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Intriguingly, activated complement and anti-microbial peptides share certain functionali-
ties; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell
instructive roles. Each has been shown to have distinct LPS detoxifying activity and may
play a role in the development of endotoxin tolerance. In search of the origin of comple-
ment, a functional homolog of complement C3 involved in opsonization has been identified
in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl
chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole
is detectable in marine invertebrates. These are also a source of anti-microbial peptides
with potential pharmaceutical applicability. Investigating the locality for the production of
complement pathway proteins and their role in modulating cellular immune responses
are emerging fields. The significance of local synthesis of complement components is
becoming clearer from in vivo studies of parenchymatous disease involving specifically
generated, complement-deficient mouse lines. Complement C3 is a central component of
complement activation. Its provision by cells of the myeloid lineage varies. Their effector
functions in turn are increased in the presence of anti-microbial peptides. This may point
to a potentiating range of activities, which should serve the maintenance of health but
may also cause disease. Because of the therapeutic implications, this review will consider
closely studies dealing with complement activation and anti-microbial peptide activity in
acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia).
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BACKGROUND
The host defense against microorganisms relies on both innate
and adaptive elements. Innate immunity is the first line of
defense against a microbial pathogen, which exposes a pathogen-
associated molecular pattern or more simply a prokaryotic sur-
face membrane, differing from eukaryotic biphospholipid lay-
ers in the complete absence of cholesterol. For an efficient
and directed response, complement uses both pattern recogni-
tion and missing self-recognition strategies [reviewed by Ref.
(1)]. Besides, it involves a highly controlled, rapid cascade, and
crosstalks with other biological systems, for example, with Toll-
like receptors (2). Control of the complement system is main-
tained by a group of membrane-anchored proteins and solu-
ble, circulating proteins referred to as complement regulatory
proteins. Regulatory proteins can act at different points in the
complement cascade and help control complement attack and
adjust its severity, propagation, and endpoints to the cellu-
lar target (3). Cells expose membrane-anchored proteins like
membrane cofactor protein (MCP or CD46), decay accelerat-
ing factor (DAF or CD55), complement receptor 1 (CR1 or
CD35), and CD59 as complement regulatory proteins (4), while
properdin and factor H may become membrane associated and

then are thought to fine tune locally the extent of complement
activation (5).

Defensins are able to kill or eliminate bacteria, fungi, proto-
zoans, and viruses. α- and β-defensins are synthesized as pre-
cursors that are proteolytically cleaved into their anti-microbially
active forms (6). Human neutrophil peptides (HNP)1 to HNP3,
for example, are found in high concentrations in granules of
neutrophils (7) and released by degranulation in response to pro-
inflammatory or bacterial stimuli (8). Human defensin (HD)5
and HD6 are present in Paneth cells in the crypts of the small
intestine (9), whereas β-defensins are induced in epithelial cells
by wounding, bacterial products, or pro-inflammatory cytokines
(10–13). Based on the chemotactic effect exerted by anti-microbial
peptides, much work was spent on identifying a receptor for their
actions. It has now emerged that CCR2 and CCR6 are receptors
for β-defensins (14), and that the interaction of, e.g., HD6 with
glycosaminoglycans may modulate binding of one or the other to
CCR2 (15). There are different ways of LL-37 uptake into a cell.
The receptors FPRL-1 and P2X7 are important for LL-37 activity
and lead to chemoattraction and Il-1β processing, respectively (16,
17). In contrast, cellular uptake of LL-37 into epithelial cells has
been shown to be mediated by atypical endocytic processes (18).

www.frontiersin.org January 2015 | Volume 5 | Article 689 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00689/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00689/abstract
http://www.frontiersin.org/people/u/195326
http://www.frontiersin.org/people/u/191959
http://www.frontiersin.org/people/u/201045
http://www.frontiersin.org/people/u/41389
mailto:cms13@le.ac.uk
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Zimmer et al. Complement/anti-microbial peptides – equal immunomodulators

COMPLEMENT AND ANTI-MICROBIAL PEPTIDES SHAPE THE
LOCAL ENVIRONMENT
Local production of complement components and their role in
the inflammatory microenvironment is a currently emerging field.
Most of the complement pathway proteins are synthesized in the
liver (19); however, extrahepatic biosynthesis additionally occurs
in a variety of other tissues and organs (20). Locally produced
complement proteins, finely tuned according to the demands of
the local environment, may allow differential regulation of inflam-
mation and cellular activation within these tissues. Complement
factor H, besides its hepatic expression, is further expressed at low
levels in lung, heart, spleen, brain, eye, kidney, pancreas, placenta,
as well as neurons and glial cells (21). Production of complement
proteins and their regulators directly at sites of inflammation offers
an underestimated variety of functions for complement proteins.
So far, several cell types have been found to produce complement
proteins including macrophages (22), fibroblasts (23), endothelial
cells (24), as well as organ specific cells (25–28). Intriguingly, even
cells such as peripheral monocytes that were thought to be inca-
pable of synthesizing complement proteins unless activated have
recently been shown to produce C1q (29). This suggests a new
role for locally synthesized C1q in the immediate local response
to pathogen- or danger-associated molecular patterns (PAMPs or
DAMPs). Properdin, the positive regulator of the alternative path-
way, is produced by a variety of cell types like neutrophils (30),
peripheral blood monocytes (31), endothelial cells (32), and T
cells (33). Properdin released by phagocytes was shown to bind to
apoptotic and necrotic cells (33, 34), contributing to their direct
removal or properdin-mediated complement activation. Likewise,
local release of properdin may opsonize and kill microorgan-
isms using the same mechanism, if indeed it can operate as a
pattern-recognition molecule in its own right (35).

The role of complement in modulating inflammation and
maintaining homeostasis is only recently becoming apparent.
Local immune responses can be altered by C5a via modulating the
local cytokine milieu, especially via the cytokines IL-17 and IL-
23. While C5a has been shown to enhance IL-17F, it limits IL-17
and IL-23 production by macrophages or DCs (36). In agree-
ment with these findings, another report determined that IL-17
levels in experimental asthma are reduced by signaling through
C5aR (37). So far, little is known about local synthesis and spe-
cific function of complement proteins where produced away from
the humoral environment that has led to the well-known dia-
grams of sequential assemblies and enzymatic cleavages. Due to
functional studies, there is increasing evidence that locally pro-
duced complement proteins are biologically active and have a
significant role in local environment. Local synthesis of com-
plement proteins not only contributes to the systemic pool of
complement (38) but also influences local tissue injury and pro-
vides a link with the antigen-specific immune response (39). The
diverse range of extrahepatic sites for synthesis of complement
proteins and their regulators suggests the importance and need
for local availability of the proteins. It has been suggested recently
that plasma-borne complement activation vs. cellular produc-
tion of complement components sufficient to form convertases
may pursue distinct, compartment-selective, biological functions
(40). Understanding the relative importance of local and systemic

complement production could help to explain the differential
involvement of complement in organ-specific pathology.

Locality of production plays an important role not only for
complement proteins but also for anti-microbial peptides. Paneth
cells in the small intestine have been shown to release granules into
the lumen of the crypts thereby contributing to mucosal immunity
(41). Those granules contain proteins that are associated with roles
in host defense, including lysozyme (42), secretory phospholipase
A2 (43), and α-defensins termed cryptidins (44). Anti-microbial
peptides secreted by Paneth cells are important for innate immu-
nity as they protect mitotically active crypt cells from colonization
by potential pathogens and confer protection from enteric infec-
tion (45). Moreover, secretion into the crypt lumen defines the
apical environment of neighboring cells (46).

LYTIC ACTIVITIES OF COMPLEMENT AND ANTI-MICROBIAL
PEPTIDES
Both complement proteins and anti-microbial peptides share lytic
activities. Anti-microbial peptides attack bacteria, fungi, protozoa,
and certain viruses by inserting into their membrane manifold
causing pore formation and subsequent lysis (47, 48). Due to the
cationic character of microbial peptides, electrostatic attraction
to the negatively charged phospholipids of microbial membranes
occurs resulting in integration into the microbial cell membrane
and membrane disruption.

In the absence of regulators, complement proteins contribute to
lysis of cells by forming a membrane attack complex (MAC). After
cleavage of C5 into C5a and C5b by the highly specific C5 conver-
tase, C5b initiates the terminal complement pathway involving a
non-enzymatic assembly of C6, C7, C8, and C9 to form the MAC
to cause lysis. Fusion of those proteins brings forth hydrophobic
sites that can insert into the membrane to form a transmem-
brane channel (49). While only one mode of insertion to form
a transmembrane channel for the MAC has been described (50),
several models exist to explain the insertion of conformationally
changed anti-microbial peptides into and across target membranes
(51). Pathogens actively interfere with either of these lytic effector
processes (52, 53).

Peptides synthesized form the C-terminal portion of comple-
ment C3a have inhibitory effect on the growth of P. aeruginosa, E.
coli, B. subtilis, and C. albicans,which does not exceed the activity of
equal molar amounts of LL-37 (54). Native human C3a, however,
showed inhibitory effect on C. albicans growth, which exceeded
that of LL-37 at equimolar amounts [50µM; (55)]. While 6 µM
C-terminal C3a peptide was needed to observe membrane disrup-
tion of P. aeruginosa (54), 1 µM native C3a produced leakage of
liposomes (55).

PHAGOCYTIC AND CHEMO-ATTRACTANT ACTIVITIES OF
COMPLEMENT AND ANTI-MICROBIAL PEPTIDES
The peritoneal cavity is a site in which complement and anti-
microbial peptides are key components of the innate immune
response and have been investigated with regard to peritoneal dial-
ysis (56, 57). Both mesothelium and leukocytes are the source for
this production (58). While the opsonophagocytic activity of com-
plement is well known (via C3b/iC3b), recent findings show that
LL-37 can modulate the expression of receptors, which determine
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the extent of the phagocytic response of human macrophages
in vitro (59). Both components of the innate immune response are
thereby able to influence the adaptive immune response by alter-
ing the phenotype of phagocytic cells to become more mature,
i.e., acquire characteristics, which will make them more potent
to present antigen in a suitable, germinal center environment.
Chemotactic activity of complement per se (via generation of C3a,
C5a, and engagement with their receptors, C3aR, C5aR, C5L2)
has been described (60). In addition, however, bradykinin, which
may be released after activation of kininogen by the lectin path-
way of complement activation (61), has chemotactic activity (62).
Contact and complement system cooperate in a pro-inflammatory
way. Interestingly, β-defensins can bind to chemokine receptors,
in particular, CCR6 present on dendritic cells and T cells (14) and
CCR2 (see above). Complement C3a and CXCL12 cooperate in
the chemotaxis of CD34+ progenitor cells in bone marrow, but
the receptor has not yet been described, though C3aR has been
excluded (60).

CELL INSTRUCTIVE ROLES OF COMPLEMENT AND
ANTI-MICROBIAL PEPTIDES
Anti-microbial peptides and complement are constitutively
expressed and are upregulated during inflammation. While anti-
microbial peptides are commonly known to be synthesized by
epithelial cells to partake in the innate host defense (63), the
contribution of complement expression in non-lymphoid cells
is not well appreciated yet, although the pattern of expression
in crypts follows that of anti-microbial peptides (26). Beyond
their chemo-attractant ability, complement and anti-microbial
peptides may assume immunoadjuvant, i.e., adaptive immunity
supportive, properties (63, 64). The type of cellular response is
co-determined by the integration of signaling events triggered by
mediators. So complement activation products and anti-microbial
peptides, which can alter their expression manifold acutely and
remain altered chronically, are relevant determinants of this cell
activity (65, 66).

Innate lymphoid cells located in the mucosa contribute to
the barrier by releasing IL-22, which stimulates the production
of anti-microbial peptides (67). IL-22 is also expressed, in the
context of TGF-β, by IL-17A and IL-17F expressing CD4+Th17
cells. Synergistically, IL-22 and IL-17A lead to significant induction
of mRNA expression for hBD2, S100A7–9 by keratinocytes (68).
Because,on its own, IL-17A is a potent stimulator of anti-microbial
peptide production (68), those studies reporting a deviation in
complement activity, which impact on the Th17 cell popula-
tion (69, 70), have to be viewed with care. It is likely that a
greater component within the immune response is significantly
determined by the relative amounts of anti-microbial peptides,
which escape attention in the complement field. In this sense, it
is a matter of discussion whether the phenotype observed in the
properdin-deficient mice when infected with Listeria monocyto-
genes could be significantly influenced by a lack of anti-microbial
peptides, which would be due to significantly lower Il-17 lev-
els, which, importantly, do not adequately upregulate during
infection (71). C5a and an N-terminal peptide of human lacto-
ferrin with anti-microbial activity, by stimulating macrophages
or dendritic cells, respectively, are able to enhance production

of Th17 cells (72, 73), which act in a pro-inflammatory, Treg
opposing, way.

ROLE OF COMPLEMENT AND ANTI-MICROBIAL PEPTIDES IN
ENDOTOXIN CLEARANCE
Intact complement activation in the humoral system (blood) is
needed for efficient endotoxin clearance (74), while it exerts at
the same time a modulatory effect on cellular, pro-inflammatory
activity (75). Anti-microbial peptides may have LPS-neutralizing
effect, which is important for the beneficial outcome from sepsis
(76). Avoiding exhaustion of these systems would obviate the detri-
mental development of endotoxin tolerance in sepsis. In severe
sepsis, significantly lower levels of plasma C3 have been reported
(77) and a failure of PBLs to induce defensins ex vivo in response
to endotoxins (78). Low Vitamin D3 levels have been linked to
mortality in sepsis (79). Interestingly, Vitamin D3 promotes pro-
duction of LL-37 and β-Defensin (80) as well as C2 and C3 (81, 82)
in vitro. The complement receptor C5aR is upregulated in lung,
liver, kidney, and heart during the early phases of sepsis. Block-
ing of C5aR has been correlated to improved survival in murine
models of sepsis (83).

MONOCYTES AND MACROPHAGES ARE DISTINCT
PRODUCERS FOR C3 AND ANTI-MICROBIAL PEPTIDES
Monocytes appear to need LPS stimulation to produce C3 (84),
whereas macrophages were shown to produce basal levels of C3
even without stimulation (85, 86). As a recurring point, most of
the papers suggest that macrophage differentiation has to have
taken place before considerable C3 production occurs (85–92).
This observation is also supported by Affymetrix array data (http://
www.ncbi.nlm.nih.gov/geoprofiles/60640353), showing more C3
mRNA in macrophages compared to monocytes.

Both monocytes and macrophages are also affected by anti-
microbial peptides. The honeybee anti-microbial peptide api-
daecin, for example, has been shown to bind both to human
macrophages and monocytes (93) without inducing cytotoxic
effects. However, apidaecin shows a different subcellular local-
ization in the cytoplasm or in endosomal compartments for
macrophages or monocytes, respectively. Besides, the effect upon
LPS stimulation differs. Antagonizing LPS-stimulatory effects
on both macrophages and monocytes at low concentrations, a
high concentration of apidaecin stimulated pro-inflammatory and
pro-immune functions of macrophages. Not only for comple-
ment production but also for anti-microbial peptides, mono-
cyte to macrophage differentiation plays an important role.
The peptide hLF1–11 applied on monocytes during GM-CSF-
driven differentiation has been shown to modulate differentiation
toward a macrophage subset characterized by both pro- and anti-
inflammatory cytokine production and increased responsiveness
to microbial structures (94, 95).

Macrophages are considered classically activated (M1) when
stimulated by IFNγ or LPS and alternatively activated (M2) when
stimulated by IL-4 or IL-13 (96). The arising question is there-
fore, which subpopulation of macrophages produces C3 predom-
inantly. There were some hints pointing toward M1 macrophages
like fact that synthesis of C3 in various organs can be directly
upregulated by IFNγ during an inflammatory response (97). In
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addition, IFNγ can induce C3 synthesis directly (98) as well as
stabilize C3 mRNA (99). Recent studies using guinea pigs defi-
cient for complement C3 showed an impaired antibody response
to T-dependent antigens (100), a response dependent on M1
macrophages as well. Those data reveal that C3 production is a
highly regulated process and can be modulated by a variety of
cytokines, determining whether a macrophage will differentiate
into an M1 or M2 macrophage and therefore produce more or less
C3, respectively.

Anti-microbial peptides were shown to modulate inflamma-
tory responses as well. LL-37, for example, dramatically reduced
levels of pro-inflammatory cytokines such as TNF-α and NO in
M1 and M2 bone marrow-derived macrophages, whereas anti-
inflammatory functions remained unaltered (101). The same
effect could also be observed for human THP-1 cells (102).
Another example is the Vitamin D inducible LL-37 anti-microbial
peptide, which is expressed mainly by M1 macrophages (103).
A recent review sheds light on the feature of monocytes and
macrophages to respond differently: they are of heterogeneous
origin and do not necessarily follow the differentiation pathway of
monocyte–macrophage (104).

DEFICIENCIES OF COMPLEMENT AND ANTI-MICROBIAL
PEPTIDES
In humans, genetic deficiencies of the great majority of com-
plement components have been described, giving insights into
their functions in both infectious and non-infectious diseases. It is
beyond the scope of this article to give a detailed review of genet-
ically determined deficiencies of the complement system. [For a
more comprehensive review, see in Ref. (105) or (106).] Defi-
ciencies of most complement components give rise to increased
susceptibility to specific pathogens or groups of pathogens. In
broad terms, deficiencies of components of the classical path-
way (C1q,r,s, C4, and C2) are associated with infections with
encapsulated bacteria, such as S. pneumoniae and N. meningitidis.
Deficiencies of lectin pathway components (MBL, MASP-2, and
ficolin) have been associated with increased frequencies of (usu-
ally less severe) respiratory infections. However, asymptomatic
lectin pathway-deficient individuals have also been described. C3-
deficient patients suffer from a broader range of pyogenic infec-
tions, including more severe respiratory infections and meningitis
(e.g., S. pneumoniae, N. meningitidis, S. pyogenes, H. influenzae,
S. aureus). Deficiencies of the regulatory proteins properdin and
Factor D, as well as of the terminal components of complement
activation (C5–C9), are associated with an increase in susceptibil-
ity to Neisserial infections, reflecting the important role of cytolytic
complement activity in the innate immune response against Neis-
seriae. Deficiencies of Factors H and I are associated with increased
pyogenic infections (N. meningitidis, H. influenzae, and S. pneumo-
niae). For some complement deficiencies, the lack of complement
function in antibacterial immunity may be compensated for by
the production of high levels of pathogen-specific IgG antibod-
ies (107). Consequently, the infections may be more prevalent in
childhood. Interestingly, deficiencies of some complement com-
ponents are also associated with non-infectious conditions. For
example, deficiencies of C1q,r,s, C4, and C2 are associated with
systemic lupus erythematosus (SLE)-like disease, reflecting the

important role of the classical complement pathway in clearance
of immune complexes from the body. In these complement defi-
ciencies, the autoimmune manifestations may be of greater clinical
significance than the increased susceptibility to infections. Simi-
larly, deficiencies of factors H or I most commonly present with
atypical hemolytic uremic syndrome. The most obvious exam-
ple of a non-infectious condition associated with a complement
component deficiency is the association between C1 inhibitor defi-
ciency and hereditary angioedema, in which patients suffer from
(potentially life threatening) episodic attacks of tissue edema, due
to loss of the inhibitory role of C1 inhibitor in cleavage of high
molecular weight kininogen to produce bradykinin.

Deficiencies of anti-microbial peptides are less well defined.
Anti-microbial peptides play an important role in immune defense
in Drosophila (108). LL-37-knockout mice have been generated,
and are described as having an increased susceptibility to a num-
ber of Gram-negative bacterial infections (109–113), suggesting
a broad role for anti-microbial peptides in the immune response
to infections in mammals. To date, genetic deficiencies of anti-
microbial peptides have not been defined in humans. However,
reduced expression of anti-microbial peptides in patients has
been associated with increased susceptibility to infections of skin
and periodontal gingiva (114–116). As we move toward an era
in which exome sequencing becomes a feasible approach for
defining genetic defects predisposing to immune deficiencies in
patients, the significance of deficiencies of anti-microbial peptides
in defense against infections may become apparent.

ROLE OF COMPLEMENT AND ANTI-MICROBIAL PEPTIDES IN
ACUTE INFLAMMATION
Activation of complement reveals beneficial functions such as
pathogen sensing and defense and clearing injured cells on the one
hand; however, complement has been shown to play a major role
in pathogenesis of various inflammatory processes on the other
hand. In response to pathogens or tissue damage, complement
is highly capable of inducing all classical signs of inflammation
such as redness, pain, hyperthermia, and swelling. Complement
products lead to a release of pro-inflammatory mediators, upregu-
lation of adhesion molecules, and increased vascular permeability
of endothelial cells (117). Besides the beneficial effect of clearing
an infection locally, complement activation may also contribute
to a life-threatening systemic inflammatory response (118). Both
the classical and alternative complement pathways appear to be
activated during sepsis (119) resulting in elevated levels of the
complement activation products C3a, C4a, and C5a (120). Among
those, C5a appears to be the most harmful molecule (121). Com-
plement activation seems to play a role in acute inflammation in
lung and liver, where it has been correlated to acute respiratory dis-
tress syndrome and to acute humoral rejection, respectively (122,
123). Part of its detriment complement activation derives from
the crosstalk to other activation systems, such as the kininogen
pathway and coagulation cascade (124). Besides, systemic comple-
ment activation has been confirmed in stroke patients (125). The
anaphylatoxins C3a and C5a exert both protective and harmful
functions in the central nervous system (126, 127). Direct con-
tact between blood and cerebrospinal fluid in blood–brain barrier
dysfunction leads to production of C1q and generation of C3a,
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FIGURE 1 | Joint features (A) and activities (B) for complement and anti-microbial peptides.

FIGURE 2 | (A) Steady state skewed tissue resident cell-type-specific
production of anti-microbial peptides and complement. The extent of
relative changes of these productions during inflammation is not well
documented. (B) Complement and anti-microbial peptides in systemic
circulation.

and C5a, which in turn contributes to intracranial inflammation
by induction of blood–brain barrier damage and increase in
vascular permeability (128, 129). Another example for comple-
ment activation is ischemia–reperfusion injury. In ischemia and
during reperfusion, complement is activated via the classical, the
alternative, and the MBL pathway (130–132). Inhibition of the

complement cascade greatly reduced myocardial damage after
myocardial infarction (133–135). The role of complement in ath-
erosclerosis remains controversial. Several studies revealed a pro-
tective role of complement activation in cardiovascular diseases
such as atherosclerosis or vasculitis. The protective effect of com-
plement in the pathogenesis of atherosclerosis has been shown by
C3−/− mice exhibiting accelerated development of atherosclerosis
(136). We have previously reported on the complexity in design
and analysis of complement-targeted mouse models (137). How-
ever, a recent population based cohort study showed that unlike
C3a, C3, and C5a are not associated with atherosclerosis (138).
This suggests that C3a and C3 have distinct roles in pathways
leading to cardiovascular diseases. In contrast, a murine study
reported that systemic inhibition of complement by Crry–CR2
reduced development of atherosclerosis (139).

Anti-microbial peptides play a modulatory role in acute inflam-
mation via modulation of cytokine production, recruitment of
immune cells to the site of injury, and enhancement of phagocy-
tosis (140). Stimulation with IL-4 or IL-13 – classical Th2 response
cytokines – leads to rapid Paneth cell degranulation and sub-
sequent release of anti-microbial peptides (141). Anti-microbial
peptides play an important role in maintaining the skin barrier
and protection against infections. This has been experimentally
underlined by mice deficient for LL-37 (142). In addition, LL-37,
HBD-2, and 3 are highly expressed in epidermal keratinocytes in
response to injury or infections of the skin (143). It has been fur-
ther shown that LL-37 prevents sepsis by directly dampening pro-
inflammatory signaling initiated by LPS (102). Therefore, it may
also play a role in dialysis-related peritonitis where endotoxins are

www.frontiersin.org January 2015 | Volume 5 | Article 689 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Zimmer et al. Complement/anti-microbial peptides – equal immunomodulators

present. Defects in defensin expression have been shown to con-
tribute to a number of mucosal inflammatory diseases, including
necrotizing enterocolitis and inflammatory bowel disease (144).
Moreover, differentially regulated expression of epithelial-derived
anti-microbial peptides has been shown in acute appendicitis.
Arlt et al. (145) showed that the anti-microbial peptide HBD-
1 is downregulated in patients with acute appendicitis, whereas
HNP1–3, HD5 and HD6, and HBD2 and 3 are upregulated, sug-
gesting that differential regulation of the innate immune system is
coincident with altered bacterial diversity.

THE CASE OF C3a AND OTHER ANTI-MICROBIAL AGENTS
Structural criteria together with functional in vitro data suggest
that C3a and C4a, but not C5a (all split products of complement
activation), may qualify as anti-microbial peptides per se (51). C3a
(9 kDa), C3adesarg, and synthetic peptides derived from C3a were
compared to LL-37 (5 kDa when processed) for their inhibitory
effect on E. coli, E. faecalis, and P. aeruginosa, their heparin binding,
liposome permeabilization and were found to be strikingly similar
(146). Structurally, C3a contains α-helical regions characteristic
of anti-microbial peptides, which were found represented in pro-
teolytic fragments generated by the enzymatic activities of cells
involved in the acute inflammatory response, such as neutrophils
and mast cells (147).

Anti-microbial activity and heparin binding ability are
described for histidine-rich peptides (148). Histidine-rich motifs
in peptides that relate to anti-microbial activity are conserved
(149) and as artificial tags are indeed exploited in subcellular tar-
geting (150). Non-removal of histidine tags after expression of
recombinant proteins for the purpose of testing anti-microbial
activity bears inherent problems, and findings have to be viewed
with utmost caution (151–154). Awareness of this potential pitfall
was raised in a very pertinent article in 2013 (155).

By contrast, proteolytic cleavage of high molecular weight
kininogen during bacterial infection generates an internal pep-
tide, which has antibacterial activity that compares to LL-37 (156).
Similarly, in bovine plasma, activated kallikrein releases from high
molecular weight kininogen a histidine-rich fragment (157). Nor-
dahl et al. (152) demonstrated effective antibacterial activity of
a histidine-rich peptide generated from high molecular weight
kininogen. However, the effect may be potentiated by the presence
of the uncleaved histidine tag.

CONCLUSION
In conclusion, much is to be learnt from cross-specialty compar-
isons.

Apart from refining one’s experimental design (cave histidine
tags), greater clarity was gained in the use of the term “anti-
microbial peptide.” Often, an analog (functionally similar gene
product), not homolog (shared ancestry) is meant, and sometimes,
a recombinantly expressed or proteolytically generated section
only of a protein.

While having important functions in maintaining tissue
homeostasis, anti-microbial peptides and complement are both
involved in shaping the immune response and transcend from the
purely innate immunity realm to adjuvant the adaptive immune
response.

In many aspects of health and disease, complement and anti-
microbial peptides are remarkably similar in function, sharing
certain features and broad range of activities (Figures 1A,B).
They may, however, operate at differing preponderance in
separate niches, e.g., blood/tissue, epithelial cells/macrophages
(Figures 2A,B), supporting the view that two specialist systems
are operating in a complementary way. In the context of beneficial
activity of immune modulators applied clinically in sepsis, such as
Vitamin D (158) and more recently omega-3 fatty acid prepara-
tions (159),parallel measurements of, e.g.,C3 and LL-37,produced
by cells, which express Vitamin D receptor (VDR) and ω-3 fatty
acid receptor (GPR120), would provide the type of comparative
analyses needed to direct this overlapping field.
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