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Abstract Leukocyte entry from the blood into inflamed
tissues, exit into the lymphatics, and migration to regional
lymph nodes are all crucial processes for mounting an
effective adaptive immune response. Leukocytes must cross
two endothelial cell layers, the vascular and the lymphatic
endothelial cell layers, during the journey from the blood to
the lymph node. The proteins and cellular interactions which
regulate leukocyte migration across the vascular endothelium
are well studied; however, little is known about the factors
that regulate leukocyte migration across the lymphatic
endothelium. Here, we will summarize evidence for a role
for galectins, a family of carbohydrate-binding proteins, in
regulating leukocyte migration across the vascular endo-
thelium and propose that galectins are also involved in
leukocyte migration across the lymphatic endothelium.
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Specific Leukocyte Subsets Enter Inflamed Tissues
and Exit into the Lymphatic System

Leukocytes migrate into inflamed tissues from the blood
and can exit into the lymphatics after encountering antigen
at sites of inflammation. This migration and the subsequent
activation of the adaptive immune system in downstream
lymph nodes are imperative for mounting an effective
immune response. However, surprisingly little is known

about how immune cells migrate out of inflamed tissues
and traffic towards lymph nodes [1].

During inflammation, neutrophils are the first immune
cells to arrive at tissue sites, followed by monocytes and then
effector and memory T and B cells [2]. Expression of pro-
inflammatory cytokines at sites of inflammation induces
vascular endothelial cells to up-regulate the expression of
adhesion molecules that facilitate the entry of leukocytes into
the inflamed tissue. These adhesion molecules include
selectins and integrins, whose roles in leukocyte adhesion
to the vascular endothelium and leukocyte entry into tissues
have been analyzed in detail [2, 3].

A role for galectins in leukocyte migration across the vas-
cular endothelium has also been described [4]. Galectins are a
family of carbohydrate-binding proteins that are expressed by
vascular endothelial cells and regulate immune cell migration
during inflammation [5–9]. However, in contrast to selectins
and integrins, less is known about how galectins influence
leukocyte capture, rolling, and adhesion to and migration
across the vascular endothelial cell layer and through the
extracellular matrix (ECM) to the site of inflammation.

Of the immune cells that enter sites of inflammation,
only certain types of leukocytes exit tissues and travel to
lymph nodes. Neutrophils, monocyte-derived dendritic cells
(DCs) and macrophages, as well as memory CD4 T cells,
have all been shown to make the journey through the
afferent lymph towards draining lymph nodes [10–15].
However, little is known about the adhesion molecules and
signaling intermediates that are expressed by lymphatic
endothelial cells and how these can modulate leukocyte exit
from sites of inflammation [1]. One of the few reports
analyzing this question found that, similar to vascular
endothelial cells, lymphatic endothelial cells up-regulated
expression of vascular cell adhesion molecule-1 (VCAM-1)
and intercellular adhesion molecule-1 (ICAM-1) under
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inflammatory conditions and that this up-regulation facili-
tated DC migration across a layer of lymphatic endothelial
cells [16]. Recently, the same group demonstrated that the
chemokine CCL21 was secreted from lymphatic endothelial
cells under inflammatory conditions and also promoted DC
migration across a layer of lymphatic endothelial cells [17].

As mentioned above, galectin expression by vascular
endothelial cells also changes under inflammatory conditions
[5, 6]. It is therefore conceivable that galectins also regulate
leukocyte migration across the lymphatic endothelium, as
described for VCAM-1, ICAM-1, and CCL21. This idea is
supported by two recent reports, which demonstrate that
galectin-1 and galectin-3 are involved in the exit of tissue-
resident DCs into the lymphatics and migration to draining
lymph nodes [18, 19]. In this review, we will discuss what is
known about the influence of galectins on leukocyte entry
from blood into sites of inflammation and propose a role for
galectins in leukocyte exit into the lymphatic system.

Galectins Function Through Binding and Clustering
Glycan Ligands on Glycoprotein Counterreceptors
on Leukocytes

There are 14 galectin family members (galectin-1 to -14) in
mammals, all of which contain conserved carbohydrate
recognition domains (CRDs). All galectins can oligomerize
into higher order carbohydrate-binding proteins. The prototype
galectins (galectin-1, -2, -5, -7, -10, -11, -13, and -14) exist as
monomers or homodimers of one CRD. The tandem-repeat
type galectins (galectin-4, -6, -8, -9, and -12) harbor two distinct
CRDs joined by a peptide linker and can oligomerize via CRD–
CRD interactions [20]. The chimera-type galectin-3 consists of
a CRD attached to a peptide linker that can pentamerize upon
binding to glycan ligands on cells or matrix [21].

Galectins bind discrete but overlapping sets of glycan
ligands that are displayed on cell surface glycoprotein
counterreceptors [8, 9, 22–25]. Glycan ligands for specific
galectins are presented on distinct N- and O-glycan
structures, which are anchored on glycoprotein counter-
receptors that can be expressed by different cell types. For
example, galectin-1 and galectin-3, but not galectin-9 [23,
24, 26–28], bind to N- and O-glycans attached to the
glycoprotein counterreceptor CD45 [29–31]. Interestingly,
the availability of discrete galectin-1 and galectin-3 glycan
ligands on CD45 in T cells is developmentally regulated,
and only certain T cell subpopulations that express the
specific glycan ligands are susceptible to galectin-1- and
galectin-3-induced cell death [23, 31, 32]. Taken together,
these results illustrate that the availability of specific glycan
ligands dictates cellular responses to galectin binding.

It has been proposed that multivalent galectins act as
scaffolding molecules by simultaneously binding glycan

ligands on multiple glycoprotein counterreceptors on the
cell surface to either cluster different glycoprotein counter-
receptors together or segregate the glycoproteins into
discrete domains. For example, galectin-1 can simulta-
neously bind glycan ligands attached to CD43 and CD45
on DCs and cluster CD43 and CD45 into patches on the
cell surface (heterotypic clustering) [18]. On T cells,
however, galectin-1 binds to CD43 and CD45 and
segregates CD43 and CD45 into different membrane
domains (homotypic clustering) [30]. Clustering of surface
receptors can significantly modulate their function and thus
influence cellular responses. For example, heterotypic
clustering of CD43 and CD45 on DCs induces DC
activation and migration [18]. In contrast, homotypic
clustering of CD43 on T cells inhibits T cell migration
through the ECM and across vascular endothelial cells [33]
while homotypic clustering of CD45 on T cells inhibits
CD45 phosphatase activity [27, 34]. Several studies have
shown that these glycoprotein clusters or aggregates,
termed galectin–glycoprotein lattices, can regulate many
important leukocyte functions, such as T cell receptor
signaling [35, 36], CD8 T cell anergy [37], thymocyte
selection [38], DC migration [18], and others [39–41].

Galectins Are Expressed by Leukocytes at Sites
of Inflammation

Galectins are expressed by all leukocytes that enter into
tissues and exit into the lymphatics [42–46]. Expression of
galectin-1, galectin-3, and galectin-9 in leukocytes has been
analyzed in a variety of inflammatory processes, including
atherosclerosis [47], atopic dermatitis [48], acute peritonitis
[42, 49], and airway inflammation [50, 51]. These studies
revealed that the expression of specific galectins is
increased in certain leukocyte subsets found at sites of
inflammation. In particular, galectin-3 expression was
increased in macrophages and CD4 T cells in tissue samples
extracted from atherosclerotic lesions and skin lesions in
atopic dermatitis, respectively [47, 48]. In experimental
models for acute peritonitis and airway inflammation,
galectin-3 expression in macrophages was also increased
[42, 49–51]. One study described an increase in galectin-1
expression in macrophages in a model of acute peritonitis [42],
but galectin-1 expression was not analyzed in other leukocyte
subsets or in different models of acute inflammation.
Furthermore, DCs that were matured in vitro by inflammatory
cytokines increased expression of galectin-9 messenger RNA
(mRNA) and down-regulated expression of galectin-3 mRNA
in comparison to immature DCs [44]. While the dynamic
expression of isolated galectins has been described in certain
leukocyte subsets under specific inflammatory conditions, it
will be important to characterize the complete profile of
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galectin expression in all leukocytes that enter and exit tissues
in different models of inflammation.

Galectins Are Expressed by Endothelial Cells

Vascular endothelial cells express galectin-1, galectin-3,
galectin-8, and galectin-9 under steady-state conditions, and
changes in expression under inflammatory conditions have
been described. Specifically, in activated vascular endothelium,
galectin-1 expression is increasedwhile galectin-8 and galectin-
9 expression are decreased [5, 6]. Galectin-3 expression,
however, remains unaltered upon activation of vascular
endothelial cells [6] indicating that the expression level of
specific galectin family members in vascular endothelial cells
is differentially regulated during inflammation.

In contrast, little is known about galectin expression in
lymphatic endothelial cells. Only one publication has
described the expression of a galectin family member,
galectin-8, by lymphatic endothelial cells [52], and this
group proposed that galectin-8 is involved in the attachment
of lymphatic endothelial cells to the ECM. Given the
complex regulation of galectin expression by vascular
endothelial cells, other galectin family members are likely
expressed by lymphatic endothelial cells and it will be
important to further characterize the expression pattern of
all galectin family members in lymphatic endothelial cells.

Galectins Regulate Leukocyte Entry into Sites
of Inflammation

Galectin-3 and Galectin-9 Promote Leukocyte Entry
into Sites of Inflammation

Although the roles played by galectins in lymphatic
endothelial cells are still elusive, it is well established that
the dynamic expression of galectins in leukocytes and
vascular endothelial cells controls inflammatory processes
through modulating cell survival and death [23, 53],
activation and cytokine secretion [9, 53, 54], and migration
[4, 54, 55]. The ability to migrate to and from sites of
inflammation is crucial for mounting a proper immune
response. Galectins, in particular galectin-1, galectin-3, and
galectin-9, have been shown to influence both cell entry
into and cell exit from inflamed tissues (Table I and Fig. 1).

To promote cell entry into tissues and migration across
the vascular endothelial cell layer, leukocytes utilize
molecular cues, such as adhesion molecules and chemokine
gradients that guide cells to sites of inflammation. Galectin-
3 has been shown to be a chemoattractant for neutrophils,
monocytes, and macrophages in vitro [56, 57]. In addition,
using an in vivo mouse air pouch model for leukocyte

migration, Sano et al. showed that injection of recombinant
galectin-3 into the air pouch attracted increased numbers of
neutrophils, eosinophils, and monocytes compared to
animals that were not treated with recombinant galectin-3
[57]. Moreover, galectin-3 has been shown to promote
granulocyte, monocyte, and lymphocyte migration to
inflamed tissues in several in vivo models of inflammation
[48, 49, 51, 58, 59]. For example, in two models of acute
peritonitis, the numbers of infiltrating granulocytes, macro-
phages, and lymphocytes were significantly decreased in
galectin-3 knock-out mice compared to wild-type animals
[49, 58]. Similarly, the number of mononuclear cells and
eosinophils was significantly decreased in skin lesions in an
atopic dermatitis model when galectin-3 knock-out mice
were compared to wild-type animals [48]. In addition, in
models of lung inflammation, galectin-3 knock-out mice
had fewer leukocytes in the bronchoalveolar lavage fluid
than wild-type animals [51, 59] indicating that, as in the
other models described above, the presence of galectin-3
supports leukocyte entry into sites of inflammation.

While most reports describe a role for galectin-3 in
promoting granulocyte, monocyte, and lymphocyte entry into
inflamed tissues, galectin-9 primarily acts as a chemoattractant
for eosinophils in vitro and in vivo [60–63]. However, one
report demonstrated that not only eosinophils, but also
neutrophils and macrophages were increased upon injection
of recombinant galectin-9 into the peritoneum in the absence
of any other inflammatory stimulus [62]. This suggests that
galectin-9 may be a direct chemoattractant for eosinophils,
neutrophils, and macrophages under specific conditions.

Galectin-1 Inhibits Leukocyte Entry into Sites
of Inflammation

Galectin-1, in contrast to galectin-3 and galectin-9, inhibits
leukocyte entry into inflamed tissues (Table I and Fig. 1). In
vitro experiments revealed that recombinant galectin-1
reduced chemotaxis of neutrophils towards IL-8 and trans-
migration of these cells across a layer of vascular endothelial
cells [64]. Similarly, Norling et al. observed a dose-
dependent decrease in lymphocyte capture, adhesion, and
rolling along a layer of vascular endothelial cells when
endothelial cells were treated with increasing concentrations
of recombinant galectin-1 [65]. Taken together, these data
suggest that addition of exogenous galectin-1 influences
several different steps during leukocyte migration, such as
leukocyte capture, rolling, and adhesion.

In addition to being expressed by vascular endothelial
cells, galectin-1 also can bind to components of the ECM [66].
It has been shown that galectin-1 deposition in the ECM can
impede T cell migration through the ECM and across a layer
of vascular endothelial cells [33]. This inhibition of T cell
migration was accompanied by the re-organization and
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clustering of the galectin-1 glycoprotein counterreceptor
CD43 on the T cell surface [33]. Upon binding of galectin-
1, CD43 molecules were clustered into patches at the T cell/
ECM interface. Since CD43 must localize to the trailing
edge of migrating T cells [67], binding of galectin-1 to CD43
may inhibit T cell migration by preventing CD43 re-
distribution to the trailing edge of the cell.

The inhibitory role of galectin-1 in leukocyte entry into
inflamed tissues has been substantiated in several in vivo
models of inflammation, including acute peritonitis, contact
hypersensitivity and PLA2-induced paw edema [42, 64, 65,

68]. For example, the role of galectin-1 has been analyzed
in a model of acute peritonitis, which showed a decrease in
the number of neutrophils in the peritoneum when
recombinant galectin-1 was injected at the site of inflam-
mation [64]. Analysis of galectin-1 knock-out mice in a
contact hypersensitivity model revealed an increase in the
number of lymphocytes found at the site of inflammation
[65] implying that endogenous galectin-1 inhibits leukocyte
migration. Remarkably, endogenous galectin-1 promotes
DC migration through the ECM, but not across a layer of
vascular endothelial cells [69]; this observation indicates
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Fig. 1 Galectin family members
regulate leukocyte migration
across vascular and lymphatic
endothelium. Schematic
representation of leukocyte
entry from the blood vasculature
into inflamed tissue and exit into
the lymphatic system.
Neutrophils (N), monocytes (M),
monocyte-derived dendritic cells
(DC), and lymphocytes (L) are
shown. Galectin-3 and
galectin-9 support the migration
of leukocytes from the blood
into tissues under inflammatory
conditions while this process is
inhibited by galectin-1
(left panels). Leukocyte exit into
the lymphatic vasculature
is increased in the presence
of galectin-1 and galectin-3,
but any role for galectins in
negatively regulating this
process has not yet been
examined (right panels).

Disease model Galectin Cell type Effect on cell entry Reference

Acute peritonitis Gal-3 Granulocytes Promotes [49]

Gal-3 Macrophages Promotes [58]
Lymphocytes Promotes

Gal-9 Neutrophils Promotes [62]
Eosinophils Promotes

Macrophages Promotes

Gal-1 Neutrophils Inhibits [64]

Gal-1 Leukocytes Inhibits [42]

Allergic airway inflammation Gal-3 Neutrophils Promotes [51]
Eosinophils Promotes

Macrophages Promotes

Atopic dermatitis Gal-3 Eosinophils Promotes [48]
Mononuclear cells Promotes

Contact hypersensitivity Gal-1 Lymphocytes Inhibits [65]

Edema Gal-1 Neutrophils Inhibits [68]

Pneumonia Gal-3 Leukocytes Promotes [59]

Table I Effects of galectins on
leukocyte migration into
inflamed tissues in different
disease models
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that galectin-1 affects discrete steps during DC entry into
tissues.

Galectins Regulate Leukocyte Exit into the Lymphatic
System

As mentioned above, there are two recent reports that
suggest a role for galectins in DC migration across the
lymphatic endothelium. Both groups utilized fluorescein-
isothiocyanate (FITC) skin painting models to analyze the
migration of tissue-resident, dermal DCs to lymph nodes in
vivo in the presence or absence of galectin-1 or galectin-3,
respectively [18, 19]. Fulcher et al. showed that injection of
recombinant galectin-1 prior to FITC skin painting increased
DCmigration to draining lymph nodes inMRL-fas mice [18].
Similarly, after FITC skin painting, there was a reduction of
dermal DC migration to draining lymph nodes in galectin-3
knock-out mice compared to wild-type mice [19]. Taken
together, these results strongly imply a role for galectin-1
and galectin-3 in promoting DC exit from tissues into the
lymphatics. This would be independent of any role for
galectins in DC migration across the vascular endothelium
since the DC populations that were analyzed were already
tissue-resident and only had to migrate across the lymphatic
endothelium to traffic to draining lymph nodes. Interestingly,
these data indicate that both galectin-1 and galectin-3
promote DC exit into the lymphatic vasculature; this is
different from their effect on migration across the vascular
endothelium, where galectin-1 generally inhibits leukocyte
entry into tissues [42, 64, 65, 68] while galectin-3 promotes
leukocyte entry into tissues [48, 49, 51, 58, 59].

While galectin-1 inhibits leukocyte entry into tissues
from the blood stream, it is unknown if any galectin family
member(s) can inhibit leukocyte exit from tissues into the
lymphatics (Fig. 1). Thus, as mentioned above, it will be
critical to fully characterize the expression pattern of
galectin family members in lymphatic endothelial cells. In
addition, it will be important to determine how galectin
expression in these cells is dynamically regulated during
inflammation and whether this affects leukocyte exit into
the afferent lymphatics.

Mechanisms by Which Galectins Regulate Leukocyte
Migration Across Endothelial Cells

An important yet unanswered question is how do galectins
regulate leukocyte migration during inflammation? As yet,
there is little known about the molecular interactions among
galectins, immune cells, and endothelial cells that modulate
leukocyte entry into tissues and exit into the lymphatic
system. Several possible mechanisms, some of which have
been explored in leukocyte migration across vascular

endothelium, may also regulate leukocyte migration across
the lymphatic endothelium.

Galectins can indirectly regulate cellular interactions by
inducing molecular changes in a specific cell type that then
contribute to the outcome of the interaction. For example,
binding of galectins to specific counterreceptors on leukocytes
or endothelial cells can induce expression of other molecules
that are involved in migration, such as adhesion molecules or
matrix metalloproteinases [65, 69]. In addition, it has been
shown that galectin binding to cell surface glycoproteins can
re-organize the cytoskeleton in T cells [66] and thus may
modulate the migratory behavior of leukocytes.

Direct regulation of cellular interactions is another way
by which galectins can modulate leukocyte entry into and
exit from tissues. For example, galectins expressed by
endothelial cells can act as chemoattractants for specific
immune cells [57, 60]. Once the immune cell is in close
proximity to the endothelial cell layer, galectins might bind
to glycoprotein counterreceptors on both cell types and thus
facilitate or inhibit migration. This idea is supported by the
observation that increased expression of galectin-1 by
vascular endothelial cells decreases capture, rolling, and
adhesion of lymphocytes and inhibits migration of T cells
[33, 65]. Another possible role for galectins in directly
modulating cellular interactions would be the re-
organization of surface molecules, such as CD43 re-
organization by galectin-1 on T cells, that can contribute
to the efficiency by which the cell can cross the endothelial
cell layer and/or migrate through the ECM [33].

As discussed in the previous paragraphs, galectins can
regulate cellular interactions directly by binding to glyco-
protein ligands on the cell surface, such as galectin-1
binding to CD43 and CD45 on T cells and DCs [18, 29–31,
33]. This interaction is a highly complex process that can
be modulated in each cell type at several different levels.
First, the expression of different galectins is dynamic and
changes during development and upon activation of
leukocytes and endothelial cells [5, 6, 42–46, 52]. Second,
the expression of glycan ligands on glycoprotein counter-
receptors is dynamic since expression or activity of many
glycosyltransferases changes during leukocyte develop-
ment, maturation, and activation [23, 32, 70, 71]. Third,
the availability of glycan ligands on specific glycoproteins,
such as CD45, can be modulated by the expression of
different protein isoforms that bear different glycan ligands
[34, 72–74]. Finally, the expression of glycoprotein
counterreceptors that can bear glycan ligands is dynamic
since expression can vary from one leukocyte subset to
another or change during development [32, 75]. Thus, there
are a number of factors that contribute to the effect of
galectin interactions with specific glycoprotein counter-
receptors on specific cell types and that modulate context-
dependent functions, such as cell migration.
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Conclusions

Appropriate regulation of leukocyte migration into tissues
and subsequently to lymph nodes is critical for generating
innate and adaptive immune responses. Leukocyte migration
defects in humans cause significant morbidity and can affect
either leukocyte entry into tissues or leukocyte exit into the
lymphatic vasculature. The diseases leukocyte adhesion
deficiency (LAD) I and II result in reduced interactions
between leukocytes and vascular endothelial cells. Patients
suffer from life-threatening infections due to the inability of
immune cells to enter infected tissues [76]. While LAD I is
caused by mutations in the β2 integrin gene, LAD II is
caused by a defect in fucosylation of glycan ligands for
selectins which reduces the tethering and rolling of leukocytes
on activated vascular endothelial cells [77].

In addition, if leukocytes cannot exit from tissues into the
lymphatic vasculature and traffic to lymph nodes, patients
develop lymphedema, a condition in which immune cells
remain in tissues and secrete inflammatory cytokines that
exacerbate inflammation [1, 78]. These patients also cannot
mount appropriate adaptive immune responses to pathogens
present in the lymphedematous tissue, which in turn can
become severely and chronically inflamed [79].

It is crucially important to improve our understanding
about the factors that regulate leukocyte exit from tissues into
the lymphatic system. Members of the galectin family of
glycan-binding proteins are dynamically expressed in vascular
endothelial cells under steady-state and inflammatory con-
ditions and regulate leukocyte entry into sites of inflammation.
We propose a similar role for galectins in modulating
leukocyte exit from tissues into the lymphatic vasculature.
This model is supported by recent in vivo evidence, indicating
that galectin-1 and galectin-3 support migration of tissue-
resident DCs into draining lymph nodes [18, 19]. Galectin-
mediated leukocyte migration into and out of inflamed
tissues will likely be a complex process regulated by
appropriate expression of the galectins, the glycan ligands,
and the glycoprotein counterreceptors by the cells.
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