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Abstract The PLZF transcription factor is essential for osteogenic differentiation of hMSCs;

however, its regulation and molecular function during this process is not fully understood. Here, we

revealed that the ZBTB16 locus encoding PLZF, is repressed by Polycomb (PcG) and H3K27me3 in

naive hMSCs. At the pre-osteoblast stage of differentiation, the locus lost PcG binding and

H3K27me3, gained JMJD3 recruitment, and H3K27ac resulting in high expression of PLZF.

Subsequently, PLZF was recruited to osteogenic enhancers, influencing H3K27 acetylation and

expression of nearby genes important for osteogenic function. Furthermore, we identified a latent

enhancer within the ZBTB16/PLZF locus itself that became active, gained PLZF, p300 and Mediator

binding and looped to the promoter of the nicotinamide N-methyltransferase (NNMT) gene. The

increased expression of NNMT correlated with a decline in SAM levels, which is dependent on

PLZF and is required for osteogenic differentiation.

Introduction
Human mesenchymal stem cells (hMSCs) possess self-renewal and multi-lineage differentiation

potential toward osteogenic, chondrogenic and adipogenic specification (Pittenger et al., 1999;

Prockop, 1997). Therefore, hMSCs represent a promising resource for regenerative medicine. How-

ever, for treatment efficiency and safety, it is instrumental to obtain a thorough understanding of

basic molecular mechanisms that control the orchestrated activation of lineage-specific genes, deter-

mining cell fate of hMSCs and factors that ensure maintenance of the terminal differentiated state(s).
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The adipogenic differentiation of MSCs have been extensively studied and have revealed that it con-

sists of a cascade of transcriptional events that are driven by a series of transcription factors

(Rosen and Spiegelman, 2014). However, the knowledge regarding osteogenic differentiation of

MSCs is mainly limited to the activity of the key transcription factors RUNX2 and SP7 (osterix), and

markers representing the different stages of differentiation such as proteins involved in matrix for-

mation and mineralization (Karsenty and Wagner, 2002; Neve et al., 2011). Although it is well

established that Polycomb (PcG)- and Trithorax (Trx)-group protein complexes are intimately linked

to cell specification through gene repression and activation, respectively (Piunti and Shilatifard,

2016; Schuettengruber et al., 2017), very limited information regarding these complexes are avail-

able in naive hMSCs and cells undergoing osteogenic lineage specification. Moreover, there is a con-

siderable lack in understanding of the chromatin changes associated with enhancer activation that

leads to lineage-specific gene transcription during differentiation of mesenchymal stem cells.

Enhancers are cis-acting DNA regulatory elements that function as transcription factor (TF) bind-

ing platforms, increasing the transcriptional output of target genes through chromatin topological

changes involving enhancer-promoter looping (Calo and Wysocka, 2013; Plank and Dean, 2014).

Binding of lineage-specific TFs to enhancers is key to cell specification during stem cell differentia-

tion and organism development (Spitz and Furlong, 2012). However, the enhancer landscape that

becomes active and regulates lineage-specific gene expression during osteogenic commitment has

not been fully explored.

The ZBTB16 gene locus encodes a BTB/POZ domain and zinc finger containing TF known as PLZF

(Li et al., 1997). Targeted deletion of Zbtb16 in mice disrupts limb and axial skeleton patterning

(Barna et al., 2000; Fischer et al., 2008), and although PLZF has been shown to be involved in oste-

ogenic differentiation (Djouad et al., 2014; Ikeda et al., 2005), the underlying mechanisms of its

function is only partly understood. PLZF has been described to have a dual function in transcription

1) as a gene repressor through interaction with HDAC1, mSin3a, SMRT and NCOR (David et al.,

1998; Hong et al., 1997; Melnick et al., 2002; Wong and Privalsky, 1998), and PcG proteins

(Barna et al., 2002; Boukarabila et al., 2009), 2) as a gene activator due to its positive impact on

transcription (Doulatov et al., 2009; Hobbs et al., 2010; Labbaye et al., 2002; Xu et al., 2009).

These studies have been performed in other tissues and cell types than MSCs, such as hematopoietic

and germline cells. In these cell types, PLZF is already expressed at the stem cells stage and found

to be required for the maintenance of the stem cell pool. However, in MSCs, PLZF is expressed only

in differentiating MSCs and not in naive cells (stem cells), and its molecular function is so far

unknown in these cells.

Through the use of genome-wide ChIP-sequencing and expression analysis, we now present evi-

dence for a novel function of PLZF at developmental enhancers directing osteogenic differentiation

of hMSCs. Interestingly, we find that the ZBTB16 (PLZF) locus is bound and repressed by PcG pro-

teins and extensively H3K27 tri-methylated (H3K27me3) in naive hMSCs. Upon osteoblast commit-

ment of progenitor cells (pre-osteoblast stage), H3K27me3 demethylation takes place through

JMJD3 (also known as KDM6B) recruitment to the ZBTB16 locus, followed by extensive H3K27 acety-

lation and PLZF expression. Interestingly, upon expression, PLZF binds to a subset of enhancers,

which gain H3K27 acetylation and correlates with induced expression of nearby genes important for

osteogenic differentiation and function. Intriguingly, an initially PcG-repressed enhancer within the

ZBTB16 locus becomes active in pre-osteoblasts, gaining PLZF, p300 and Mediator binding. By use

of Chromosome Conformation Capture combined with high-throughput sequencing (4C-seq)

(van de Werken et al., 2012b), we show that this ZBTB16 intragenic enhancer ‘EnP’ physically con-

tacts the promoter of the nicotinamide n-methyltransferase gene (NNMT) and regulate its expres-

sion during osteogenic differentiation.

Taken together, our data reveal that the activation of the ZBTB16 (PLZF) gene locus is an impor-

tant event during osteogenic differentiation. PLZF regulates osteogenic differentiation of hMSCs

through binding at gene enhancers and thereby it positively affects transcription of lineage-specific

genes. The enhancer, EnP, localized within the ZBTB16 locus is an example of a latent developmen-

tal enhancer that becomes active upon differentiation and regulates NNMT expression in a PLZF-

dependent manner through Mediator and RNA-PolII recruitment and enhancer-promoter looping.
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Results

The ZBTB16 locus is activated during early osteogenic differentiation
To understand the transcriptional events that control the osteogenic differentiation of hMSCs, we

performed RNA-seq analysis for global expression levels and ChIP-seq analysis for histone marks

known to be associated with transcriptionally repressed (H3K27me3) and active (H3K4me3,

H3K27ac) gene loci. We looked for the changes taking place at an early time point of differentiation

(10 days) as compared to naive hMSCs (day 0). Figure 1A shows the timeline of osteogenic differen-

tiation of hMSCs (Kulterer et al., 2007; Neve et al., 2011; Qi et al., 2003). The time point chosen

for our analyses was based on prior microarray analyses (Supplementary file 1, Figure 1—figure

supplement 1B), and an in situ calcium staining assay and western blots, which revealed day 10 as a

timepoint where progenitor cells have committed to the osteoblast lineage, but cells are still far

from the mineralization stage that takes place between day 15 and day 21 (Figure 1—figure supple-

ment 1A–C). We will refer to the cells at this stage as immature osteoblasts (day 10) (Figure 1A).

Two days after adding the osteogenic differentiation medium, the hMSCs are still proliferating (data

not shown), which is supported by the expression of cyclin E and the presence of hyperphosphory-

lated pRB2 (p130) as revealed by western blotting (Figure 1—figure supplement 1A). Cells at this

stage can be referred to as osteogenic committed progenitor cells (pre-osteoblasts) (Figure 1A)

(Neve et al., 2011). While cells are still proliferating to some extent at day 5 (Cyclin E expression),

they were completely arrested 10 days after induction of osteogenic differentiation (immature

osteoblasts).

By analyzing the genome wide data revealing the most pronounced collective changes in histone

marks and gene transcription, we observed a correlation between the loss of H3K27me3, a gain in

H3K4me3 and increased gene expression at several genomic loci (Figure 1—figure supplement

1D–H, Supplementary file 2). The GO-terms for these groups of genes were associated to bone for-

mation such as ‘extracellular matrix’, ‘calcium’ and ‘osteogenesis’ among others (Figure 1—figure

supplement 1I). Examples of induced genes include 1) BMP4, BMP6, IGF2, IGFBP2; gene products

known to promote osteogenic differentiation (Hamidouche et al., 2010; Lavery et al., 2008), 2)

Leptin, COMP, PPL; genes encoding proteins involved in matrix formation (Ishida et al., 2013;

Turner et al., 2013), 3) ZBTB16, HIF3a, examples of transcription factors involved in bone develop-

ment (Ikeda et al., 2005; Zhu et al., 2014). Examples of ChIP-seq tracks and aligned RNA-seq data

are shown in Figure 1C and Figure 1—figure supplement 1J. In contrast to differentiation of other

cell types such as neuronal lineage, where a substantial number of gene loci showed dynamic

changes in Polycomb repression (Prezioso and Orlando, 2011), H3K27me3 levels were surprisingly

stable in differentiating hMSCs, and only few genes have significant changes in H3K27me3 levels at

their TSS (Figure 1B, Supplementary file 3).

The most striking loss of H3K27me3 was found at the ZBTB16 locus including intragenic exons

and 3’UTRs (Figure 1B and C). Interestingly, the loss of H3K27me3 was accompanied by strong gain

of H3K27ac across the whole ZBTB16 locus and gain of H3K4me3 at the TSS, which was furthermore

confirmed by ChIP-QPCR (Figure 1C and D).

PLZF is expressed in osteoblast committed progenitor cells
The ZBTB16 gene encodes the transcription factor PLZF, which has been shown to be critical for

limb and axial skeleton patterning (Barna et al., 2000; Fischer et al., 2008). Intriguingly, our gene

expression and histone modification data revealed that the ZBTB16 gene locus was highly tran-

scribed in response to osteogenic commitment of hMSCs, which is consistent with the loss of

H3K27me3 in immature osteoblasts (day 10 of differentiation) (Figure 2A,B, and Figure 1—figure

supplement 2C). Observing earlier timepoints, we found that the expression of ZBTB16 was strongly

induced (� 4000 fold analyzed by QPCR) already at day 2 of differentiation which corresponds to

pre-osteoblasts. We therefore analyzed the ZBTB16 locus for the presence of PcG proteins and

H3K27me3 levels at day 2 of osteogenic differentiation. Interestingly, we observed a loss of

H3K27me3 and binding of the PRC2 subunit SUZ12 already in pre-osteoblasts (Figure 1D and E and

data not shown). Furthermore, recruitment of the H3K27me3 demethylase JMJD3 was observed at

the locus correlating to the loss of H3K27me3 (Figure 1E). These data revealed that derepression

and activation of the ZBTB16 locus and high expression of the PLZF (Figure 2A and B) was an early
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Figure 1 continued on next page
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event in osteogenic differentiation of hMSCs corresponding to the transition of stem cells to osteo-

blast committed progenitor cells (pre-osteoblasts).

Several markers that are expressed during osteogenic differentiation of hMSCs have been

described. To understand how the induction of PLZF expression was timed relative to these, we

investigated our RNA-seq data for known markers of osteogenesis. As summarized in Figure 1—fig-

ure supplement 2A, we observed that RUNX2, often referred to as the master regulator of bone

formation (Liu and Lee, 2013; Long, 2011) was expressed already in proliferating naive hMSCs and

that the expression was quite stable throughout the time course. Importantly, SOX9 an essential fac-

tor for chondrocyte specification and known to antagonize RUNX2 transcriptional activity

(Loebel et al., 2015; Zhou et al., 2006), was highly expressed in naive hMSCs, but was strongly

reduced at day 2 of osteogenic differentiation. This down regulation of SOX9 likely reflects the tran-

sition to osteoblast committed progenitor cells. Furthermore, FOXO1, previously shown to be

involved in osteogenic differentiation (Teixeira et al., 2010) was induced at day 2. Importantly, tran-

scription factors of other lineage fates such as MYOD1 (myocytic commitment) and SOX5/8 (chon-

drocytic commitment)(Chimal-Monroy et al., 2003) were repressed and marked by H3K27me3 in

naive hMSCs and still at day 10 of osteogenic differentiation (Figure 1—figure supplement 2A). In

addition, factors known to mark the transition from the pre-osteoblast stage to immature osteo-

blasts such as ALPL (alkaline phosphatase) and SPP1 (osteopontin) (Aubin et al., 1995;

Huang et al., 2007) were strongly induced at day 10 of osteogenic differentiation (Figure 1—figure

supplement 2A,B), while SP7 (osterix) and BGLAP (osteocalcin), markers of the mineralization stage

(Aubin et al., 1995; Harada and Rodan, 2003) were still repressed and marked by H3K27me3 in

immature osteoblasts (Figure 1—figure supplement 2A,B,C and data not shown). In conclusion, our

analyses position PLZF expression as a very early event during osteogenic differentiation and likely

implicated in the transition from naive hMSCs to osteoblast committed progenitor cells (pre-

osteoblasts).

PLZF is recruited to distal regulatory regions and affects expression of
osteogenic-specific genes during differentiation of hMSCs
To understand the function of PLZF in osteogenic differentiation of hMSCs, we performed ChIP-seq

against PLZF in naive proliferating (day 0) and immature osteoblasts (day 10 of differentiation). We

identified 2,282 PLZF peaks that were observed only in immature osteoblasts (Figure 2C,

Supplementary file 4). The analysis revealed that the majority of PLZF-binding sites localized at

intergenic (45.5%) and intronic regions (34.7%) combined representing 1,830 out of 2,282 PLZF-

binding sites (Figure 2D). Very few PLZF-binding sites were observed at gene promoters (± 1 kb of

TSS: 3.0%) and upstream (�10 kb from TSS: 8.5%) or downstream (+ 10 kb from TSE: 4.8%) regions

(Figure 2D). Discriminative de novo motif analysis of the DNA sequences within the PLZF peaks,

compared to sequences from negative control regions, revealed a significant occurrence of a

TACAGC motif (E = 1.1 � 10�81), which is highly similar to the TAC(T/A)GTA PLZF motif identified

Figure 1 continued

differentiation) were quantified at 8,822 TSS (±5 kbp), and analyzed by Deseq2. Green dots represent gene loci with gain of H3K27me3, while orange

dots represent gene loci with loss of H3K27me3 (see details in Materials and methods and Supplementary file 3). As indicated, the largest loss of

H3K27me3 was observed at the ZBTB16/PLZF locus in immature osteoblasts. (C) ChIP-seq tracks for histone marks and RNA-seq tracks for transcripts

are shown for naive hMSCs (day 0) and immature osteoblasts for the ZBTB16/PLZF gene locus. (D) Upper part is a schematic presentation of the

ZBTB16 locus (an upstream region; exons 1–7; coding exons 2–7) showing the position of primers used for ChIP-QPCR (marked A-F). Lower panel

represents ChIP-QPCR validation of H3K27me3 loss, and H3K27ac gain. The data shown represents three biological replicates shown as average of

triplicate values from QPCR ± SD. (E) Loss of Polycomb (SUZ12) binding and increased JMJD3 enrichment after 2 days of osteogenic differentiation

analyzed by ChIP-QPCR. The data shown represents three independent experiments and are averages of triplicate samples from QPCR ± SD. General

IgG was used as control in ChIP-QPCR.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Validation of PLZF antibody in ChIP by PLZF kncokdown.

Figure supplement 1. After induction of differentiation, the hMSCs cells undergo a hyperproliferative phase within the first 2 days followed by growth

arrest and differentiation.

Figure supplement 2. (A) The table shows the mean normalized expression (NE) values for indicated TF and markers obtained from RNA-seq during

osteogenic differentiation of hMSCs based on three biological replicates.
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Figure 2. PLZF induction and binding to enhancers during osteoblasts commitment of progenitor cells. (A) PLZF expression during early osteogenic

differentiation of hMSCs shown by (A) RT-QPCR (ZBTB16) and (B) western blot. GAPDH was used as a loading control. (C) Average tag density plot for

PLZF peaks from ChIP-seq in naive hMSCs or immature-osteoblasts (day 10). Peak finding revealed 2,282 specific PLZF peaks in immature-osteoblasts

(Supplementary file 4). See Supplementary Methods for details regarding peak finding analyses. (D) Pie chart showing the percentage of PLZF peaks

Figure 2 continued on next page
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by Ivins et al. (Figure 2—figure supplement 1A and B) (Ivins et al., 2003). Gene ontology analyses

of closest genes to PLZF bound regions enriched for terms highly relevant for osteogenic differentia-

tion such as ‘cytoskeleton’ and ‘extracellular matrix’ among others (Figure 2E). The specificity of the

PLZF antibody in ChIP was confirmed by PLZF knockdown in hMSCs followed by induction of differ-

entiation and ChIP-QPCR at selected loci (Figure 2—figure supplement 1C–E).

PLZF binds to active chromatin regions in immature osteoblasts
To study the relationship of PLZF binding at genomic sites and histone modifications, we performed

a cluster analysis relating PLZF-binding sites to ChIP-seq data for H3K27me3, H3K4me3, H3K4me1

and H3K27ac histone marks in immature osteoblasts. It has previously been suggested that PLZF

functions as a repressor of gene transcription and has a link to PcG recruitment. Therefore, we were

surprised to observe a very limited co-occurrence of PLZF with PRC1 (RNF2) and PRC2 (SUZ12) as

well as the H3K27me3 repressive mark catalyzed by PRC2 (Figure 2F and Figure 2—figure supple-

ment 2A). In contrast, there was a clear co-occurrence of PLZF binding, with H3K27ac and

H3K4me1, histone marks characterizing active gene enhancers (H3K27ac, H3K4me1)

(Creyghton et al., 2010) and promoters (H3K27ac). However, the number of gene promoters bound

by PLZF was very low (Figure 2D), indicating that the majority of PLZF-bound regions represent

active gene enhancers.

PLZF is recruited to gene enhancers in immature osteoblasts
Activating transcription factors often recruit histone acetyl transferases (HATs) leading to H3K27

acetylation as part of the gene activation mechanism (Spitz and Furlong, 2012). To investigate if

PLZF during osteogenic differentiation would lead to increased H3K27ac at its binding sites, we next

analyzed the levels of H3K27ac before and after PLZF recruitment genome wide. As evident in the

ratio-metric heat map (Figure 2G), approximately 18% of the 2,282 genomic sites binding PLZF,

gained H3K27ac (� 2 fold, Supplementary file 5) upon osteogenic differentiation (red-colored

Figure 2 continued

(n = 2,282) that overlapped with different genomic regions; promoter (�1 kb to TSS, n = 70); upstream (�10 kb to TSS excluding promoters, n = 195);

downstream (+10 kb from the end of the gene, n = 110); exon (n = 75); intron (n = 792); and intergenic (> ± 10 kb from TSS or end of the gene,

n = 1,040). (E) GO term analyses of genes nearby to PLZF peaks (n = 2,282) observed by DAVID (The Database for Annotation, Visualization and

Integrated Discovery) (Huang da, Bailey et al., 2009). The key words enriched are displayed in the plot. The Y-axis represents the Benjamini Hochberg

corrected –LogP value. Grey parts of the bars are above a 0.05 cut-off. (F) Heat-maps at PLZF peaks (n = 2,282) clustered according to local densities of

the H3K27me3, H3K4me3, H3K27ac and H3K4me1 histone marks in immature-osteoblasts. ChIP-seq signals from each antibody were normalized to

library sizes and visualized at PLZF peaks ± 5 kb. Only PLZF peaks specific for day 10 of osteogenic differentiation were included, and peaks with PLZF

signal at day 0 were excluded (for threshold and genomic peak positions please see Supplementary file 3, and Supplementary methods). (G) Heat

maps showing the changes in H3K27ac and H3K4me1 at PLZF peaks (n = 2,282), and expression of the nearest gene in naive hMSCs (day 0) and

immature osteoblasts. The distribution of normalized H3K27ac or H3K4me1 ChIP seq signal in naı̈ve hMSCs or immature osteoblasts is shown in the

heat maps, centered at PLZF peaks identified in immature osteoblasts (± 5 kb). The ratiometric heatmap depicts the changes in H3K27ac and H3K4me1

levels in immature-osteoblasts compared to naive hMSCs (log2fc day10/naı̈ve) and all heatmaps were sorted according to the H3K27ac ratio with the

highest day10/naive H3K27ac ratio at the bottom. Gain is colored red (log2 fold � 1, corresponds to 403 PLZF peaks), no change is colored green (log2

fold>-1 and < 1, n = 1,844 PLZF peaks) and loss is colored blue (log2 fold � 1, n = 35 PLZF peaks). The RNA-seq based heat-map shows the log2fc in

expression (day10/naive) of nearest transcript mapped to the center of individual PLZF peaks. Transcripts with induced expression are colored red,

while blue coloring reflects decreased expression between naı̈ve hMSCs and immature osteoblasts. Examples of genes with increased expression

correlating with increased H3K27ac and PLZF binding at nearest genomic region (enhancer) are indicated on the right side. COL11A1, Collagen11A1;

SAMHD1, SAM domain and HD domain1; C6, Complement Component 6; NFATC2, nuclear factor of activated T-cells; ALPL, Alkaline Phosphatase;

LEPROT, Leptin Receptor Overlapping Transcript; ZBTB16, Zinc Finger and BTB Domain Containing Protein 16. (H) Average normalized ChIP-seq pile-

up signal from PLZF or IgG control in naive hMSCs or immature-osteoblasts,± 1 kb around midpoints of enhancers (defined by FANTOM5) transcribed

in mesenchymal stem cells (naive hMSCs) and osteoblasts. Pile-up signal was normalized to the average base pair signal across all FANTOM5

enhancers (n = 43,011).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. (A) Top motifs and output from discriminative de novo motif analysis of d10 PLZF peaks and random negative control regions

matched to the peaks in terms of TSS distance and orientation.

Figure supplement 1—source data 1. Validation of PLZF antibody in ChIP by PLZF kncokdown.

Figure supplement 2. (A) Average tag distribution plots show co-occurrence of PLZF with Polycomb (SUZ12, RING1B) or H3K27me3 in hMSCs before

and after osteogenic differentiation for 10 days (immature-osteoblasts) centered at PLZF peak ± 5 kb.
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population), whereas 81% of PLZF-bound regions retained their H3K27ac pattern (green-colored

population). A small subset of PLZF-bound regions (approximately 1%) showed reduction in

H3K27ac ((� 2 fold, blue-colored population). In contrast, the H3K4me1 mark was relatively constant

at the PLZF-bound regions for the majority of sites (n = 2,123; 93%) when comparing immature

osteoblasts to naı̈ve hMSCs (Figure 2G). Interestingly, when comparing the PLZF bound enhancers

that gained H3K27ac to those that retained H3K27ac levels and related it to the expression of near-

est transcript, we observed a strong correlation between gain of H3K27ac and increased expression

of proximal genes. Gene Ontology analyses revealed that many of these genes were related to

‘bone development’, ‘osteoclast differentiation’ (rightmost panel in Figure 2G and examples of

ChIP-seq tracks in Figure 2—figure supplement 2B,C and Supplementary file 5). This suggested

that a subset of PLZF-bound enhancers become active for the regulation of nearest gene that relates

to an increase in H3K27ac. Furthermore, some of the PLZF-binding sites with unchanged levels of

H3K27ac, showed increased expression of nearest gene upon induction of osteogenic differentia-

tion. This might be related to other chromatin features, for example, other histone modifications

and/or cooperative TF-binding effects at individual enhancers (Figure 2G) (Spitz and Furlong,

2012).

PLZF localizes to eRNA expressing active enhancers
Active enhancers produce so-called enhancer RNAs (eRNAs), which can be detected by global 5’

end RNA sequencing (CAGE). In the FANTOM5 project, this technique was used to create an atlas

of 43,011 CAGE-predicted active enhancer regions across numerous cell types (432 primary cell

types and 241 cell lines) and tissues (135 tissues) (Andersson et al., 2014). When comparing the

PLZF-binding sites in immature osteoblasts with the CAGE-derived enhancer candidates, we

observed that 603 out of 2,282 PLZF-binding sites (26%) localized within ± 1 kb of a predicted FAN-

TOM5 enhancer, corresponding to 740 enhancers (Supplementary file 6). Interestingly, PLZF-bound

enhancers in our hMSCs ChIP-seq data were highly enriched for enhancers that were significantly

expressed in FANTOM CAGE libraries, of naive hMSCs (p < 5*10�8, Fisher’s exact test) and osteo-

blasts (p < 4*10�39, Fisher’s exact test) (Figure 2H) (it should be noted that the time point 10 days

of osteogenic differentiation, immature osteoblasts, does not exist in the FANTOM5 data). Interest-

ingly, almost equal numbers of PLZF-bound enhancers identified in our ChIP-seq analysis in imma-

ture osteoblasts were CAGE positive (FANTOM5 data) in naive hMSCs or in osteoblasts (13.2%: 98

out of 740% and 13.6%: 101 out of 740, respectively) and approximately 42% (42 out of 98 or 101)

of these enhancers are in common between naive hMSCs and osteoblasts. This suggests that 1) in

naive hMSCs, where PLZF is absent, other TFs define a subpopulation of active enhancers that later

on during osteogenic differentiation is bound by PLZF and 2) that PLZF likely continues to be bound

to a significant number of such enhancers in terminal differentiated osteoblasts. Moreover, the data

suggest that there exist a number of lineage-specific enhancers that become active and gain PLZF

binding in the process of differentiation (Figure 2—figure supplement 2B).

PLZF affects histone H3K27ac at bound enhancers and an osteogenic
gene expression signature
To further investigate the relationship between PLZF recruitment to enhancers and changes in

H3K27ac genome wide, we performed siRNA-mediated PLZF knockdown in naı̈ve hMSCs followed

by induction of osteogenic differentiation, and H3K27ac ChIP-seq. We tested three different siRNA

oligos targeting PLZF (Figure 3—figure supplement 1). All three oligos showed significant knock-

down of PLZF mRNA compared to non-targeting control siRNA. We chose oligo #57 for further

experiments. Since it is not possible to maintain a stable knockdown of PLZF for 10 days of differen-

tiation using siRNA, we analyzed the changes in H3K27ac at day 2 of differentiation (pre-osteo-

blasts), where PLZF knockdown was still pronounced (Figure 3A). Clustering of the data revealed a

highly reproducible increase in H3K27ac in pre-osteoblasts, which was reduced when PLZF expres-

sion was down-regulated by siRNA (Figure 3B).

Examples of regions showing a gain of H3K27ac in a PLZF-dependent manner are shown as ChIP-

seq tracks in Figure 3C. In addition to regions that gained H3K27ac, there was furthermore a frac-

tion of regions that lost H3K27ac upon osteogenic differentiation (blue in left panel). However, only
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Figure 3. PLZF-dependent H3K27 acetylation and osteogenic-specific gene expression. (A) Time course of PLZF expression before and after siRNA

mediated knockdown in naı̈ve and osteogenic-induced hMSCs by western blot. GAPDH was used as loading control. (B) Ratiometric heat maps

showing the changes in H3K27ac at PLZF peaks (n = 2,282) in control (siCtrl, left side) or the effect of PLZF knockdown (siPLZF, right side) in hMSCs. The

distribution of normalized H3K27ac ChIP seq signal in naive or in 2-day osteogenic differentiation-induced hMSCs is shown, centered at PLZF peaks

Figure 3 continued on next page
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a small fraction of these regions showed PLZF-dependent changes that are in line with the previous

reported function of PLZF as a transcriptional repressor (Supplementary file 7).

To further gain insight to the transcriptional changes taking place in the absence of PLZF during

osteogenic differentiation, we performed a whole transcriptome analysis by RNA-seq after siRNA-

mediated PLZF knockdown in hMSCs. There were 1,897 genes differentially regulated upon osteo-

genic induction in control siRNA-transfected hMSCs compared to 1,184 genes differentially regu-

lated in PLZF knockdown cells. Only 44% (950/1,897) of these genes overlapped between control

siRNA and PLZF knockdown cells (Figure 3—figure supplement 1B). As shown in the Figure 3D

and E, the PLZF knockdown significantly reduced the expression of genes that were normally

induced in osteoblast committed progenitor cells (Figure 3D and E, Supplementary file 8). The

heatmaps in Figure 3D, representing the RPKM-values of differentially regulated genes from RNA-

seq of PLZF knockdown or control siRNA (in biological triplicates) in hMSCs. The vertical order of

genes is similar to the clustered heatmap shown in Figure 1—figure supplement 1B, (differentially

regulated genes from microarray analyses). The RNA-seq data clearly indicate; i) a high degree of

reproducibility in biological replicates, ii) pronounced impact of PLZF knockdown on gene regulation

at early stage (2 days) of osteogenic differentiation. The expression of upregulated genes is mainly

affected by the PLZF knockdown. Furthermore, in Figure 3E, the plot shows that PLZF knockdown

significantly affected the osteogenic transcriptional program (p < 0.0001) when comparing the log2

fold differences between PLZF knockdown or negative control siRNA in hMSCs, harvested at day 0

and day 2. The Gene Ontology (GO) analyses of differentially regulated genes in control siRNA

transfected cells enriched the terms such as ‘extracellular matrix organization, regulation of cell dif-

ferentiation and ossification’. Whereas genes regulated in PLZF knockdown hMSCs, enriched terms

including ‘Interferon signaling and chondrocyte differentiation’ (Figure 3—figure supplement 1C).

Moreover, we looked for the influence of PLZF knockdown on expression of genes proximal to the

PLZF-bound enhancers that gain H3K27ac. Interestingly, we observed that lack of PLZF in many

cases correlated with the reduced expression of nearby genes to the regions that gain H3K27ac in

PLZF-dependent manner (examples are shown in Figure 3C and F).

The PLZF-bound developmental enhancer EnP becomes active upon
osteogenic differentiation of hMSC
Interestingly, among the PLZF-bound genomic regions, we identified the ZBTB16 locus itself

(Figure 4A). Multiple PLZF peaks appeared across the intronic region covering around 50 kb, and

flanking exons 3 and 4. We also observed a remarkable gain of H3K27ac at these regions overlap-

ping with PLZF peaks in immature osteoblasts. In contrast, H3K27ac was absent in naive hMSCs and

Figure 3 continued

(± 500 bp). Regions were clustered according to the log2fd (compared to average values for all conditions) in each of the three biological replicates for

each condition. The regions that loose H3K27ac upon induction of osteogenic differentiation are colored in blue while regions that gain H3K27ac are

marked red. Regions without changes are depicted in green. (C) Genome browser tracks representing examples of genomic regions that gain H3K27ac

in a PLZF-dependent manner upon induction of osteogenic differentiation (day 2). (D) Genes induced in osteoblast commited progenitor cells had

reduced expression in the absence of PLZF, as observed by RNA-seq. Heatmaps representing the RPKM-values of differentially regulated genes from

RNA-seq of PLZF knock down or control siRNA transfected hMSCs (done in three biological replicates) at 2 days of osteogenic induction. RPKM-values

are log2 normalized to the average signal of all 12 samples (Control siRNA and PLZF siRNA transfected from naive and osteogenic induced 2d). The

vertical order is similar to the clustered heatmap from differentially regulated genes from microarray analyses shown in Figure 1—figure supplement

1B (n = 1286 genes). (E) Beeswarm plots comparing the log2 fold difference between PLZF knock down or control siRNA transfected hMSCs harvested

at day 0 and day 2. Plots shows the average RPKM values from RNA-seq performed in three biological replicates, and the p-value is calculated using a

Mann-Whitney U-test. (F) The mean normalized expression of selected osteogenic lineage-specific genes in hMSCs after induction of osteogenic

differentiation (2 days) in control siRNA or PLZF siRNA-transfected hMSCs. The values are averages from three biological replicates ± SD. SAMHD1,

SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1; LEP, Leptin; AHCY, Adenosylhomocysteinase; OMD,

Osteomodulin; COL11A1, Collagen Type XI Alpha 1 Chain; COL7A1, Collagen Type VII Alpha 1 Chain; FZD8, Frizzled Class Receptor 8; FZD5, Frizzled

Class Receptor 5; WNT5A, Wingless-Type MMTV Integration Site Family, Member 5A; WNT8B, Wingless-Type MMTV Integration Site Family, Member

8B; CALD1, Caldesmon 1.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Mean normalised expression of selected transcripts from RNA seq analyses.

Figure supplement 1. (A) PLZF knockdown using three different siRNA (55, 56, 57) in hMSCs measured by RT-QPCR.
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Figure 4. Characterization of a PLZF-bound, ZBTB16 intragenic enhancer. (A) Genome browser tracks representing the genomic region within the

ZBTB16 locus that gain H3K4me1, H3K27ac and PLZF binding in immature osteoblasts (highlighted in grey box). The overlap with FANTOM5 enhancers

is indicated at the bottom of the tracks. (B) ChIP-QPCR at the ZBTB16 locus showing enrichment of H3K27ac, H3K4me1, H3K4me3 and H3K36me3

histone marks in naive hMSCs and in pre-osteoblasts (2 days of osteogenic differentiation). Data showing mean ± SD from triplicates of QPCR from

Figure 4 continued on next page
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the region was heavily marked by H3K27me3. Intriguingly, two out of three observed peaks over-

lapped with CAGE defined enhancers. We refer to the enhancer with the most significant PLZF peak

as ‘EnP’ (Enhancer within PLZF locus bound by PLZF) and decided to further characterize it as an

example of a PLZF-bound osteogenic enhancer. To validate, that the PLZF-bound intragenic EnP ele-

ment correspond to a functional enhancer, we examined the presence of histone marks and gene

regulatory factors known to bind enhancers by ChIP QPCR. First, we analyzed a number of relevant

histone modifications and confirmed that the EnP element gained H3K4me1 and H3K27ac in pre-

osteoblasts as compared to naive hMSCs, but contained low levels of H3K4me3 and H3K36me3

compared to other regions within the ZBTB16 locus (Figure 4B). The gain in H3K4me3 and H3K27ac

was observed at the TSS, and H3K36me3 was more enriched at exon two within the ZBTB16 locus in

pre-osteoblasts correlating with transcription of the gene (Figure 4B). We obtained similar results

when investigating another PLZF peak within the ZBTB16 locus (Figure 4—figure supplement 1A).

It is well established that binding of the CBP/p300 histone acetyl transferases (HATs) marks

enhancers and catalyzes H3K27 acetylation (Visel et al., 2009). Moreover, the binding of lineage-

specific TFs together with the Mediator co-activator complex at enhancers facilitates RNA polymer-

ase II (RNA PolII) recruitment to the promoter of target genes (Carlsten et al., 2013). We therefore,

performed ChIP for p300 and the Mediator co-activator complex (MED1, MED12) in naive hMSCs

and in pre-osteoblasts. The data revealed enrichment of all three factors at EnP (Figure 4C). Taken

together, our data strongly suggest that the EnP element that lies within the ZBTB16 locus repre-

sents a latent (no H3K4me1 and no H327ac) PcG repressed enhancer in naive hMSCs which gains

the characteristics of an active enhancer in pre-osteoblasts.

To further validate EnP as a differentiation-induced enhancer, we analyzed the enhancer activity

of EnP in a GFP reporter assay (Figure 4D). As a control element of similar size, we cloned another

upstream distal region from the ZBTB16 locus (CtE) that did not show PLZF binding. There was a

complete absence of GFP fluorescence in hMSCs infected with the CtE-GFP element or empty vec-

tor control (Figure 4E and F). Interestingly, EnP showed activity in a differentiation-specific manner,

being completely inactive in naive hMSCs (Figure 4E and F). These results demonstrated that the

Figure 4 continued

three biological replicates, ****p < 0.0001, **p = 0.0025 for H3K27ac, not significant for other regions; **p = 0.0092 for H3K4me1, not significant for

other regions; **p = 0.0071 for H3K4me3 at TSS, not significant for other regions; ****p < 0.0001, *p = 0.027 for H3K36me3, not significant for other

regions; calculated by two-way ANOVA with Sidak’s multiple comparison tests. The regions (promoter, TSS, EnP) amplified using primers A, B and E

shown in Figure 1E and primers binding at Exon 2 of the ZBTB16 locus. (C) ChIP-QPCR for the Mediator components MED1 and MED12 as well as

p300 in naive or in pre-osteoblasts (2 days of osteogenic differentiation) at the EnP element. Data shows mean ± SD from triplicates of QPCR from

three biological replicates, **p < 0.001 calculated by multiple t-tests with FDR 1% and two-stage step-up method of Benjamini, Krieger and Yekutieli.

(D) Schematic presentation of the lentiviral enhancer GFP-reporter system used (pSINMIN). EnP (region corresponding to the largest PLZF peak in

Figure 4A) or a control region (CtE; region within ZBTB16 locus distal to EnP but without a PLZF peak) was cloned upstream of the minimal TK

promoter driving the expression of GFP. (E) Histogram represents GFP expression measured by flow cytometer in hMSCs cells transduced with

lentivirus encoding EnP-GFP followed by induction of osteogenic differentiation (2 days). Data is a representative of five biological replicates. The

percentage of GFP positive cells from gated live cells are indicated in the upper right corner. (F) Box plot represents the GFP expression obtained by

flow cytometer measurements in hMSCs transduced with empty vector (EV), control element (CtE) or enhancer (EnP) cloned in the pSINMIN GFP

reporter, before and after induction of osteogenic differentiation for two days. The data shows median calculated from five biological replicates.

Median is shown by horizontal line. ****p < 0.0001 calculated by 2-way ANOVA with Sidak’s multiple comparison tests. (G) Integration of the GFP

coding sequence was analyzed by QPCR using primers for GFP on genomic DNA isolated from each group of samples. Data shown are mean ± SD

from three biological replicates. Untransduced hMSCs were used as a negative control and shown as right most bars in the plot.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. ChIP for Med1, Med12 and P300 in hMSCs.

Source data 2. H3K4me3 ChIP in hMSCs.

Source data 3. H3K4me1 ChIP in hMScs.

Source data 4. H3K27ac ChIP in hMSCs.

Source data 5. H3K36me3 ChIP in hMSCs.

Source data 6. Med12 ChIP in hMSCs.

Source data 7. Med1 ChIP in hMSCs.

Source data 8. GFP reproter integration analyses.

Figure supplement 1. (A) ChIP-QPCR at another PLZF peak observed within the ZBTB16 locus showing enrichment of histone marks (H3K27ac,

H3K4me1, H3K4me3 and H3K36me3) in naive hMSCs or in pre-osteoblasts (at day 2 of osteogenic differentiation).
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EnP element likely represents a latent repressed enhancer in naive hMSCs, which upon induction of

osteogenic differentiation acquires the properties of an active enhancer and can drive the expression

of a nearby gene. To ensure that the integration of the lentiviral reporter constructs was comparable

for EnP-GFP and CtE-GFP, we performed a QPCR for the GFP coding part on genomic DNA

(gDNA) isolated from transduced cells. The data confirmed that the integration efficiency of the two

reporter constructs were highly comparable and therefore the increase in GFP fluorescence in the

EnP-GFP infected hMSCs was due to the functional activity of the EnP enhancer in response to

induction of osteogenic differentiation (Figure 4G).

The PLZF-bound intragenic enhancer (EnP) loops to the promoter of the
neighboring nicotinamide N-methyl transferase gene (NNMT) gene
It is widely accepted that enhancers interact with gene promoters through chromatin looping and

thereby regulate the transcriptional activity of associated genes (de Laat and Duboule, 2013;

Levine et al., 2014). Therefore, we decided to use 4C-seq in order to obtain an unbiased genome-

wide screen for DNA contacts made by the EnP element upon induction of osteogenic differentia-

tion. The experiment was performed using naı̈ve and pre-osteoblasts in biological replicates. Inter-

estingly, the 4C-seq data revealed several contacts between the EnP element and other genomic

sites observed within a 1 Mb window. We found that the EnP element looped to the promoter of

the NNMT gene, which is located ~100 kb downstream of the EnP element (Figure 5A). Further-

more, this contact was specific for pre-osteoblasts, since no looping was detected in naı̈ve hMSCs

(Figure 5A). This is in agreement with the ZBTB16 locus being repressed by PcG and H3K27me3 in

naive hMSCs and the inaccessibility of the EnP enhancer. To test the reliability of our 4C-seq data,

we repeated the experiment under similar conditions, but using the NNMT promoter as viewpoint

for the analysis. The results confirmed the contact of the NNMT promoter with the EnP element

within the ZBTB16 locus and that it was specific for hMSCs undergoing osteogenic differentiation

(Figure 5B). Interestingly, a rather extended contact area around EnP (> 10 kb) was observed when

the NNMT promoter was used as viewpoint. Additionally, a NNMT upstream region and the pro-

moter of ZBTB16 were used as a negative 4C-seq controls. The NNMT upstream region showed lim-

ited, but much less than NNMT-promoter enriched contact frequencies with the EnP element,

whereas the ZBTB16 promoter showed no enrichment of contact frequencies interaction with EnP.

Thus this may represent a Polycomb repressed compacted region, since the whole locus was cov-

ered by H3K27me3 (Figure 5—figure supplement 1A and B). In conclusion, these data support the

existence of what we believe could be a cluster of enhancers localized within the ZBTB16 gene locus,

where we observed a strong and broad H3K27ac enrichment in ChIP-seq and multiple PLZF peaks

(intron 2–4 in Figure 4A). This suggests, that beside EnP several other intragenic elements within

the ZBTB16 locus have the potential to act as gene enhancers.

The ZBTB16 intragenic enhancer EnP regulates the NNMT gene
promoter
In order to reveal whether the contact of the EnP enhancer with the NNMT promoter had an impact

on NNMT expression, we measured mRNA and protein levels. Indeed, NNMT expression was

increased upon induction of osteogenic differentiation of hMSCs (Figure 6A and B). Combined with

the 4C-seq analyses these data suggested a positive influence of the distal EnP enhancer located

within the ZBTB16 locus on NNMT expression.

The NNMT gene encodes the nicotinamide N-methyl transferase, a metabolic enzyme that regu-

lates SAM (S-adenosyl-methionine) homeostasis. NNMT functions in a biochemical reaction where it

transfers the methyl group from SAM to nicotinamide and converts SAM to SAH (S-adenosyl-homo-

cysteine) (Figure 6C) (Aksoy et al., 1995). To investigate whether the increase in NNMT expression

upon osteogenic differentiation affected the overall SAM levels in the cells, we measured SAM using

a fluorescence-based assay. Interestingly, we observed a decrease in SAM levels upon differentia-

tion, suggesting a correlation between increase in NNMT expression and a decrease in SAM levels (t

test, p = 0.01, Figure 6D). However, the drop in SAM levels was only minor, although significant

(p = 0.01 by t-test), suggesting a delicate balance on SAM homeostasis during osteogenic differenti-

ation. SAM being a critical co-factor for methylation of DNA through the action of DNA methyl

transferases (DNMTs) and histones through the activity of histone methyl transferases (HMTs)
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Figure 5. The enhancer EnP loops to the promoter of the nearest gene NNMT and regulates its expression. At

the top, the ideograms represent the human chromosome 11. The chromosomal location of the 4C-seq profiles is

indicated by the red mark. RefSeq hg19 genes are indicated by rectangles (exons) and arrowheads with

connecting lines (introns) that point in the direction of transcription. (A) The 4C-seq contact map of the EnP

Figure 5 continued on next page
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obviously needs to be tightly regulated. However, our data suggest that fine-tuning of global meth-

ylation during osteogenic differentiation could partly result from small changes in SAM levels via

NNMT expression regulated through PLZF and the intragenic enhancer EnP.

Overall, these results provide evidence for a dynamic activation and function of a lineage specific

developmental enhancer EnP present within the ZBTB16 locus, which regulates the expression of

NNMT and thereby SAM homeostasis upon osteogenic differentiation of hMSCs.

To further characterize the effect of NNMT on osteogenic differentiation of hMSCs, we used

siRNA to knock-down NNMT expression. We tested three different siRNA oligos to target NNMT

and found all three oligos showed significant knockdown efficiency (Figure 6—figure supplement

1). As shown in Figure 6 reduction in NNMT levels (panel E) inhibited the increase in ZBTB16 and

ALPL expression (panels F and G, respectively) normally observed during osteogenic differentiation

suggesting a block in differentiation.

PLZF is required for the recruitment of Mediator and RNA PolII at the
EnP enhancer
Next, we wanted to explore the function of PLZF at the EnP enhancer and its involvement in NNMT

expression. Therefore, we first investigated if PLZF knockdown had any influence on NNMT expres-

sion. Interestingly, the knockdown of PLZF negatively influenced NNMT gene induction (Figure 7A,

B). This was also reflected in SAM levels, since the reduction in SAM levels previously observed dur-

ing osteogenic differentiation (Figure 6D) was abrogated in the absence of PLZF (Figure 7C). We

next tested if the looping between EnP and the NNMT promoter was affected in the absence of

PLZF. We performed 4C-seq experiments in the PLZF knockdown hMSCs using the EnP enhancer

element as the viewpoint in naı̈ve and in pre-osteoblasts. To our surprise, the EnP element looped

to the NNMT promoter with the same frequency irrespective of PLZF knockdown (Figure 7—figure

supplement 1A and B). This suggested that PLZF does not affect the chromatin looping between

EnP and the NNMT promoter.

Earlier, we have shown an enrichment of Mediator at EnP upon osteogenic differentiation

(Figure 4C). Therefore, we wondered if PLZF played a role in facilitating the binding of Mediator

and RNAPolII at EnP. To address this question, we next performed ChIP for MED12 and RNAPolII in

the presence or absence of PLZF and induction of osteogenic differentiation. Interestingly, the

recruitment of MED12 and RNAPolII at the EnP enhancer was dependent on PLZF expression upon

induction of osteogenic differentiation (Figure 7D).

Taken together, these results suggest that PLZF influences the expression of the NNMT gene via

recruitment of Mediator and RNAPolII at the EnP enhancer, without regulating enhancer-promoter

looping per se.

Discussion
In this study, we have shown that the induction of the ZBTB16 gene locus encoding the transcription

factor PLZF is an important event during osteogenic differentiation of hMSCs. This is in agreement

with the genetic knockout of the Zbtb16 in mice, showing severe defects in limb and axial skeleton

Figure 5 continued

enhancer in naive hMSCs and in pre-osteoblasts (2 days of osteogenic differentiation). The plot represents the

overlay between naı̈ve hMSCs and pre-osteoblasts. Data are displayed as reads per million (RPM). The arrow

indicates the view point for depicted track and asterisks indicate contact points revealed by 4C-Seq. The plots

reveal that EnP physically contacts the NNMT promoter and vice versa (shown in B). Gray rectangles indicate areas

with higher contact frequency in pre-osteoblasts over naive hMSCs (X2-test; False Discovery Rate < 0.01). (B) The

NNMT promoter as a view point in 4C-Seq revealed a high frequency of contact at a 30 kb region in intron 2 and 3

of the ZBTB16 locus after 2 days of osteogenic differentiation. The data presented here is representative of two

biological replicates. Gray rectangles indicate the EnP-enhancer area with higher contact frequency in pre-

osteoblasts over naive hMSCs (X2-test; False Discovery Rate < 0.01).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Long range interaction map using control regions as view point revealed by 4C-Seq in

hMSCs before (naive) and after induction of osteogenic differentiation (day 2).
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Figure 6. NNMT gene expression is induced during osteogenic differentiation and affects ZBTB16 and ALPL expression. (A–B) NNMT expression

during osteogenic differentiation as analyzed by RT-QPCR and western blot. RT-QPCR data represents mean ± SD from three biological replicates.

*p = 0.0223, **p = 0.0011, ****p < 0.0001, significance was calculated by two-way ANOVA using Bonferroni’s multiple comparisons test. (C) Schematic

presentation of the biochemical reaction whereby NNMT transfers a methyl group from SAM (S-adenosyl methionine) to nicotinamide, producing

Figure 6 continued on next page
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patterning (Barna et al., 2000). Unexpectedly, however, we found that PLZF, rather than functioning

as a gene repressor by binding at promoters as described in other cellular models (Liu et al., 2016),

mainly localized to gene enhancers in immature osteoblasts. Increased H3K27ac at PLZF-binding

sites often correlated with higher expression of nearby transcripts in a PLZF-dependent manner,

many of which represent protein encoding genes known to be important in osteogenic differentia-

tion, and thereby supporting a more general role of PLZF at osteogenic lineage-specific enhancers

(Supplementary file 4).

We also revealed the presence of an intragenic enhancer (EnP) within this locus that is repressed

by PcG and H3K27me3 in naive hMSCs but becomes highly active at an early stage of osteogenic

differentiation of hMSCs. Our data also demonstrate the differentiation-specific looping of EnP to its

target promoter of the NNMT gene. This is now one of the few known examples where dynamics of

enhancer promoter interaction has been described during mesenchymal stem cell differentiation

(Dixon et al., 2015).

PLZF marks the differentiation onset of naive hMSCs
In line with previous studies (Djouad et al., 2014), we observed that PLZF expression was not spe-

cific for the osteogenic lineage since induction of chondrogenic- and adipogenic differentiation of

hMSCs also led to induction of ZBTB16 expression (data not shown). These observations suggest

that PLZF functions at an early state of hMSCs differentiation and promotes the transition from the

naive stem cell stage to a more committed state for all three lineages. Therefore, to obtain specific

gene expression patterns that characterize the three different lineages and their functions, other

cell-type-specific TFs must operate together with PLZF at enhancers in a context dependent manner.

Recently, the genome-wide binding profile for Runx2 was characterized in mouse pre-osteoblastic

cell lines and suggested a possible link of this TF to enhancer function (Meyer et al., 2014;

Wu et al., 2014). Future studies using human MSCs should be designed to reveal if RUNX2 and

FOXO1 bind enhancers and cooperate with PLZF or work independently in gene regulation during

osteogenic commitment. In our de novo motif analyses of PLZF-binding sites, we identified the

TACAGT motif, that is identical to previously published data (Ivins et al., 2003). The motif is, fur-

thermore, a recognition site for the transcription factor OSR2, implicated in proliferation of osteo-

blasts and in osteogenic differentiation of dental follicle cells (Kawai et al., 2007; Park et al., 2015).

Whether OSR2 and PLZF compete or cooperate for binding to enhancers and if OSR2 functions

together with PLZF to regulate osteogenic gene expression is not known and would require further

studies. We observed that MED12 binding at the osteogenic enhancer EnP was dependent on PLZF,

although no direct interaction has been observed between PLZF and MED12 (data not shown), sug-

gesting involvement of other cofactor(s). It should be considered that, the influence of PLZF on

H3K27ac at distal regulatory elements might facilitate MED12 binding at these regions which is

reverted in the absence of PLZF.

Figure 6 continued

1MNA (one methyl nicotinamide) and SAH (S-adenosyl homocysteine). (D) SAM levels measured by a fluorescence based assay (Mediomics) in hMSCs

before and after osteogenic differentiation for 2 days. The data shown are averages of three biological replicates (p value = 0.01, two tailed t-test). (E)

NNMT knockdown using siRNA in naive and osteogenic differentiated hMSCs, assessed by RT-QPCR. Two different siRNAs were used for knockdown

of NNMT expression. Experiments shown are mean ± SD from three biological replicates. (F) Expression of ZBTB16 after NNMT knockdown analyzed

by RT-QPCR. Experiments shown are mean ± SD from two biological replicates. (G) Expression of ALPL after NNMT knockdown analyzed by RT-QPCR.

Experiments shown are mean ± SD from two biological replicates. ****p < 0.0001, statistical significance was calculated by two-way ANOVA using

Tukey’s multiple comparisons test.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. NNMT expression by RT-QPCR.

Source data 2. ALPL expression by RT-QPCR.

Source data 3. PLZF expression by RT-QPCR.

Figure supplement 1. (A) NNMT knockdown using three different siRNA oligos (20, 21, 22) in naı̈ve and osteogenic differentiated (2 and 5 days)

hMSCs, assessed by Q-RTPCR.
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Figure 7. PLZF is required for MED12 and RNA PolII recruitment at the EnP enhancer. A) Knockdown of PLZF by siRNA prevents efficient induction of

the NNMT gene. hMSCs were transfected with siPLZF or control siRNA, left untreated or added osteogenic differentiation medium in a time course

experiment. (A) Western blot showing the knockdown efficiency of PLZF and the influence on NNMT expression during osteogenic differentiation

(western blot in A, representative blot from two biological replicates and RT-QPCR in B, the data shown are mean ± SD from three biological replicates,

Figure 7 continued on next page
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A latent developmental enhancer EnP within the ZBTB16/PLZF locus
EnP that lies within the ZBTB16 locus represents a latent PcG-repressed developmental enhancer in

naive hMSCs. Upon induction of osteogenic differentiation, H3K27me3 was removed from EnP pos-

sibly through JMJD3 recruitment and there was a subsequent gain of chromatin marks characterizing

active enhancers (H3K4me1 and H3K27ac) and gene regulatory factors such as Mediator, p300 and

PLZF. Intriguingly, a reporter assay in which EnP was integrated in the genome of hMSCs cells

showed that EnP functions only upon induction of differentiation. This suggests that the EnP

enhancer element in the context of a GFP reporter also require lineage-specific factor(s) such as

PLZF for its activity.

The region of the ZBTB16 locus that we found to be in contact with the promoter of the NNMT

gene covered an area around 50 kb and included introns 3–5 which showed a strong enrichment for

H3K27ac and H3K4me1 upon osteogenic differentiation and gained PLZF binding at several posi-

tions. These characteristics suggest that this ZBTB16 intragenic region could represent a cluster of

several active enhancers (Whyte et al., 2013) that likely binds other TFs besides PLZF. Since

increased expression of PLZF was also observed during induction of chondrogenic and adipogenic

differentiation (data not shown), we assume that EnP might be functional in these lineages as well.

However, whether all potential intragenic enhancers in the ZBTB16 locus would be regulated simi-

larly between the three different cell lineages and contact similar or different target promoters

would need further investigation.

Regulation of SAM levels through NNMT expression and activity
We found that EnP loops to the NNMT promoter and correlated with induced expression of the

NNMT gene during osteogenic differentiation, and that NNMT expression is required for the differ-

entiation of hMSCs. The enzyme NNMT regulates nicotinamide (vitamin B3) levels through methyla-

tion, using SAM as a methyl donor (Figure 6C). NNMT is overexpressed in many cancers

(Sartini et al., 2013; Ulanovskaya et al., 2013) and can result in an altered epigenetic state. This

has been proposed to happen due to draining of methyl groups from the methionine cycle leaving

very stable 1MNA and SAH byproducts, thereby changing the methylome of cancer cells

(Shlomi and Rabinowitz, 2013; Ulanovskaya et al., 2013). Based on our data, it is tempting to

speculate that the ZBTB16 intragenic enhancer EnP and PLZF, helps to fine tune global methylation

patterns through transcriptional regulation of the NNMT gene during osteogenic commitment of

progenitor cells. These important aspects require further detailed investigations.

In conclusion, our results identify the transcription factor PLZF as a novel component that marks

the enhancer landscape in hMSCs during osteogenic differentiation, acting as a positive regulator of

enhancer function. Importantly, we find that the derepression of the ZBTB16 locus, besides causing

increased PLZF expression, furthermore, exposes an intragenic developmental enhancer EnP that

Figure 7 continued

****p < 0.0001). The impact of PLZF knockdown on ALPL expression is shown in the lower part of the panel B. The data shown are mean ± SD from

three biological replicates, ****p < 0.0001, significance was calculated by two-way ANOVA using Tukey’s multiple comparisons test. (C) Fluorescence

based SAM assay revealed that PLZF knockdown prevented the decline in SAM levels as observed in control siRNA cells (tested as significant p = 0.01

two tailed t-test) during early osteogenic differentiation (day2). The data shown here is an average of three biological replicates. (D) ChIP followed by

QPCR for PLZF, RNA PolII, and MED12 at the EnP element before and after PLZF knockdown in hMSCs. Osteogenic differentiation was induced one

day after siRNA transfection and cells were fixed for ChIP two days later. The data represents two biological replicates and show averages of triplicate

values from QPCR ± SD. ****p < 0.0001, significance was calculated by two-way ANOVA using Tukey’s multiple comparisons test. (E) Model to show

that the ZBTB16 locus is repressed by Polycomb protein complexes (PcG) and marked by H3K27me3 in naive hMSCs. Upon induction of osteogenic

differentiation, the ZBTB16 locus gets derepressed by losing PcG binding, and H3K27me3 through JMJD3 recruitment, gain H3K27ac which eventually

results in high expression of PLZF. The intragenic enhancer ‘EnP’ gets exposed, gains H3K27ac and H3K4me1 histone marks and binds PLZF as well as

P300 and the Mediator complex. Subsequently, the EnP element loops to the promoter of the NNMT gene (100 kb downstream) and induce its

expression and as a consequence regulates SAM homeostasis during osteogenic differentiation of hMSCs.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. ChIP for enhancer binding proteins in hMSCs, in the absence of PLZF.

Figure supplement 1. 4C-sequencing map revealing that the PLZF knockdown (using siRNA) did not affect the contact frequency between the EnP

element and NNMT promoter observed during early osteogenic differentiation (day 2).
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contact the promoter of the NNMT gene through chromatin looping and affects SAM homeostasis

in osteogenesis (see model Figure 7E).

Materials and methods

Key resources table

Reagent
type
(species)
or resource Designation

Source
or reference Identifiers

Additional
information
[RRID]

Gene
(Homo
sapiens)

ZBTB16
(zinc finger
and BTB
domain containing
16provided
by HGNC)

HGNC:HGNC:
12930

Gene ID:
7704, updated
on 18-Nov-2018

Gene
(H. sapiens)

NNMT (nicotinamide
N-methyltransferase
provided by
HGNC)

HGNC:HGNC:
7861

Gene ID:
4837, updated
on 11-Nov-2018

Cell line
(H. sapiens)

Human Mesenchymal
Stem Cells
(HMSC)

Bone
Marrow
derived, from
Lonza

Lonza, Cat.
No. PT-2501

Recombinant
DNA reagent

PCR8 TOPO
TA vector

Invitrogen

Recombinant
DNA reagent

pSINMIN
lentiviral ‘enhancer
reporter vector’

Johanna Wysoca’s lab (Rada-Iglesias
et al., 2011

Software,
algorithm

Easeq https://
easeq.net

Nature Structural
and Molecular
Biology Volume
23 No 4 (April
2016), 349–357

Chemical
compound,

Lipofectamin
2000

Invitrogen

Chemical
compound,

StemPro
osteogenesis

Lonza Gibco
A10072-01

Sequence
-based
reagents

Mission siRNA
oligos ZBTB16
SiRNA

Sigma SASI_Hs01_
00148557

Sequence-based
reagents

Mission siRNA
oligos ZBTB16
SiRNA

Sigma SASI_Hs01_
00148556

Sequence
-based
reagents

Mission siRNA
oligos ZBTB16
SiRNA

Sigma SASI_Hs01_
00148555

Sequence
-based
reagents

Mission siRNA
oligos NNMT
SiRNA

Sigma SASI_Hs01_
00209920

Sequence-
based
reagents

Mission siRNA
oligos NNMT
SiRNA

Sigma SASI_Hs01_
00209921

Sequence-
based
reagents

Mission siRNA
oligos NNMT
SiRNA

Sigma SASI_Hs01_
00209922

Antibody PLZF
(Rabbit
polyclonal)

Santa Cruz sc-22839
RRID:
AB_2304760

WB-1:600
ChIP-5mg

Continued on next page
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Continued

Reagent
type
(species)
or resource Designation

Source
or reference Identifiers

Additional
information
[RRID]

Antibody NNMT
(Rabbit
polyclonal)

Abcam ab58743
RRID:
AB_881715

WB (1:1000)

Antibody GAPDH
(Mouse
monoclonal)

Abcam ab8245
RRID:
AB_2107448

WB (1:10,000)

Antibody CyclinE
(Mouse
monoclonal)

Abcam ab3927
RRID:
AB_304167

WB (1:1000)

Antibody pRB2
(Rabbit
polyclonal)

Santa Cruz sc317
RRID:
AB_632093

WB (1:1000)

Antibody anti-H3K27me3
(Rabbit
monoclonal)

Cell
Signalling

9733
RRID:
AB_2616029

ChIP-5ml

Antibody anti-SUZ12
(Rabbit
monoclonal)

Cell
Signalling

3737
RRID:
AB_2196850

ChIP-5ml

Antibody Anti-RNF2
(RING1B)
(Rabbit
polyclonal)

Home
made

Peptide ‘NAST’
RRID:
AB_2755047

ChIP-5mg

Antibody anti-H3K4me3
(Rabbit
monoclonal)

Cell
Signalling

9751
RRID:
AB_2616028

ChIP-5ml

Antibody anti-H3K27ac
(Rabbit
polyclonal)

Abcam ab4729
RRID:
AB_2118291

ChIP-5mg

Antibody anti-H3K4me1
(Rabbit
polyclonal)

Abcam ab8895
RRID:
AB_306847

ChIP-5mg

Antibody anti-H3K4me1
(Rabbit
monoclonal)

Cell
Signalling

5326S
RRID:
AB_10695148

ChIP-5ml

Antibody anti-H3K36me3
(Rabbit
monoclonal)

Cell
Signalling

4909
RRID:
AB_1950412

ChIP-5ml

Antibody P300
(Rabbit
polyclonal)

Santa
Cruz

sc-585
RRID:
AB_2231120

ChIP-5mg

Antibody RNA POLII
(Rabbit
polyclonal)

Santa Cruz sc 9001X
RRID:
AB_2268548

ChIP-5mg

Antibody MED1/TRAP220
(Rabbit
polyclonal)

BETHYL A300-793A
RRID:
AB_577241

ChIP-5vg

Antibody MED12
(Rabbit
polyclonal)

BETHYL A300-774A
RRID:AB_669756

ChIP-5mg

Antibody JMJD3 (KDM6B)
(Rabbit polyclonal)

home
made

Peptide ‘KAKA’
RRID:
AB_2755046

ChIP-5mg

Continued on next page
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Continued

Reagent
type
(species)
or resource Designation

Source
or reference Identifiers

Additional
information
[RRID]

Commercial assay or kit Bridge-It S-
Adenosyl
Methionine
(SAM)
Fluorescence
Assay Kit

Mediomics 1-1-1003A (50
measurements)

Commercial
assay or kit

DNeasy Blood
and tissue kit

QIAGEN 69504

Commercial
assay or kit

RNeasy
Plus Mini kit

QIAGEN 74106

Commercial
assay or kit

TaqMan
Reverse
Transcription
Reagents

Applied
Biosystems

N808-0234

Commercial
assay or kit

Fast SYBR
Green Master
Mix

Applied
Biosystems

4385612

Commercial
assay or kit

affymetrix
gene chips

Affymetrix HT_HG-
U133_Plus_PM

Commercial
assay or kit

ChIP seq
DNA sample
preparation kit

Illumina Catalog IDs:
IP-102–1001

Human mesenchymal stem cells (hMSC) culture and differentiation
Bone-marrow-derived primary human mesenchymal stem cells (hMSC) were purchased from Lonza

(Lonza, Cat. No. PT-2501). Cell purity and their ability to differentiate into osteogenic, chondrogenic

and adipogenic lineages were tested by Lonza. Cells were positive for CD105, CD166, CD29, and

CD44. Cells tested negative for CD14, CD34 and CD45. Cells were cultured according to manufac-

turer’s instructions using mesenchymal stem cell growth medium (MSCGM) (Lonza MSCGM: PT-

3238) supplemented with one MSCGM SingleQuots (PT-4105). Differentiation was induced using

StemPro osteogenesis (Gibco A10072-01), chondrogenesis (Gibco A10071-01) or adipogenesis

(Gibco A10070-01) differentiation kit as per manufacturer’s instructions. Cells were harvested at the

indicated time points for ChIP, RNA, 4C-seq and protein using appropriate buffers as described

below.

PLZF knockdown using siRNA
Mission siRNA oligos were ordered from Sigma. Three different oligos were tested and sequences

are provided in the Supplementary file 9.

The hMSCs were reverse transfected with siRNA oligos using Lipofectamin 2000 and Optimem

media (Gibco). Briefly, 600 pmol of siRNA (in 500 ml Optimem was mixed with 10 ml Lipofectamin

2000 (Invitrogen) in 500 ml Optimem. After 15 min of incubation at room temperature, 1 � 106 cells

were mixed in the transfection mix and incubated for another 10 min. Cells in the transfection mix

were seeded in dishes (15 cm, Nunc cell culture) with normal HMSCB media. Osteogenic differentia-

tion was induced 24 hr after transfection and cells processed for analyses at indicated time points.

Chromatin immunoprecipitation (ChIP) assay
Cells were processed for ChIP as previously described with slight modifications (Dietrich et al.,

2012). Briefly, cells were fixed for 10 min in culture media containing 1% formaldehyde and were

processed for ChIP as previously described with slight modifications (Dietrich et al., 2012). Briefly,

formaldehyde fixed chromatin was sonicated in IP buffer (IP buffer = 2 volumes of SDS Buffer: 1 vol

Triton Dilution Buffer; SDS Buffer- 50 mM Tris-HCl, (pH8.1), 100 mM NaCl, 5 mM EDTA, (pH 8.0),

0.2% (w/v) NaN3, 2% (w/v) SDS; Triton Dilution Buffer-: 100 mM Tris-HCl, (pH 8.6), 100 mM NaCl, 5

mM EDTA, (pH 8.0), 0.2% (w/v) NaN3,5.0% (v/v) Triton X-100) using a Branson Sonifier (4 cycles of 30
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s each at 22% of max amplitude). Twenty mg DNA (sonicated chromatin) was used for each ChIP in

IP buffer. Antibodies used: Rabbit general IgG (DAKO), rabbit monoclonal anti-H3K27me3 (Cell Sig-

nalling # 9733, Rabbit monoclonal,), anti-SUZ12 (Cell Signalling # 3737 Rabbit monoclonal), RING1B

(produced in our lab), H3K4me3 (Cell Signalling # 9751, Rabbit monoclonal), H3K27ac (Abcam #

ab4729), H3K4me1 (Abcam # 8895), (Cell Signalling # 5326S, Rabbit monoclonal used for ChIP-seq),

H3K36me3 (Cell Signalling # 4909, Rabbit monoclonal), PLZF (Santa Cruz # sc-22839), P300 (Santa

Cruz # sc-585), RNA POLII (Santa Cruz # sc 9001X), MED1/TRAP220 (BETHYL # A300-793A), MED12

(BETHYL # A300-774A), JMJD3 (produced in our lab)). Samples were first incubated with antibodies

overnight at 4˚C by end-over-end rotation and subsequently immune-complexes were enriched using

incubation with protein A-Sepharose beads for 3 hr. After washing the samples were de-crosslinked

overnight at 68˚C (shaking) in ChIP Elution Buffer (20 mM Tris-HCl (pH7.5), 5 mM EDTA (pH 8.0), 50

mM NaCl, 1% (w/v) SDS, 50 mg/ml Proteinase K). Finally, enriched DNA was purified using a Qiagen

PCR purification kit. The ChIPs were validated at Polycomb target genes by QPCR.

ChIP sequencing
ChIP DNA from three parallel ChIPs were pooled or individual ChIPs from three biological replicates

were used and 10 ng each was used for making ChIP-seq libraries. The libraries were prepared using

‘ChIP seq DNA sample preparation kit’ from Illumina following manufacturer’s instructions. Individual

samples were runsequenced in a single lanes on HiSeq2000 (Illumina). H3K27ac samples were or

multiplexed (using NEB kit) and run on a Illumina Genome Analyzer IIx, HiSeq2000 (Illumina), or

NextSeq500 as single end sequencing.

4C-Sequencing
Templates for 4C were prepared as described previously (van de Werken et al., 2012a; van de

Werken et al., 2012b). The enzymes used were four base pair cutters DpnII and Csp6I.

Osteogenic induced (2 days; preosteoblasts) or naive hMSCs (10 � 107 cells per group) were har-

vested and fixed in 2% (v/v) formaldehyde in PBS, 10% (v/v) FBS, for 10 min with rotation at room

temperature. The procedure was continued as described earlier (van de Werken et al., 2012a).

The primer sequences are given in the Table with all primers. The final PCR amplification was per-

formed using 3 mg of 4C DNA, and PCR conditions were 98˚C (2 min), 98˚C (15 s), 58˚C (1 min), 72˚C

(3 min), repeated for 30 cycles and final amplification for 7 min at 72˚C using Phusion High Fidelity

DNA Polymerase (Thermo Scientific).

S-adenosyl methionine (SAM) assay
SAM was measured using the Bridge-It S-Adenosyl Methionine (SAM) Fluorescence Assay Kit from

Mediomics according to the manufacturer’s instructions (Mediomics, LLC, St. Louis, Missouri, U.S.

A.). Osteogenic differentiation of hMSCs was induced and cells were harvested after 2 days together

with naı̈ve cells and processed for SAM assay. The procedures was followed as described in the

assay kit manual.

RT-PCR, microarray and RNA sequencing
Total RNA representing the indicated time points were purified from hMSCs using RNeasy Plus Mini

kit (QIAGEN 74106), and cDNA was generated by RT-PCR using the TaqMan Reverse Transcription

Reagents (Applied Biosystems#N808-0234). Quantifications were done using the Fast SYBR Green

Master Mix (Applied Biosystems#4385612) and an ABI Step One Plus instrument. GAPDH was used

for normalization. The sequences of the primers used are listed in the Supplementary file 9 with pri-

mers. The RNA samples at days 0, 2, 5, and 10 of osteogenic differentiation (in three biological repli-

cates) were sent for microarray hybridization using affymetrix gene chips (HT_HG-U133_Plus_PM).

For RNA sequencing, samples were processed using a True Seq RNA Sample preparation kit (Illu-

mina # 15025062) following the manufacturer’s instructions. Samples were multiplexed and

sequenced in HiSeq2000.

Enhancer activity reporter assay
The pSINMIN lentiviral ‘enhancer reporter vector’ was kindly provided by Johanna Wysoca’s lab

(Rada-Iglesias et al., 2011). The enhancer fragment (EnP) (corresponding to the biggest PLZF peak
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within the ZBTB16 locus) or control element region without a PLZF peak within the ZBTB16 locus

(CtE) were PCR amplified from genomic DNA (gDNA) isolated from hMSCs using primers described

in the primer Table and cloned into the PCR8 TOPO TA vector (Invitrogen). The relevant fragments

were cut out from the TOPO vector using EcoRI sites and subsequently cloned into the pSINMIN

vector using EcoRI sites. Positive clones were confirmed by sequencing.

Lenti-virus were produced by transfecting 20 mg reporter plasmid together with 15 mg PAX8 and

6 mg of VSV in 293FT cells seeded at a density of 5 � 106 cells per 15 cm dish (Nunc cell culture)

using the CaPO4 method. 48 hr following transfection and media change the supernatant containing

viral particles were collected and filtered through 0.45 mm filters. Polybrene was added to the super-

natant 8 mg/ml and hMSCs were infected with virus overnight. Cells were trypsinised and reseeded

48 hr later and Puromycin (0.5 mg/ml) was added for selection. Two days later, osteogenic differenti-

ation was induced and cells were harvested after 2 days for flowcytometric analyses or gDNA isola-

tion. Genomic DNA was isolated using the DNeasy Blood and tissue kit (QIAGEN: 69504).

Quantitative PCR was performed using GFP primers described in the primer Table. QPCR on the

HOXD locus was used for normalization. Untransduced hMSCs were used as a control.

Western blotting
Western blotting was performed according to standard procedures. The cells were lysed in high salt

lysis buffer (50 mM Tris-HCl (pH 7.2), 300 mM NaCl, 0.5% (w/v) Igepal CA-630, 1 mg/ml aprotinin, 1

mg/ml leupeptin, 1 mM PMSF, 1 mM EDTA (pH 8.0), 50 mM NaF, 20 mM b-glycerophosphate) fol-

lowed by a brief sonication on a Branson Sonifier with a 2 mm probe (10% of max amplitude for 2 s

on ice). Samples were left on ice for 30 min, then centrifuged at 22,000 g for 15 min. Ten percent

Tris-glycine or 4–12% Bis-Tris SDS-PAGE gels (Invitrogen) were used to separate proteins for analy-

ses. Seablue Plus two prestained marker (Invitrogen) was used as a molecular weight standard. Blot-

ting was performed using the following antibodies: PLZF (Santa Cruz # sc-22839), NNMT (Abcam #

ab58743), GAPDH (Abcam # ab8245), cyclinE (mab, HE12), pRB2 (Santa Cruz, sc317).

Alizarin red staining
Naive or osteogenic induced hMSCs were washed two times with PBS followed by fixation in 96%

ethanol for 15 min at room temperature. Alizarin red solution 1% (w/v, dissolved in milliQ water) was

added to the fixed cells and incubated for 60 min at room temperature with gentle rotation. Finally,

cells were carefully (not to lose precipitates) washed three times with water and dried. Pictures were

taken with a Leica camera (DFC295) fitted to a microscope at 20X magnification.

Bioinformatic analyses
ChIP sequencing
Reads were trimmed for low-quality nucleotides and mapped to the hg19 human genome sequence

using Bowtie v0.12.7 (Langmead et al., 2009) using the parameters ‘-S -m 1’. When nothing else is

mentioned, subsequent processing, signal quantitation, peak-finding, distance calculation, normali-

zation, clustering and visualization was done using EaSeq and default settings (http://easeq.net

Lerdrup et al., 2016). Values in 2D-histograms in tracks or heatmaps were counted and normalized

to fragments per million reads per kbp. The number of fragments was derived from the count by

dividing it with (1 + DNA fragment size / bin size). Aligned datasets were filtered for multiple reads

at the same position likely to occur from PCR amplification. The reads were extended to a DNA frag-

ment size of 300 bp. Genes subject to differential H3K27me3 levels were identified as follows: Read

counts from two biological H3K27me3 ChIP-seq replicates from day 0 (naı̈ve hMSCs) and day 10

(immature osteoblast) samples were quantified within 5five kbp windows surrounding 30,716 non-

redundant TSS in Refseq Hg19 gene annotation data (O’Leary et al., 2016), which were down-

loaded from the refflat table at UCSC (Kent et al., 2002). TSSes were filtered for low abundance by

requiring a read count >=15 from each sample and >=100 for all four samples collectively. The

8,222 TSSes meeting these criteria were analysed for fold change and significance using DESeq2

(Love et al., 2014 ). For 2D-histograms of ChIP-seq data, Tthe number of reads overlapping with an

area of +/-1 kbp of transcript start to end for H3K27me3 and ±1 kbp of TSS for H3K27ac and

H3K4me3 were quantified. Each data set was quantile normalized in order to compensate for varia-

tions in ChIP efficiency between the samples. Regions with low H3K27me3 levels (<0.5) or low
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H3K4me3 (<5) in both samples were filtered and two fold changes in each histone mark was calcu-

lated (day10/day0 (naı̈ve)). Regions with gain or loss in each histone mark were calculated by select-

ing the population with twofold change or higher in either direction. Values in 2D-histograms in

tracks or heatmaps were counted and normalized to fragments per million reads per kbp. The num-

ber of fragments was derived from the count by dividing it with (1 + DNA fragment size/bin size).

Peak-finding
Specific PLZF peaks were identified using the IgG library data set as negative control. The procedure

resembles that of MACS with some modifications (Zhang et al., 2008). Each dataset was divided

into 100 bp windows, and the reads within each window scanned genome-wide. A normalization

coefficient (NCIS) serving to normalize the background levels of the two datasets was analyzed in

accordance with Liang and Keles, (Liang and Keleş, 2012). Window size was manually set to 100 bp.

Global thresholds were calculated based on a Poisson Distribution using the genome-wide average

number of reads in the windows and a p-value of 1E-05. Adaptive thresholds were modeled the fol-

lowing way: The average number of negative control reads in areas corresponding to 10x, 50x and

250x window size (100 bp) was calculated for each position. This number was used as lambdas for

Poisson distributions and thresholds that matched a p-value of 1E-05 were calculated. The most con-

servative threshold was chosen from the three local thresholds of the control and the global thresh-

old of the sample. Thresholds from the negative control were scaled according with the NCIS

normalization factor. The position and statistics of windows passing the most conservative threshold,

and having a NCIS-normalized log2-fold Sample/Control-ratio above 2, as well as less than a 3:1 dif-

ference between the signal on the plus and minus strands were extracted into a separate list, and

the entire procedure was done four times where the windows were shifted 25 bp each time. Win-

dows within 100 bp of each other and overlapping windows were merged. For each region in the

resulting the borders were refined by sliding a window of 100 bp from one window-size upstream to

downstream of the temporary border. The exact position where the number of samples reads within

the window fell below the threshold was defined as the new border of that region. Shoulders were

excluded at values below m +2 SD. After border refinement and peak-merging, peaks were positively

selected for an FDR value of 1E-05 Benjamini or better and minimum a NCIS normalized log2 fold

difference of 2. To focus on those PLZF peaks from day 10 that were unique for differentiated cells,

those peaks that had more than 0.76 fragments/kbp/M in the day 0 (naı̈ve hMSCs) sample

(quantified ±500 bp of the peak center) were excluded.

Motif analysis
De novo motif analysis was done using the MEME suite at http://meme-suite.org (Bailey et al.,

2009) and the MEME-ChIP tool set (Machanick and Bailey, 2011) to search for new motifs in dis-

criminative mode. The central enrichment of output from MEME and DREME (Bailey, 2011) was

Central enrichment was visualized using the integrated Centrimo tool (Bailey and Machanick,

2012). Negative control loci were generated using EaSeq (Lerdrup et al., 2016), and the tool ‘Con-

trols’ to make a set of control loci that on population level matched the PLZF peaks in distance and

orientation to the closest TSS. Fasta files of sequences from the two sets of regions were generated

using the ‘Get sequences’ tool in EaSeq.

RNA sequencing
Data received from RNA sequencing was analyzed by using Genomatix software (Expression Analysis

for RNASeq Data, GGA) (Genomatix Software GmbH, Germany) as per their guidelines. Normalized

gene expression was calculated using following formula (by the software):

NE = c * #reads / (#reads * length) where NE is the normalized expression or enrichment value,

#reads: the reads (sum of base pairs) of falling into either the transcript or the cluster region,

#reads: all mapped reads (in base pairs),length: the transcript or cluster length in base pairsand c

a normalization constant set to 107.

ChIP-seq, RNA-seq, and microarray integration
Significantly regulated genes from the microarray analysis were imported as a Regionset in EaSeq

((Lerdrup et al., 2016) and translated into genomic coordinates using the ‘Find coordinates in an
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already loaded geneset file’ option based on gene names and a Refseq (O’Leary et al., 2016) hg19

annotation file downloaded and imported as Geneset on October 30 2018 from the UCSC table

browser (Karolchik et al., 2004). Of 1,286 imported genes the gene names corresponding coordi-

nates were not found in 187 cases, which were depicted as white in the heatmaps. The list of upre-

gulated genes at d2 in Supplementary file 1 was imported similarly, resulting in 441 coordinates

with non-zero read counts in the control. Heatmaps were made using the ‘ParMap’ plot type, and

the color scale based on http://www.ColorBrewer.org (Harrower and Brewer, 2003). Beeswarm

plotting and Mann-Whitney U-testing was done using R (R Development Core Team, 2014) and the

beeswarm package (Eklund, 2016). Similarly, the list of transcript coordinates and mRNA quantities

derived from the RNA-seq analysis was imported into EaSeq and used for quantitation of ChIP-seq

signal at TSS of the gene encoding each transcript.

Colocalization of PLZF peaks and gene expression
To visualize expression changes of genes near PLZF peaks, For each peak the the nearest list of tran-

scripts was identified from the imported RNA-seq analysis using the ‘Colocalize’-tool was searched

for the one with the closest transcript and the fold change in normalized expression of this transcript

was used for visualization.

4C-Sequencing
The 4C-seq mapping and normalization was carried out using the mapping and normalization strat-

egy as previously described (van de Werken et al., 2012b). In brief, 4C-seq reads were demulti-

plexed and the primers sequences without the first restriction enzyme recognition site, were

removed from the reads. Subsequently, the trimmed reads were mapped to a database with in silico

digested genomic fragment-ends of the human reference genome build hg19. The view point, the

non-cut fragment-end and the self-ligation fragment-end were discarded. After linear interpolation

of the center of the fragment-ends, the distribution of the blind-fragment reads and the non-blind

fragment reads were quantile normalized using R’s limma package (Smyth, 2005) . Furthermore, the

4C-seq contact frequencies within the locus of interest were normalized to its library size. The 4C-

seq contact frequencies were used to calculate the trimmed mean (10%) with a running window size

of 21 fragment-ends. Since 4C-seq contact frequencies have a PCR amplification bias, we carried-

out a non-parametric approach by ranking each fragment-end and applying a �
2-test on the

summed rank position for both samples on each running window. Subsequently, we determined the

sample with the highest contact frequencies per window and corrected for multiple hypothesis test-

ing using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). The R statistical pack-

age version 3.1.1 was used for the statistical calculations and for generating the 4C-seq plots

(R Development Core Team, 2014). The R Gviz package was used for plotting the annotation data

(Hahne et al., 2018).
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Promyelocytic leukemia zinc-finger induction signs mesenchymal stem cell commitment: identification of a key
marker for stemness maintenance? Stem cell research & therapy 5:27. DOI: https://doi.org/10.1186/scrt416,
PMID: 24564963

Doulatov S, Notta F, Rice KL, Howell L, Zelent A, Licht JD, Dick JE. 2009. PLZF is a regulator of homeostatic and
cytokine-induced myeloid development. Genes & Development 23:2076–2087. DOI: https://doi.org/10.1101/
gad.1788109, PMID: 19723763

Eklund A. 2016. The Bee Swarm Plot, an Alternative to Stripchart . CRAN. 0.2.0.http://www.cbs.dtu.dk/~eklund/
beeswarm/
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