46%
with ASCT2, provide better templates to model ASCT2, thereby
increasing the confidence in the target-template alignment and
ASCT2 model. Key structural differences between EAAT1 and
GltPh include the residue composition of the loop connecting
hairpin (HP) 2 and TM8, which is six residues shorter in
EAAT1 than in GltPh and is more conserved among the human
SLC1 members (Canul-Tec et al., 2017) (Supplementary Figure
1). In addition, the N-terminus of TM1 in ASCT2 is more
conserved with EAAT1, whose helical structure is nearly parallel
to the membrane as opposed to the corresponding loop region
in GltPh. Thus, ASCT2’s binding site in the models based on
the different proteins are expected to differ in their shape and
biophysical properties which in turn will determine the chemical
structures of the small molecules recognized by ASCT2 in each
conformation, as shown for other SLC transporters (Schlessinger
et al., 2012).

We therefore generated a Multiple Sequence Alignment
(MSA) that included the sequences of the human SLC1 family
members, as well as the structures of EAAT1 and GltPh, with

FIGURE 2 | ASCT2 models in two conformations. (A) The outward-occluded

and outward-open models and corresponding predicted binding modes for

known ligands of ASCT2, including (B) a substrate and (C) inhibitor. HP2 is

highlighted with magenta and blue ribbons. The sidechain atoms of key

residues are illustrated with gray lines and the small molecule ligands are

displayed as salmon sticks, with oxygen, nitrogen, and sulfur atoms in red,

blue, and yellow, respectively. Hydrogen bonds between the binding site

residues I431, P432, S351, S353, D464, T468, and N471, and the ligand are

represented by dashed green lines. (B) Outward-occluded model with docked

glutamine. (C) Outward-open model shown with

(2S)-2-amino-4({2-[(morpholin-4-yl)methyl]phenyl}carbamoyl)butanoic acid.

HP2 is in an outward-open conformation.

Promals3D, which uses structure-based constraints from the
alignments of three-dimensional structures (Pei and Grishin,
2014) (Supplementary Figure 1). We then built a phylogenetic
tree based on this alignment with Simple Phylogeny (Larkin
et al., 2007; McWilliam et al., 2013) (Figure 1). The phylogenetic
tree is separated into four distinct branches. The neutral amino
acid transporters ASCT1 and ASCT2 cluster together and share
sequence identity of 57%, the highest sequence identity among
pairs of the SLC1 family. The five glutamate transporters
share 44–55% sequence identity, in agreement with previous
studies (Kanai et al., 2013). EAAT2 and EAAT3 share the same
branch and the highest similarity among the five glutamate
transporters.

We then used the MSA to derive pairwise alignments between
EAAT1 and each one of the family members, which were
used as input for homology modeling (section Materials and
Methods) (Figure 1). Interestingly, the models’ scores, calculated
with Z-DOPE, correlate with the positions of the SLC1 family
members on the phylogenetic tree with respect to EAAT1.
For example, the EAAT4 model had the best Z-DOPE score
(−0.73), whereas the EAAT3 model scored the worst (0.23).

TABLE 1 | Pocket A residues and their respective protein locations aligned

between ASCT2 and EAAT1 and GltPh-R397C.

Location ASCT2 EAAT1 GltPh-R397C

Residue Residue Residue

TM2 V96I(a) V58

I100

TM4C A243I(b) V151

HP1 S352 S364 S277

S353 S365 S278

S354 S366 S279

A355 A367 G280

L357 L369 L282

TM7 P380 P392

V393

A383 A395 A307

T384 T396 T308

I397 I309

N398

HP2 S425 S437

V426 I438

G427 G439

A428 A440 T352

A429 A441 A353

G430 G442 G354

I431 I443 V355

P432 P444 P356

A433 G357

G434 A358

(a)V96 and (b)A234 is mutated to I in EAAT1 crystal (5MJU).
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These differences likely result from a large insertion between
TM4b and TM4c in the EAAT3 (residues 164–201) compared to
EAAT1.

ASCT2 Homology Models in Two Different
Conformations
We generated ASCT2 homology models using MODELLER
(Webb and Sali, 2017), based on the EAAT1 structures
in the ligand bound outward-open and outward-occluded
conformations (section Materials and Methods). The ASCT2
models obtained Z-DOPE scores of −0.31 and −0.52,
respectively. These scores were significantly better than
those of our previous models based on GltPh, and were indicative
that the models are sufficiently accurate for further analysis
(Eramian et al., 2008; Colas et al., 2015). Initial models were
refined by iteratively modeling the sidechains on a fixed
backbone of various binding site residues with PyMOL and
visually assessing the optimized models (section Materials and
Methods).

Next, we docked known ASCT2 ligands, including substrates
and inhibitors to the substrate binding site of the models in
both conformations. Notably, the mode of ligand binding in the
outward-occluded model, closely resembles that of the outward-
open model, recapitulating the ligand poses in the crystal
structures of EAAT1 and GltPh (Figures 2B,C). Critical polar
interactions between the amino-acid like ligands and the binding
site are mostly conserved between the two conformations. For
example, in the outward-occluded conformation (Figure 2B),
the carboxy group of the substrate glutamine forms hydrogen
bonds with S353 (HP1), as well as with T468 and N471
(TM8); and the amino group of the substrate forms hydrogen
bonds with S351 (HP1) and I431 (HP2) and D464 and
T468 (TM8). However, in the outward-open conformation,
with a docked inhibitor, there are no contacts with HP2
(Figure 2C).

It has been shown that C467 in ASCT2, which corresponds
to R479 and T459 in EAAT1 and ASCT1, respectively, plays
a key role in substrate specificity (Scopelliti et al., 2013, 2018;
Colas et al., 2015). Mutating this residue to either a neutral
amino acid or an arginine, can alter substrate preference in
the SLC1 transporters (Conradt and Stoffel, 1995; Scopelliti
et al., 2013). For example, the T459R mutation in ASCT1
introduces acidic amino acid transport to the neutral amino

acid transporter (Scopelliti et al., 2013). Equally important is
this residue’s role in facilitating the availability of a hydrophobic
subpocket termed pocket B (PB), which increases the size
and changes its shape of the binding site (Figures 2, 4).
In the outward-open conformation, there is an additional
subpocket, pocket A (PA) that is revealed when HP2 adopts
an open conformation. The residues constituting PA are
variable among GltPh-R397C, EAAT1, and our model of ASCT2
(Table 1). One potential strategy to identify chemically novel
ASCT2 inhibitors is by targeting both subpockets PA and PB
simultaneously.

Comparison Between SLC1 Structures and
Models
We assessed the relevance of the ASCT2 models for structure-
based ligand discovery. ASCT2 models in both conformations
were evaluated for their ability to distinguish ligands from likely-
non-binders or decoys using docking (“ligand enrichment”)
(Huang et al., 2006; Fan et al., 2009). Here, the decoys
are molecules that resemble the known ligands physically
but are topologically dissimilar to minimize the likelihood
of binding (Mysinger et al., 2012). We calculated the area
under the curve (AUC) of enrichment plots as well as the
logarithmic AUC (logAUC), which determines the model’s ability
to prioritize those known ligands early in the library. The
AUC of the outward-occluded and outward-open models were
94.12 and 95.19, respectively (Figures 3A,B), suggesting that
both models are relevant for ligand discovery with molecular
docking (Fan et al., 2009; Schlessinger et al., 2011; Colas et al.,
2015).

We also calculated the AUC and logAUC for the GltPh
variant structures (GltPh-R397C) that were engineered to mimic
ASCT2 function (Scopelliti et al., 2018) (Figure 3). In brief,
the GltPh-R397C variant has a point mutation in the binding
site residue R397C, which corresponds to C467 in ASCT2,
allowing this transporter to bind and transport substrates of
ASCT2 such as serine and alanine. Indeed, the GltPh-R397C
outward-occluded and outward-open structures obtained AUCs
of 74.61 and 64.92, respectively, suggesting that they capture
known ASCT2 ligands (Figures 3A,B); however, the enrichment
scores are lower than those obtained using the new ASCT2
models.

FIGURE 3 | Model Evaluation with enrichment plots. Enrichment plots are shown for the ASCT2 models (green) and GltPh-R397C variants (red) in two conformations;

the plot that is expected by a random selection of ligands is represented by a blue dashed line. The enrichment plots are shown for the outward-occluded

conformation (A,C) and outward-open conformation (B,D). with the area under the curve (AUC) (A,B) and the logarithmic AUC (logAUC) (C,D) calculated for each plot.
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FIGURE 4 | The substrate binding site of ASCT2 and its homologs. The binding site is compared between GltPh (green) GltPh-R397C (purple), EAAT1 (cyan), and

ASCT2 (gray) in the outward-occluded and open conformations. Surface representations of the substrate binding site are shown, highlighting PA and PB. Key

residues R397 (GltPh ) R397C (GltPh-R397C), R479 (EAAT1) and C467 (ASCT2) are depicted as sticks. (A) Outward-occluded conformation, (B) outward-open

conformation rotated 180◦ degrees to view PA.

To rationalize the difference in enrichment scores and in
ligand specificity, we analyzed the binding sites of our ASCT2
models, and the EAAT1 and GltPh-R397C structures. In both
wildtype GltPh [PDB codes: 6BAT (Scopelliti et al., 2018), 2NWW
(Yernool et al., 2004)] and EAAT1 (Canul-Tec et al., 2017),
PB is blocked by R397/R479 in both the outward-occluded
and outward-open conformations (Figure 4A). Particularly, the
binding site of GltPh-R397C occluded (6BAU) is almost identical
to the binding site of the corresponding conformation of the
wild-type GltPh (6BAT) (RMSD 0.24).

Interestingly, larger inhibitors are ranked earlier in library
for the ASCT2 models than in the GltPh-R397C structures. This
can be explained by the difference in the size of the binding
sites of the two proteins. The ASCT2 substrate binding site in
both conformations is larger (outward-occluded: 70 Å3, outward-
open: 439 Å3) than those of GltPh-R397C (45Å3, 283 Å3).
In addition, a striking difference between the two proteins is
observed in PA, which is divergent in sequence and structure
between ASCT2 and GltPh-R397C (Figures 4B, Figure 5 and
Table 1). Particularly, the HP2 residues in ASCT2 V426, G427,
A428, and V436, L437, T438 form a loop region, while the
corresponding residues in GltPh-R397C form a helical structure
(Figures 5A,B). HP2 is more conserved between ASCT2 and
EAAT1 than between ASCT2 and GltPh-R397C (Figures 5C,D).
These results indicate that while this GltPh-R397C variant is
useful to describe substrate specificity, it may not capture all
the binding site features that are relevant for ASCT2-inhibitor
interactions (Figure 2).

Discovery of a New ASCT2 Inhibitor
Previously identified ASCT2 ligands are predicted to bind only
one of the two subpockets PA and PB (Colas et al., 2015; Singh

FIGURE 5 | Differences in pocket size and shape in the outward-open

conformation. The HP2 is shown in blue and pink for (A) ASCT2, (B)

GltPh-R397C, respectively. Key residues are illustrated with sticks and oxygen

and nitrogen, and sulfur atoms in red, and blue. Sequence alignment of HP2

(C) between ASCT2 and EAAT1 and (D) between ASCT2 and GltPh-R397C.

Orange boxes mark the residues that differ in secondary structure between

ASCT2 and GltPh-R397C.

et al., 2017). We hypothesized that targeting both PA and PB
simultaneously with virtual screening may yield compounds
with chemically novel scaffolds for ASCT2. In parallel to our
ASCT2 modeling based on the EAAT1 structure, we conducted
a discovery campaign using our previously published GltPh-
based ASCT2 models. Our rationale was to use these compounds
to iteratively refine the outward EAAT1-based ASCT2 models.
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The lead-like library from ZINC15 was docked against the
GltPh-based ASCT2 models (section Materials and Methods).
Compounds were prioritized on the basis of chemotype novelty
and predicted mode of binding to PA and PB. Thirteen
compounds were tested for activity using glutamine uptake
assays in a melanoma cell line (SK-MEL-28). Three compounds

significantly inhibited [3H]-L-glutamine uptake in SK-MEL-28
cells at 100µM (Figure 6C, Supplementary Figure 2). We next
determined the IC50 of the most potent compound, compound
10 (ZINC69811181) for inhibition of glutamine uptake in SK-
MEL-28 cells, using a range of concentrations. We observed
an IC50 of 97.16µM for compound 10 (Figure 6D), which

FIGURE 6 | Identification of a novel ASCT2 inhibitor. Predicted mode of binding of compound 10 in (A) ASCT2 models based on GltPh and (B) ASCT2 models based

on EAAT1. (C) Uptake of [3H]-L-glutamine in SK-MEL-28 cells incubated in the presence and absence of 13 small molecules. Uptake of [3H]-L-glutamine was

assessed over 15 minutes and compared to DMSO vehicle control. Data are the mean ± standard error of the mean of 3-4 experiments per compound. Significance

was assessed using a one-way ANOVA with multiple comparisons (GraphPad Prism), where *P < 0.05, **P < 0.01, and ****P< 0.0001. (D) IC50 calculation

SK-MEL-28 cells were incubated in the presence of compound 10 or GPNA at a range of concentrations. Uptake of [3H]-L-glutamine was assessed over 15min, log

transformed and IC50 determined using a Non-linear fit (log[inhibitor] vs. response, variable slope, four parameters; GraphPad Prism). Data are the mean ± standard

error of the mean of 3-5 experiments per concentration. (E) Electrophysiological characterization of inhibitory activity on ASCT2. Representative original currents

induced by application (indicated by gray bar) of 1mM alanine (red) and 0.5mM compound 10 (black). The internal solution contained 130mM NaSCN and 10mM

alanine, the external solution 140mM NaCl. (F) Dose response curve for compound 10, the red line is a fit to a one-site binding equation with an IC50 of 67 ± 17µM.
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is ∼18-fold better than the ASCT2 inhibitor L-γ-glutamyl-p-
nitroanilide, our positive control (GPNA; IC50 = 1743µM;
Figure 6D). The compound was docked to our new outward-
open model of ASCT2 and is predicted to have a similar
mode of binding to that proposed in our previous model
(Figures 6A,B). Compound 10 was further analyzed using
electrophysiology (Figure 6E) to confirm target engagement with
ASCT2. Application of compound 10 to ASCT2-expressing
HEK293 cells resulted in inhibition of the anion leak current,
which was previously shown to be the hallmark of ASCT2
inhibitors (Albers et al., 2012; Colas et al., 2015; Singh et al.,
2017). In contrast, transported substrates, like alanine, induce
inward current in the presence of intracellular anion, due to
increased anion efflux (Figure 6E). The effect of compound
10 was dose dependent, saturating with an IC50 of 67 ±

17µM, in the same range of that found using the glutamine
uptake assay (Figure 6F). Compound 10 provides a useful
scaffold for further optimization and proof-of-concept for the
design of more selective and higher affinity compounds for
ASCT2.

DISCUSSION

The discovery of glutamine addicted tumors has proposed that
limiting glutamine to cancer cells results in malignant cell
death (Akyuz et al., 2013). One approach to target glutamine
addicted tumors is to inhibit glutamine import into the cancer
cells through nutrient transporters. ASCT2 plays a key role
in glutamine transport in multiple cancers (Wasa et al., 1996;
Collins et al., 1998; Fuchs et al., 2007) and as a result it is now
seen as a potential anticancer drug target. Currently, there are
no drugs in the clinic that have been specifically designed to
target nutrient transporters implicated in tumorigenesis (César-
Razquin et al., 2015). One challenge in studying ASCT2, is the
lack of an experimentally determined structure. In structure-
based ligand discovery, a detailed understanding of the substrate
binding site is needed to develop tool compounds. These
compounds will enable the further study and development of
future drugs for ASCT2. For this reason, we have modeled
ASCT2 with a new alignment and template structures and
investigated the potential utility of these models in small
molecule discovery. Three major findings emerge in this work.
First, we generated a refined, new multiple sequence alignment
for the SLC1 family, inclusive of its prokaryotic homologs and
experimentally determined structures, to be used in the modeling
of the SLC1 family members. The accuracy of the target-
template alignment is critical to the generation of an accurate
homology models (Fiser and Sali, 2003; Forrest et al., 2006).
We hypothesized that the inclusion of structural information
from the newly solved EAAT1 structures would improve the
alignment and therefore our models (Supplementary Figure 1).
Indeed, the new models obtained better Z-DOPE scores and
enrichment scores than those of previously reported ASCT2
models (Colas et al., 2015). This new alignment provides a
useful resource for others to build homology models for the
SLC1 family. Additionally, the initial models generated in this

study are available for direct download (section Materials and
Methods).

The second key result of this study is that the newly-generated
ASCT2 models accurately approximate inhibitor binding, as
measured by their ability to distinguish between known ligands
vs likely-non-binders with docking. The models enriched better
than X-ray structures of GltPh variant structures (GltPh-R397C)
that mimic ASCT2 and twice as well as the previously published
ASCT2 models by our lab (Colas et al., 2015). While our previous
models have shown utility for the discovery of unique ASCT2
inhibitors, the new models are of higher resolution, providing
the foundation for the rational design of potent inhibitors for
ASCT2. Closer examination of the binding sites of the various
SLC1 members, including EAAT1, ASCT2, and GltPh, suggests
differences in several residues that affect the size and shape
of pocket A (PA) (Figures 2, 4). This information may inform
the design of conformation-specific ASCT2 small molecule
ligands.

Third, we identified an ASCT2 inhibitor with a unique
predicted mode of binding. One key challenge in the
development of tool compounds for ASCT2 is to discover
ligands that deviate from amino acid structures, and therefore
may compete better with the high levels of circulating alanine
and glutamine (∼450–550µM) (Cantor et al., 2017). Such
molecules are expected to have improved pharmacokinetic
properties and ASCT2 specificity. For example, compounds
inhibiting EAAT1 may have various deleterious neurological
effects. Our computational screen followed by experimental
testing, identified compound 10, a weak inhibitor of ASCT2 that
does not contain amino-acid like structure. Interestingly, this
compound is predicted to bind to PA, which is different
in size and shape in the EAATs due to dissimilarity in
HP2 and helix packing. This compound also binds PB,
which has subtle structural differences among the human
SLC1 members. Notably, compound 10 is 18-fold more
potent than GPNA, which is also predicted to bind PA;
thus, this compound provides a potential starting point for
optimization in future drug discovery campaigns targeting
ASCT2.
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